
Proceedings of

JAC 2010
Journées Automates Cellulaires

December 15-17, 2010, Turku, Finland

Editor:

Jarkko Kari

TUCS Lecture Notes 13
December 2010

ISBN 978-952-12-2503-1 (printed)
ISBN 978-952-12-2504-8 (electronic)
ISSN 1797-8823 (printed)
ISSN 1797-8831 (electronic)

Painosalama Oy
Turku, Finland, 2010

Foreword

The second Symposium on Cellular Automata “Journées Automates Cellulaires”
(JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two
conference days were held in the Educarium building of the University of Turku,
while the talks of the third day were given onboard passenger ferry boats in the
beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The con-
ference was organized by FUNDIM, the Fundamentals of Computing and Discrete
Mathematics research center at the mathematics department of the University of
Turku.

The program of the conference included 17 submitted papers that were selected
by the international program committee, based on three peer reviews of each paper.
These papers form the core of these proceedings. I want to thank the members of
the program committee and the external referees for the excellent work that have
done in choosing the papers to be presented in the conference.

In addition to the submitted papers, the program of JAC 2010 included four dis-
tinguished invited speakers: Michel Coornaert (Université de Strasbourg, France),
Bruno Durand (Université de Provence, Marseille, France), Dora Giammarresi (Uni-
versità di Roma Tor Vergata, Italy) and Martin Kutrib (Universität Gießen, Ger-
many). I sincerely thank the invited speakers for accepting our invitation to come
and give a plenary talk in the conference. The invited talk by Bruno Durand was
eventually given by his co-author Alexander Shen, and I thank him for accepting to
make the presentation with a short notice. Abstracts or extended abstracts of the
invited presentations appear in the first part of this volume.

The program also included several informal presentations describing very recent
developments and ongoing research projects. I wish to thank all the speakers for
their contribution to the success of the symposium. I also would like to thank
the sponsors and our collaborators: the Finnish Academy of Science and Letters,
the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku
Centre for Computer Science, the University of Turku, and Centro Hotel. Finally,
I sincerely thank the members of the local organizing committee for making the
conference possible.

These proceedings are published both in an electronic format and in print. The
electronic proceedings are available on the electronic repository HAL, managed by
several French research agencies. The printed version is published in the general
publications series of TUCS, Turku Centre for Computer Science. We thank both
HAL and TUCS for accepting to publish the proceedings.

Turku, December 2010

Jarkko Kari

Program Committee

Enrico Formenti (Université de Nice-Sophia Antipolis, France)
Jarkko Kari (chair, University of Turku, Finland)
Jean Mairesse (Université Paris 7, France)
Ivan Rapaport (Universidad de Chile, Santiago, Chile)
Klaus Sutner (Carnegie Mellon University, Pittsburgh, USA)
Siamak Taati (University of Groningen, the Netherlands)

External referees

Florent Becker, Raimundo Briceño, Silvio Capobianco, Romain Demangeon, Al-
berto Dennunzio, Amir F. Dana, Anah́ı Gajardo, Pierre Guillon, Edmund Harriss,
Petr Kůrka, Bruno Martin, Pierre-Étienne Meunier, Christophe Papazian, Julien
Provillard, Éric Rémila, Ville Salo, Matthias Schulz, Véronique Terrier, Guillaume
Theyssier, Michael Weiss, Jean-Baptiste Yunès, Charalampos Zinoviadis.

Organizing Committee

Alexis Ballier
Pierre Guillon
Timo Jolivet
Jarkko Kari (chair)
Arto Lepistö
Charalampos Zinoviadis

Table of Contents

Invited Talks: Abstracts and Extended Abstracts

Some Extensions of the Moore-Myhill Garden of Eden Theorem 1
M. Coornaert

1D Effectively Closed Subshifts and 2D Tilings . 2
B. Durand, A. Romashchenko, and A. Shen

Tiling-recognizable Two-dimensional Languages: from Non-determinism to
Determinism through Unambiguity . 8

D. Giammarresi

Measuring Communication in Cellular Automata . 13
M. Kutrib and A. Malcher

Regular Papers

A Quantum Game of Life. 31
P. Arrighi and J. Grattage

The Block Neighborhood . 43
P. Arrighi and V. Nesme

Computing (or not) Quasi-periodicity Functions of Tilings 54
A. Ballier and E. Jeandel

A Simulation of Oblivious Multi-head One-way Finite Automata by Real-time
Cellular Automata . 65

A. Borello

Construction of µ-limit Sets . 76
L. Boyer, M. Delacourt, and M. Sablik

A Categorical Outlook on Cellular Automata . 88
S. Capobianco and T. Uustalu

Combinatorial Substitutions and Sofic Tilings. 100
Th. Fernique and N. Ollinger

Infinite Time Cellular Automata: a Real Computation Model 111
F. Givors, G. Lafitte, and N. Ollinger

Computational Complexity of Avalanches in the Kadanoff Two-dimensional
Sandpile Model . 121

E. Goles and B. Martin

Clandestine Simulations in Cellular Automata . 133
P. Guillon, P.-E. Meunier, and G. Theyssier

Slopes of Tilings . 145
E. Jeandel and P. Vanier

Transductions Computed by Iterative Arrays . 156
M. Kutrib and A. Malcher

An Upper Bound on the Number of States for a Strongly Universal Hyperbolic
Cellular Automaton on the Pentagrid . 168

M. Margenstern

Time-symmetric Cellular Automata . 180
A. Moreira and A. Gajardo

Yet Another Aperiodic Tile Set . 191
V. Poupet

Decomposition Complexity . 203
A. Shen

Real-time Sorting of Binary Numbers on One-dimensional CA 214
Th. Worsch and H. Nishio

Journées Automates Cellulaires 2010 (Turku), pp. 1-1

SOME EXTENSIONS OF THE MOORE-MYHILL
GARDEN OF EDEN THEOREM

MICHEL COORNAERT

Institut de Recherche Mathématique Avancée Université de Strasbourg, 7 rue René
Descartes, 67084 Strasbourg Cedex, France
E-mail address: coornaert@math.u-strasbg.fr

Abstract. The Moore-Myhill Garden of Eden theorem asserts that a cellular
automaton with finite alphabet over a free abelian group of rank 2 is surjective if
and only if it is pre-injective. Here, pre-injectivity means that two configurations
which coincide outside of a finite subset of the group must coincide everywhere
if they have the same image under the cellular automaton. The Garden of Eden
theorem has been extended to amenable groups by Ceccherini-Silberstein, Machi
and Scarabotti and to cellular automata defined over strongly irreducible subshifts
of finite type by Fiorenzi. I will discuss these extensions as well as linear versions
jointly obtained with Ceccherini-Silberstein.

c
1

Journées Automates Cellulaires 2010 (Turku), pp. 2-7

1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS

BRUNO DURAND 1, ANDREI ROMASHCHENKO 2, AND ALEXANDER SHEN 2

1 LIF, CNRS & Aix–Marseille Université
E-mail address: Bruno.Durand@lif.univ-mrs.fr
URL: http://www.lif.univ-mrs.fr/~bdurand

2 LIF, CNRS & Aix–Marseille Université, on leave from IITP RAS
E-mail address: {Andrei.Romashchenko,Alexander.Shen}@lif.univ-mrs.fr

Abstract. Michael Hochman showed that every 1D effectively closed subshift
can be simulated by a 3D subshift of finite type and asked whether the same can
be done in 2D. It turned out that the answer is positive and necessary tools were
already developed in tilings theory.

We discuss two alternative approaches: first, developed by N. Aubrun and
M. Sablik, goes back to Leonid Levin; the second one, developed by the authors,
goes back to Peter Gacs.

1. Simulation

Let A be a finite alphabet and let F be an enumerable set of A-strings. Con-
sider all biinfinite A-sequences (i.e., mappings of type Z → A) that do not contain
substrings from F . The set of these sequences is effectively closed (its complement
is a union of an enumerable set of intervals in Cantor topology) and invariant under
(left and right) shifts. Sets constructed in this way are called effectively closed 1D
subshifts.

Effectively closed 2D subshifts are defined in a similar way; instead of biinfinite
sequences we have configurations, i.e., mappings of type Z2 → A, and instead of
forbidden strings we have forbidden patterns (rectangles filled with A-letters). Given
the set F of forbidden patterns, we consider the set of all configurations where
no elements of F appear. This set of configurations is closed under vertical and
horizontal shifts. If F is enumerable, we get effectively closed 2D subshifts ; if F is
finite, we get 2D subshifts of finite type.

2D subshifts of finite type are closely related to tilings. A tile is a square with
colored sides (colors are taken from some finite set C). A tile set is a set of tiles,
i.e., a subset of C4, since each tile is determined by four colors (upper, lower, left,
and right). For a tile set τ , we consider all τ -tilings, i.e., the tilings of the entire
plane by translated copies of τ -tiles with matching colors.

Key words and phrases: effectively closed subshifts, subshifts of finite type, tilings.
The paper was supported part by NAFIT ANR-08-EMER-008-01 grant, part by EMC ANR-

09-BLAN-0164-01.

c

2

1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 3

Tilings can be considered as a special case of 2D subshifts of finite type. In-
deed, subshift is governed by local rules (forbidden pattern say what is not allowed
according to these rules). In tilings the rules are extremely local: they say that the
neighbor tiles should have matching colors, i.e., 1× 2 rectangles where the colors do
not match, are forbidden.

So every tile set determines a subshift of finite type (the alphabet is a tile set).
The reverse statement is also true if we allow the extension of an alphabet. (It
is natural since we have to simulate any local rule by a more restricted class of
matching rules.) Formally, for every alphabet A and subshift S of finite type we can
find:
• a set of colors C;
• a tile set τ ⊂ C4;
• a mapping d : τ → A

such that every τ -tiling after applying d to each tile becomes an element of S and
every element of S can be obtained in this way from some τ -tiling. Such a cor-
respondence between tilings and subshifts of finite type works in any dimension:
k-dimensional tilings correspond to k-dimensional subshifts of finite type (modulo
the alphabet extension).

Now we want to compare subshifts in different dimensions. Let S be a 1D
subshift. We can make a 2D subshift from it by copying each letter vertically. It
is easy to see that an effectively closed 1D subshift becomes an effectively closed
2D subshift (we use rules that guarantee the vertical propagation, i.e., require that
vertical neighbors should have the same letter, and the rules of the original 1D
subshift in horizontal direction). This 2D shift, denoted by S̄, is not of finite type, if
the original 1D shift was not of finite type. However, S̄ is sofic, i.e., is a projection
by a subshift of finite type in extended alphabet:

Theorem 1.1. For every effectively closed 1D subshift S in alphabet A there exists
an alphabet A′, a finite 2D subshift S ′ in alphabet A′, and a mapping d : A′ → A
such that the image of S ′ under d (applied in each place) is S̄.

This theorem (with 3D instead of 2D, which makes it easier) was proved by
Michael Hochman [10] who asked whether the same is true for 2D. His motivation
came from ergodic theory.

It turned out that the tools needed to prove theorem 1.1 for 2D tilings were
already developed in the framework of tilings theory when Hochman asked his ques-
tion. Moreover, there are two different sets of tools that can be used; one was used
by Nathalie Aubrun and Mathieu Sablik [1] (and goes back to Leonid Levin [4]), the
other one was used in [6] (and goes back to Peter Gács [8]). In the sequel we discuss
informally how these tools work, and what are the similarities and the differences.

2. Tools

Let us describe informally our problem. In 2D we have local rules that guarantee
that each vertical line contains some letter. We need to add some other rules to
guarantee that the emerging horizontal sequence of letters does not have substrings
from some enumerable set F . We are allowed to superimpose additional structure
to the configuration (by extending the alphabet: we let A′ be a product of A and
some other finite set). Rules for this extended configuration should guarantee that
its base belongs to S̄.

4 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

So we need to run a computation that generates F and some process that com-
pares generated elements with substrings in the horizontal sequence. It is well known
(since the first papers of Wang [14, 15] where the notion of a tile set was introduced)
that tile sets can simulate computation easily: indeed, a time-space diagram of a
Turing machine (or a cellular automaton) obeys local rules that guarantee that
computation is performed correctly when started. The problem is to initiate the
computation: there is no special point in the plane where the computation can be
started, so we need to “break the translational symmetry” somehow.

This problem was solved by Berger [2] who proved that there exists an aperiodic
tile set, i.e., a tile set τ such that τ -tilings exist but all are aperiodic. (A tiling is
periodic if there is a non-zero translation that does not change it. One can show
that if a tile set has a periodic tiling then it has a 2-periodic tiling where some finite
block is repeated horizontally and vertically.) Berger used a complicated multi-level
construction that was later simplified in different ways by Robinson [13] and others.
The simplification made clear that Berger’s construction is essentially based on self-
similarity: any tiling can be divided into blocks that behave like individual tiles.
(In the original construction this similarity was obscured by some irregularities; the
cleaned versions could be found in [12] or [3].)

This self-similarity creates some kind of a skeleton that can be used to initiate
computations. However, the problem is that we necessarily initiate them in many
different places, and these “geometrically parallel” computation should be organized
to achieve some goal. Berger used them to prove the undecidability of the domino
problem (to determine whether a given tile set has at least one tiling); for that pur-
pose it is enough to initiate multiple copies of the same computation: all are limited
in time and space, but among them there are computations of arbitrary length. For
that we split the plane into different zones used for different computations. It is
possible to find such an arrangement; in each zone the standard local rules for a
computation are used but zones are not contiguous. So we need additional efforts to
transmit the information from one zone to another one. This all can be done (with
limited overlap, so the total density of information in a given cell remains finite).

Then Hanf [9] and Myers [11] proved that there are tile sets that admit only
non-recursive tilings (a much stronger statement than the existence of an aperiodic
tile set). This was done by embedding a separation problem for two inseparable
enumerable sets, and for this we need that all the parallel computations not only
share the same (finite) program, but also share the same (infinite) input. Therefore,
some additional machinery is needed to synchronize the inputs of all the computa-
tions (each computation gets a finite part of the infinite input sequence, but these
finite parts are consistent pieces of an infinite input).

When simulating 1D effectively closed subshift, we need more: the input is given
to us externally (the contents of the vertical lines that carry A-letters) and we need
to check this input against all possible forbidden substrings. This means that we
are very limited in space (and cannot distribute pieces of input sparsely over the
entire plane as before).

2.1. Robinson-type solution

The way to do this was developed in [4]. At each level of self-similarity we have
computation squares that are arranged in computational stripes. Such a stripe is infi-
nite in vertical direction and carries an infinite computation of a finite-space cellular

1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 5

automaton. (One can wonder whether it makes sense to have an infinite computation
in a finite space. Indeed, it is not really infinite; it runs for some time (exponen-
tial in the width of the stripe) and then is restarted. The repeated computations
are not necessarily identical, since they interact with the other computations which
could be different.) Each stripe performs some checks for the part of the horizontal
sequence that is near it. When the level (and the size of the stripe) increases, the
checked zone and the time allowed for the computation increase. Working together,
the stripes can check the horizontal sequence against all forbidded substrings.

In [4] this technique was used for one specific 1D effectively closed subshift with
a binary alphabet (for some fixed α < 1 we forbid all sufficiently long strings whose
Kolmogorov complexity is less than α times length). However, this technique is
quite general and can be used for any 1D effectively close subshift modulo some
technical problem.

This technical problem is that the underlying self-similar structure may be “de-
generate” in the sense that the plane is divided in two parts that have no common
ancestors. In this case we need some additional tricks (extending the zone of re-
sponsibility of each stripe) that were not needed for the specific subshift of [4]. The
reason why they were not needed: if a string of low complexity (compared to length)
is split into two parts, one of then has low complexity, too.

So the technique of [4] is not enough. The final construction was discovered (in
fact, independently from [4]) by N. Aubrun and M. Sablik.

2.2. Fixed-point solution

There is a different way to organize the computations that uses fixed-point self-
similar tiling. The idea of a self-similar fixed-point tile set can be explained as
follows. We already know (since Wang papers) that tiling can be used to simulate
computations. This computation, in its turn, can be used to guarantee the desired
behavior of bigger blocks, called macro-tiles. So for a desired behavior of macro-
tiles we can construct tiling rules (i.e., tile set) that guarantees this behavior. If, by
chance, these tiling rules coincide with the rules for macro-tiles, we get self-similarity
as a consequence.

But there is a classical tool to get this coincidence intentionally, not by chance:
the Kleene fixed-point construction. It was used by Kleene in the recursion theory
and later by von Neumann to construct self-reproducing automata. Usually it is
illustrated as follows: for every program p (in fact, for every string p) there exists
a program p′ that prints the text of p. Kleene’s theorem guarantees that one can
find p such that p′ is equivalent to p, i.e., the program p prints its own text. The
same trick (though not just the statement of Kleene’s recursion theorem) can be
used for 2D computations. This was done first by Gács [8] in a complicated setting
(error-correction in 2D computations); we use the same idea in a much simpler
environment. For each tile set τ one can construct a set τ ′ of tiles that force macro-
tiles to behave like τ -tiles; Kleene’s trick can then be used to make τ isomorphic to
τ ′. This construction is explained in [5].

Then some additional structure can be superimposed with this self-similar skele-
ton (by adding some other computations); Kleene’s trick can still be used to achieve
self-similarity (in some extended sense).

6 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

This construction is rather flexible and can be applied to different problems,
see [6]. The differences and similiarities between two constructions are summarized
in the following comparison table.

2.3. Comparison table

Problem Solution 1 Solution 2
Breaking the symmetry Use (modified) Berger–

Robinson self-similar
construction where self-
similarity is guaranteed
by geometric arguments

Use fixed-point self-
similar construction,
where self-similiarity is
a byproduct of some
computational structure

Placing the computa-
tions

Computations of differ-
ent levels are all per-
formed “on the ground”,
by individual cells, and
the plane is divided into
regions allocated to each
level

Computations of differ-
ent levels are performed
at different levels of hi-
erarchy: high level com-
putations deal not with
individual tiles but with
macro-tiles

Arranging arbitrarily
long computations

Computations are infi-
nite in the vertical di-
rection but finite in hor-
izontal direction, each
computation performs a
space-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Computations are finite
in both direction; each
computation performs a
time-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Bringing the bits of the
horizontal sequence to
the computation

Recursively from lower
levels; the bits are syn-
chronized explicitly “on
the ground”

Recursively from lower
levels; each level checks
whether the bits at the
next level are recorded
correctly

Dealing with degenerate
case of the self-similar
pattern

Using overlapping zones
of responsibility

Using overlapping zones
of responsibility

Error resistance Not clear (we first need
some error-resistant un-
derlying geometric con-
struction)

Adding redundancy at
each level

References

[1] N. Aubrun, M. Sablik, Simulation of recursively enumerable subshifts by two dimensional SFT
and a generalization. Preprint, available from M. Sablik’s home page.

[2] R. Berger, The undecidability of the domino problem. Memoirs of the AMS, v. 66 (1966).
[3] B. Durand, L. Levin, A. Shen, Local rules and global order, or aperiodic tilings, The Mathe-

matical Intelligencer, v. 27 (2005), no. 1, p. 64–68.
[4] B. Durand, L. Levin, A. Shen, Complex Tilings. J. Symbolic Logic, 73 (2), 593–613, 2008.

1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 7

[5] B. Durand, A. Romashchenko, A. Shen, Fixed Point and Aperiodic Tilings. Proc. 12th Inter-
national Conference of Developments in Language Theory. Kyoto, Japan, 2008, p. 537–548.

[6] B. Durand, A. Romashchenko, A. Shen, Fixed-point tile sets and their applications. CoRR
abs/0910.2415, 2009. http://arxiv.org/abs/0910.2415

[7] B. Durand, A. Romashchenko, A. Shen, Effective closed subshifts in 1D can be implemented
in 2D. Fields of Logic and Computation, Lecture Notes in Computer Science, v. 6300 (2010),
p. 208–226.

[8] P. Gács, Reliable Computation with Cellular Automata. J. Comput. Syst. Sci. 32(1), 15–78,
1986.

[9] W. Hanf, Nonrecursive tilings of the plane, i, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 283–285.

[10] M. Hochman, On the dynamic and recursive properties of multidimensional symbolic systems.
Inventiones mathematicae, 176, 131–167 (2009).

[11] D. Myers, Nonrecursive tilings of the plane, ii, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 286–294.

[12] N. Ollinger, Two-by-two Substitution Systems and the Undecidability of the Domino Problem,
Computability in Europe, 2008 (CiE’2008), Lecture Notes in Computer Science, v. 5028, p. 476–
485.

[13] R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathe-
maticae, v. 12 (1971), p. 177–209.

[14] H. Wang, Proving theorems by pattern recognition, II, Bell System Technical Journal, v. 40
(1961), p. 1–41.

[15] H. Wang, Dominoes and the ∀∃∀ case of the decision problem. Proceedings of the Symposium
on Mathematical Theory of Automata, Brooklyn Polytechnic Institute, New York, 1962, p. 23–
55.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 8-12

TILING-RECOGNIZABLE TWO-DIMENSIONAL LANGUAGES:
FROM NON-DETERMINISM TO DETERMINISM

THROUGH UNAMBIGUITY

DORA GIAMMARRESI

Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Sci-
entifica, 00133 Roma, Italy
E-mail address: giammarr@mat.uniroma2.it

Abstract. Tiling recognizable two-dimensional languages, also known as REC,
generalize recognizable string languages to two dimensions and share with them
several theoretical properties. Nevertheless REC is not closed under complemen-
tation and the membership problem is NP-complete. This implies that this family
REC is intrinsically non-deterministic. The natural and immediate definition of
unambiguity corresponds to a family UREC of languages that is strictly contained
in REC. On the other hand this definition of unambiguity leads to an undecid-
ability result and therefore it cannot correspond to any deterministic notion. We
introduce the notion of line-unambiguous tiling recognizable languages and prove
that it corresponds or somehow naturally introduces different notions of determin-
ism that define a hierarchy inside REC.

A picture (or two-dimensional string) is a two-dimensional arrays of symbols
from a finite alphabet. A set of pictures is called two-dimensional language. Basic
notations and operations can be extended from string to pictures. The size of a
picture p is a pair (m,n) corresponding to the number of its rows and columns,
respectively. Moreover there can be defined an operation of column-concatenation
between pictures with the same number of rows and of row-concatenation between
pictures with the same number of columns. By iteration, there can be also defined
the corresponding row- and column- star operations.

The first generalization of finite-state automata to two dimensions can be at-
tributed to M. Blum and C. Hewitt who in 1967 introduced the notion of a four-way
automaton moving on a two-dimensional tape as the natural extension of a one-
dimensional two-way finite automaton (see [7]). They also proved that the deter-
ministic version corresponds to a language class smaller than the corresponding one
defined by the non-deterministic model. Four-way automata was not a successful
model since the corresponding language class does not satisfies important properties
as closure under concatenation and star operations. Since then, many approaches
have been presented in the literature in order to find the ”right way” to generalize
in 2D what regular languages are in one dimension: finite automata, grammars,
logics and regular expressions (see for example [8, 14, 25, 18, 27]). Here we focus

Key words and phrases: automata and formal Languages, two-dimensional languages, tiling
systems, unambiguity, determinism.

This work was partially supported by ESF Project “AutoMathA” (2005-2010).

c

8

TILING-RECOGNIZABLE LANGUAGES 9

on the family REC of tiling recognizable picture languages (see [14, 15] that have
been widely investigated and that it is considered as a valid candidate to represent
a counter part to 2D of regular string languages.

The definition of REC takes as starting point a characterization of recognizable
string languages in terms of local languages and projections (cf. [11]). A picture
language L is local if it is defined by a finite set of 2 × 2 pictures, called tiles that
represent all allowed sub-pictures of size (2, 2) for pictures in L. A pair composed
by a local language over an alphabet Γ and an alphabetic projection π : Γ −→ Σ
is called tiling system. A picture language L over an alphabet Σ is recognized by
a tiling system (given by a local language L′ and π) if each picture p ∈ L can be
obtained as projection of a picture p′ ∈ L′ (i.e. p = π(p′)). A picture language
is tiling recognizable if it is recognized by a tiling system. REC is the family of
tiling recognizable picture languages. We point that languages of infinite picture
(ω-pictures) were also studied in the setting of tiling systems in [1, 12, 13].

It can be verified that REC is closed under union and intersection, rotation and
mirror and under column- and row- concatenation and star operations. Moreover,
the definition of REC in terms of tiling systems turns out to be very robust: in [15,
17] it is shown that the family REC has a characterization in terms of logical formulas
(a generalization of Büchi’s theorem for strings to 2D). In [19], it is proved that
REC has a counterpart as machine model in the two-dimensional on-line tessellation
acceptor (OTA) introduced by K. Inoue and A. Nakamura in [18]. Other models of
automata for REC are proposed in [4, 8, 24]. Tiling systems can be also simulated by
domino systems [19] and Wang tiles [10] and grammars [9]. Further we remark that
when pictures degenerate in strings (i.e. when considering only one-row pictures)
recognizability by tiling systems corresponds exactly to recognizability by finite state
string automata.

A crucial difference with the one-dimensional case lies in the fact that the defini-
tion of recognizability by tiling systems is intrinsically non-deterministic. Determi-
nistic machine models to recognize two-dimensional languages have been considered
in the literature: they always accept classes of languages smaller than the corre-
sponding non-deterministic ones (see for example, [7, 18, 26]). This seems to be
unavoidable when jumping from one to two dimensions. Further REC family is not
closed under complementation and therefore the definition of any constraint to force
determinism in tiling systems should necessary result in a class smaller than REC.
Strictly connected with this problems are the complexity results on the recognition
problem in REC. Let L be a language in REC defined by a tiling system composed
by a local picture language L′ and a projection π. To recognize that a given picture p
of m rows and n columns belongs to L, one has to ”rewrite” symbols in all positions
in p to get a local picture p′ that belongs to L′ and such that π(p′) = p. This can be
done by scanning all positions of p in some order. The non-determinism implies that,
once reached a given position one may eventually backtrack on all positions already
visited, that is on O(mn) steps. Moreover in [21] it is proved that the recognition
problem for REC languages is NP-complete.

In formal language theory, an intermediate notion between determinism and non-
determinism is the notion of unambiguity. In an unambiguous model, we require that
each accepted object admits only one successful computation. Both determinism
and unambiguity correspond to the existence of a unique process of computation,
but while determinism is a ”local” notion, unambiguity is a fully ”global” one.
Unambiguous tiling recognizable two-dimensional languages have been introduced in

10 D. GIAMMARRESI

[14], and their family is referred to as UREC. Informally, a picture language belongs
to UREC if it admits an unambiguous tiling system, that is if every picture has a
unique pre-image in its corresponding local language. In [5], the proper inclusion
of UREC in REC is proved but it is also proved that it is undecidable whether a
given tiling system is unambiguous. From a computational side, there are not known
algorithms to recognize pictures that exploit the properties of UREC. This implies
that, at each step of the recognition computation, it can be necessary to backtrack
on all already visited positions.

A relevant goal is then to find subclasses for REC that inherit important prop-
erties but also allow feasible computations. Moreover an interesting result would be
proving that, as for regular string languages, notions of some kind of unambiguity
and determinism coincide.

Remark that another difference between unambiguity and determinism is that
determinism is always related to a scanning strategy to read the input. In the string
case the scanning is implicitly assumed to be left-to right and in fact determini-
stic automata are defined related to this direction. Moreover since deterministic,
non-ambiguous and non-deterministic models are all equivalent there is no need to
consider determinism from right-to-left (referred to as co-determinism). Neverthe-
less it is worthy to remark that not all regular string languages admits automata
that are both deterministic and co-deterministic. In the two-dimensional case we
have to consider all the scanning directions from left, right, top and bottom sides.

By exploiting the different possibilities of scanning for a two-dimensional array
in [3, 2] there are introduced different notions of unambiguity we call here line-
unambiguity where a line can be either a column or a row or a diagonal. We consider
tiling systems for which the computations to recognize a given picture can have at
each position a backtracking on at most m + n steps. Such definitions lie between
those of unambiguity and determinism (as long as we consider that a deterministic
computation has zero backtracking steps at each position) while they all coincide
with determinism when pictures degenerate in strings.

The informal definitions are very simple and natural. A tiling system is column-
unambiguous if, when used to recognize a picture by reading it along a left-to-right or
right-to left direction, once computed a local column, there is only one possible next
local column. As consequence in a computation by a column-unambiguous tiling
system to recognize a picture with m rows, the backtracking at each step is at most
of m steps. Similarly there are defined row-unambiguous and diagonal-unambiguous
tiling systems corresponding to computations that proceed by rows or by diagonals,
respectively. The corresponding families of languages are denoted by Col-UREC,
Row-UREC and Diag-UREC. In [3, 2] there are proved necessary conditions for a
language to be in Col-UREC and in Row-UREC. Using such conditions one can
show that families Col-UREC and Row-UREC are strictly contained in UREC. In
a different set-up it is also shown that Diag-UREC is strictly included both in Col-
UREC and Row-UREC. Moreover all those properties are decidable.

Very interestingly we can prove that diagonal-unambiguous tiling systems are
equivalent to some deterministic tiling systems where the uniqueness of computation
is guaranteed by certain conditions on the set of local tiles: the corresponding lan-
guage family is denoted by DREC ([3]). Similar results hold for classes Col-UREC
and Row-UREC whose union turns to be equivalent to another ”deterministic” class
named Snake-DREC [23]. All those classes are closed under complementation [2, 23].
As result, when we consider this line unambiguity we can prove equivalence with

TILING-RECOGNIZABLE LANGUAGES 11

deterministic models and therefore we guarantee a recognition algorithm linear in
the size (i.e. number of rows times number of columns) of the input.

References

[1] J.-H. Altenbernd, W. Thomas, and S. Wöhrle. Tiling systems over infinite pictures and their
acceptance conditions. In Developments in Language Theory 2002, volume 2450 of Lecture
Notes in Computer Science, pages 297–306. Springer, 2003.

[2] M. Anselmo, D. Giammarresi, M. Madonia. M. Anselmo, D. Giammarresi, and M. Mado-
nia. Deterministic and unambiguous families within recognizable two-dimensional languages.
Fundamenta Informaticae, 98(2-3):143–166, 2010.

[3] M. Anselmo, D. Giammarresi, M. Madonia. From determinism to non-determinism in recog-
nizable two-dimensional languages. In Procs. DLT 07, T. Harju, J. Karhumaki and A. Lepisto
(Eds.), LNCS 4588, Springer-Verlag, Berlin 2007.

[4] M. Anselmo, D. Giammarresi, M. Madonia. A computational model for tiling recognizable
two-dimensional languages. Theoretical Computer Science, Vol. 410-37, 3520–3529 Elsevier
2009.

[5] M. Anselmo, D. Giammarresi, M. Madonia, A. Restivo. Unambiguous Recognizable Two-
dimensional Languages. RAIRO: Theoretical Informatics and Applications, Vol. 40, 2, pp.
227-294, EDP Sciences 2006.

[6] M. Anselmo, M. Madonia. Deterministic and unambiguous two-dimensional languages over
one-letter alphabet. Theoretical Computer Science, Vol. 410-16, 1477–1485 Elsevier 2009.

[7] M. Blum, C. Hewitt. Automata on a two-dimensional tape. IEEE Symposium on Switching
and Automata Theory, pages 155–160, 1967.

[8] S. Bozapalidis, A. Grammatikopoulou, Recognizable picture series, Journal of Automata,
Languages and Combinatorics, special vol. on Weighted Automata, 2004.

[9] S. Crespi Reghizzi and M. Pradella. Tile rewriting grammars and picture languages. Theoret-
ical Computer Science, vol 340, n.2, pp. 257-272, Elsevier 2005.

[10] De Prophetis, L., Varricchio, S.: Recognizability of rectangular pictures by wang systems.
Journal of Automata, Languages, Combinatorics. 2 (1997) 269-288

[11] S. Eilenberg. Automata, Languages and Machines. Vol. A, Academic Press, 1974.
[12] O. Finkel. On recognizable languages of infinite pictures. Int. J. Found. Comput. Sci.,

15(6):823–840, 2004.
[13] O. Finkel. Highly undecidable problems about recognizability by tiling systems. Fundam.

Inform., 91(2):305–323, 2009.
[14] D. Giammarresi, A. Restivo. Recognizable picture languages. Int. Journal Pattern Recognition

and Artificial Intelligence. Vol. 6, No. 2& 3, pages 241 –256, 1992.
[15] D. Giammarresi, A. Restivo. Two-dimensional languages. Handbook of Formal Languages,

G.Rozenberg, et al. Eds, Vol. III, pag. 215–268. Springer Verlag, 1997.
[16] D. Giammarresi, A. Restivo. Matrix-based complexity functions and recognizable picture lan-

guages. In Logic and Automata: History and Perspectives. E. Grader, J.Flum, T. Wilke Eds.
,pag 315-337. Texts in Logic and Games 2. Amsterdam University Press, 2007.

[17] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas. Monadic second order logic over pictures
and recognizability by tiling systems. Information and Computation, Vol 125, 1, pag 32–45,
1996.

[18] K. Inoue, A. Nakamura. Some properties of two-dimensional on-line tessellation acceptors.
Information Sciences, Vol. 13, pages 95–121, 1977.

[19] K. Inoue, I. Takanami. A characterization of recognizable picture languages. In Proc. Second
International Colloquium on Parallel Image Processing, A. Nakamura et al. (Eds.), LNCS 654,
Springer-Verlag, Berlin 1993.

[20] M. Latteux and D. Simplot. Recognizable Picture Languages and Domino Tiling. Theorethical
Computer Science 178(1-2): 275-283, 1997.

[21] K. Lindgren, C. Moore, M. Nordahl. Complexity of two-dimensional patterns. Journal of
Statistical Physics, 91 (5-6), pag. 909–951, 1998.

[22] O. Matz.Regular expressions and Context-free Grammars for picture languages. Proc.
STACS’97 - LNCS 1200 pag. 283-294 - Springer Verlag 1997.

12 D. GIAMMARRESI

[23] V. Lonati, M. Pradella. Snake-Deterministic Tiling Systems. In Proc. MFCS 2009, LNCS,
Vol. 5734, 549-560, Springer 2009.

[24] V. Lonati and M. Pradella. Picture-recognizability with automata based on Wang tiles. In
Proc. SOFSEM 2010, LNCS, vol. 5901, 576-587. Springer, 2010.

[25] O. Matz. On piecewise testable, starfree, and recognizable picture languages. In Foundations
of Software Science and Computation Structures, M. Nivat Ed., vol. 1378, Springer, 1998.

[26] A. Potthoff, S. Seibert, W. Thomas. Nondeterminism versus determinism of finite automata
over directed acyclic graphs. Bull. Belgian Math. Soc. 1, 285–298, 1994.

[27] R. Siromoney. Advances in array languages. In Graph-Grammars and Their Applications to
Computer Science, Ehrig et al. (Eds.), pages 549–563. Lecture Notes in Computer Science
291, Springer-Verlag, Berlin, 1987.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 13-30

MEASURING COMMUNICATION IN CELLULAR AUTOMATA

MARTIN KUTRIB AND ANDREAS MALCHER

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
E-mail address : {kutrib,malcher}@informatik.uni-giessen.de

Abstract. Cellular automata and iterative arrays are one-dimensional arrays
of interconnected interacting finite automata which work synchronously at dis-
crete time steps. In this paper, the focus lies on the resource of communication
which naturally takes place between cells. Communication is measured here with
regard to qualitative and quantitative aspects. More detailed, the amount of com-
munication in cellular automata is measured by limiting the bandwidth of the
communication links between the cells, as well as limiting the number of messages
allowed to be sent between cells. An overview on recent results on the computa-
tional capacity of as well as on decidability problems in such restricted cellular
automata and iterative arrays is given.

1. Introduction

Parallel computational models are appealing and widely used in order to de-
scribe, understand, and manage parallel processes occurring in real life. One prin-
cipal task in order to employ a parallel computational model in an optimal way is
to understand how cooperation of several processors is organized optimally. To this
end, it is essential to know which communication and which amount of communica-
tion must or should take place between several processors. From the viewpoint of
energy and the costs of communication links, it would be desirable to communicate
a minimal number of times with a minimum amount of information transmitted.
On the other hand, it would be interesting to know how much communication is
necessary in a certain parallel model to accomplish a certain task.

Here, we consider the model of cellular automata with parallel and sequential
input mode. The latter model is also known as iterative array. In both models the
state of each cell is communicated to its neighbors in every time step. That is, on
the one hand the state is sent regardless of whether it is really required, and on
the other hand, the number of different messages that may be sent is determined
by the number of states. Thus, it seems to be natural to restrict this “unbounded”
communication by limiting the number of possible different messages between cells.
This brings us to cellular automata and iterative arrays where the bandwidth of
the communication links between two cells is bounded by some fixed constant. In
the most restricted setting this is one bit bandwidth. However, these automata are

2000 ACM Subject Classification: F.1.1, F.1.2, F.4.3.
Key words and phrases: cellular automata, iterative arrays, message complexity, limited com-

munication, decidability, formal languages.

13

14 M. KUTRIB AND A. MALCHER

still powerful enough to accept unary as well as non-unary non-context-free (even
non-semilinear) languages in real time. For some classes it is additionally known
that almost all of the commonly investigated decidability problems are undecidable.
Furthermore, we obtain proper hierarchies with regard to the resources bandwidth,
dimension, and time. Finally, we get a complete picture on the relations between
cellular automata and iterative arrays in the case of restricted inter-cell bandwidth.

For real-time one-way cellular automata where the communication is quantita-
tively measured by counting the number of uses of the communication links between
cells, the total sum of all communications or the maximal number of communications
that may appear between each two cells can be considered. Reducing the number
of communications in such a way that each two neighboring cells may communicate
constantly often only, leads to devices which also still can accept non-context-free
(even non-semilinear) languages. Again, almost all of their decidability questions
can be shown to be undecidable. An interesting additional restriction is to con-
sider inputs of a certain form only. For such bounded languages it is known that in
other computational models, such as certain variants of multi-head finite automata,
undecidable problems become decidable. However, all commonly investigated decid-
ability questions remain undecidable for communication-restricted real-time one-way
cellular automata accepting bounded languages.

Finally, both limitations on the communication between cells are combined. It
turns out that even this restriction does not lead to positive decidability results. The
known undecidability results can be translated to the case of one and two message
bandwidth. Thus, the resource communication makes the model in a way inherently
complex since even a limitation to a very small amount of communication does not
reduce the computational complexity of the model’s undecidability problems.

2. Preliminaries and Definitions

We denote the rational numbers by Q, and the non-negative integers by N. The
empty word is denoted by λ, the reversal of a word w by wR, and for the length
of w we write |w|. The set of words over some alphabet A whose lengths are at most
l ∈ N is denoted by A≤l. We write ⊆ for set inclusion, and ⊂ for strict set inclusion.
The cardinality of a set M is denoted by |M |.

A one-dimensional iterative array is a linear, semi-infinite array of identical de-
terministic finite automata, sometimes called cells. The finite automata work syn-
chronously at discrete time steps. Except for the leftmost cell each one is connected
to its both nearest neighbors (see Figure 1). For convenience we identify the cells
by their coordinates, that is, by non-negative integers. The distinguished leftmost
cell at the origin is connected to its right neighbor and, additionally, equipped with
a one-way read-only input tape. At the outset of a computation the input is written
on the input tape with an infinite number of end-of-input symbols to the right, and
all cells are in the so-called quiescent state. The state transition of all cells but the
input cell depends on the current state of the cell itself and the current states of its
neighbors. The state transition of the input cell additionally depends on the input
symbol to be read next. The head of the one-way input tape is moved at any step
to the right. With an eye towards recognition problems the machines have no extra
output tape but the states are partitioned into accepting and rejecting states.

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 15

In an iterative array with k-message restricted inter-cell communication, the
state transition depends on the current state of each cell and on the messages that
are currently sent by its neighbors, where the possible messages are formalized as a
set of possible communication symbols. The messages to be sent by a cell depend
on its current state and are determined by so-called communication functions.

s0 s0 s0 s0 s0

a1a2a3 · · · an#

Figure 1: Initial configuration of an iterative array.

Definition 2.1. A one-dimensional iterative array with k-message restricted inter-
cell communication (IAk) is a system 〈S,A,B, F, #, s0, bl, br, δ, δ0〉, where

(1) S is the finite, nonempty set of cell states,
(2) A is the finite, nonempty set of input symbols,
(3) B with |B| = k is the finite set of communication symbols,
(4) F ⊆ S is the set of accepting states,
(5) # /∈ A is the end-of-input symbol,
(6) s0 ∈ S is the quiescent state,
(7) bl, br : S → B ∪ {⊥} are communication functions which determine the

information to be sent to the left and right neighbors, where ⊥means nothing
to send,

(8) δ : (B ∪ {⊥}) × S × (B ∪ {⊥}) → S is the local transition function for all
but the input cells satisfying δ(br(s0), s0, bl(s0)) = s0,

(9) δ0 : S × (A ∪ {#}) × (B ∪ {⊥}) → S is the local transition function for the
input cell.

LetM be an IAk. A configuration ofM at some time t ≥ 0 is a description of its
global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining input sequence
and ct : N → S is a mapping that maps the single cells to their current states. The
configuration (w0, c0) at time 0 is defined by the input word w0 and the mapping c0
that assigns the quiescent state to all cells, while subsequent configurations are
chosen according to the global transition function ∆: Let (wt, ct), t ≥ 0, be a
configuration. Then its successor configuration (wt+1, ct+1) = ∆(wt, ct) is as follows.

ct+1(i) = δ(br(ct(i− 1)), ct(i), bl(ct(i+ 1)))

for all i ≥ 1, and ct+1(0) = δ0(ct(0), a, bl(ct(1))) where a = # and wt+1 = λ if wt = λ,
as well as a = a1 and wt+1 = a2 · · · an if wt = a1 · · · an. Thus, the global transition
function ∆ is induced by δ and δ0.

A two-way cellular automaton with k-message restricted inter-cell communica-
tion is similar to an iterative array. The main difference is that the cell at the origin
does not fetch the input but the input is supplied in parallel to the cells. That is, an
input a1 · · · an is fed to the cells 1, . . . , n such that initially cell i is in state ai. Cells 0
and n+1 are initially in a permanent so-called boundary state # (see Figure 2). Cell
1 indicates acceptance or rejection, and the array is bounded to the n cells which
are initially active.

Definition 2.2. A cellular automaton with k-message restricted inter-cell commu-
nication (CAk) is a system 〈S,A,B, F, #, bl, br, δ〉, where

16 M. KUTRIB AND A. MALCHER

(1) S is the finite, nonempty set of cell states,
(2) A ⊆ S is the finite, nonempty set of input symbols,
(3) B with |B| = k is the finite set of communication symbols,
(4) F ⊆ S is the set of accepting states,
(5) # 6∈ S is the boundary state,
(6) bl, br : (S ∪{#}) → (B∪{⊥}) are communication functions which determine

the information to be sent to the left and right neighbors, where ⊥ means
nothing to send,

(7) δ : (B ∪ {⊥})× S × (B ∪ {⊥}) → S is the local transition function.

· · ·# a1 a2 a3 an #

Figure 2: A two-way cellular automaton.

A one-way cellular automaton (OCAk) is a cellular automaton in which each
cell receives information from its immediate neighbor to the right only. So, the flow
of information is restricted to be from right to left. Formally, δ is a mapping from
S × (B ∪ {⊥}) to S.

A configuration of a cellular automaton 〈S,A,B, F, #, bl, br, δ〉 at time t ≥ 0 is a
mapping ct : {1, . . . , n} → S, for n ≥ 1. For a given input w = a1 · · · an ∈ A+ we
set the initial configuration c0,w(i) = ai, for 1 ≤ i ≤ n. Successor configurations are
computed according to the global transition function ∆:

Let ct, t ≥ 0, be a configuration. Then its successor configuration ct+1 = ∆(ct)
is as follows.

ct+1(1) = δ(br(#), ct(1), bl(ct(2)))
ct+1(i) = δ(br(ct(i− 1)), ct(i), bl(ct(i+ 1))), i ∈ {2, . . . , n− 1}
ct+1(n) = δ(br(ct(n− 1)), ct(n), bl(#))

for CAk and

ct+1(i) = δ(ct(i), bl(ct(i+ 1))), i ∈ {1, . . . , n− 1}
ct+1(n) = δ(ct(n), bl(#))

for OCAk.
An input w is accepted by an IAk ((O)CAk) M if at some time i during the

course of its computation the input cell (cell 1) enters an accepting state. The
language accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n+1 (t(n) ≥ n
for (O)CAk) be a mapping. If all w ∈ L(M) are accepted with at most t(|w|) time
steps, then L(M) is said to be of time complexity t.

The family of all languages which are accepted by some device X with time
complexity t is denoted by Lt(X). If t is the function n+1, for IAk, or the function n,
for (O)CAk, acceptance is said to be in real time and we write Lrt(X). Since for
nontrivial computations an IAk has to read at least one end-of-input symbol, real
time has to be defined as (n+1)-time. The linear-time languages Llt(X) are defined
according to Llt(X) =

⋃
r∈Q, r≥1 Lr·n(X).

3. What Arrays with Limited Inter-Cell Bandwidth Can Do

For iterative arrays and cellular automata where the bandwidth of the com-
munication links between two cells is bounded by some fixed constant, the most

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 17

restricted setting is one message bandwidth. However, these devices are still pow-
erful enough to solve problems such as the firing squad synchronization problem
in optimal time [22]. Moreover, it is known [28, 29] that one-message IA1 can ac-
cept rather complicated unary languages in real time, for example, words whose
lengths are powers of two { a2n | n ≥ 1 }, words whose length are square numbers

{ an2 | n ≥ 1 }, words whose length are prime numbers { ap | p is prime }, or words
whose lengths are Fibonacci numbers. Clearly, every deterministic finite automaton
can be simulated in the input cell of an iterative array. Thus, we obtain the strict
inclusion

REG ⊂ Lrt(IA1)

where REG denotes the regular languages.
The next lemma shows that an additive speed-up in IAk is always possible [17].

The benefit of this lemma is that we do not have to care about additive constant
factors which may arise in constructions. The situation is different for cellular
automata where we have an infinite, strict, and tight hierarchy depending on the
additive constant (see [32] for OCAk, and Theorem 5.1 for CAk).

Lemma 3.1. Lrt+p(IAk) = Lrt(IAk), for any constant number p ≥ 1.

In [17] it is shown that one-message IA1 can simulate binary counters in real time.
This construction is often a useful tool for the modular design of algorithms. For
example, by exploiting counters it is possible to check certain properties of distances
between two designated cells, to verify that something happens at a certain time
step, to implement clocks and pulses, and much else besides. In general, a specific
application of a counter requires some additional mechanisms. For example, it might
be of interest to recognize the time step at which a counter overflows or becomes zero,
instead of knowing the real counter value. The proofs of some of the next results
make extensively use of the ability of one-message IA1 to simulate binary counters
attached to the input cell, which stores the least significant bit. The counter either
can be incremented or decremented, and can be tested for zero. Moreover, it is
possible to use two counters and to switch from one counter to another with the
minimal resources time and communication bandwidth.

The following language is known not to be regular. On the other hand, it can
be accepted by pushdown automata making at most one turn.

Lemma 3.2. { anbn | n ≥ 0 } ∈ Lrt(IA1).

The proof of the previous lemma is based on a construction that allows to switch
between an increasing counter and a decreasing counter by using some signal. The
switching costs four additional time steps. In general, any constant number of such
switchings can be realized. The resulting device can be made real-time again by
Lemma 3.1. Furthermore, we can do more complicated computations based on
the same technique. For example, if there are some subroutines sharing the same
communication, then the switching signals can be interpreted individually by the
routines. As before, the input cell controls the time steps at which the signals are
sent. This idea is applied in the construction showing the next result. The language
{ anbncn | n ≥ 0 } is not accepted by any pushdown automaton, but it is accepted
by some one-message IA1 in real time.

Lemma 3.3. { anbncn | n ≥ 0 } ∈ Lrt(IA1).

18 M. KUTRIB AND A. MALCHER

By similar constructions one can set up real-time one-message IA1 that recog-
nize languages of the form { anbncndn | n ≥ 0 } or { anbmcndm | n,m ≥ 0 }. The
important observation is that the number of switching signals to be sent is constant.
Glimpsing at the language { an(bn)m | n,m ≥ 0 } one receives the impression that
the number of switches is about m, which is no longer constant. So, the language
might be too hard to be accepted by real-time one-message IA1. In fact, in order
to show the converse we cannot use the techniques developed so far. But instead
we can reuse counter values in a sense, that once a counter is decremented to zero,
it restarts to count from its previous initial value. To this end, a master copy of
the original counter value has to be kept in another counter. The construction is
sketched in [17].

Lemma 3.4. { an(bn)m | n,m ≥ 0 } ∈ Lrt(IA1).

Next, we turn to some integer calculations, where the problem instances are suit-
ably encoded and consider the problems of “adding” negative and positive integers
as well as “multiplying” non-negative integers [17].

Lemma 3.5. { anbmcl | n,m, l ≥ 0 and − n+m = l } ∈ Lrt(IA1).

In order to construct a real-time one-message IA1 for the next languages we have
to handle counters that do not share the same communication. If we have a constant
number of counters to handle, then the simulation can be time-shared, that is, the
single steps of the counters are simulated cyclically one after the other. Clearly, in
general this may violate the real-time constraint. But for our purposes it works fine.

Lemma 3.6. { anbamb(ba)n·m | n,m ≥ 0 } ∈ Lrt(IA1).

Let a1, a2, . . . , ak, $, a, b be k + 3 different symbols. Obvious generalizations of
the construction (using several counters) show that, for example, the languages

{ an1am2 $(ba)n·m | n,m ≥ 0 },
{ an1am2 al3$(baa)n·m·l | n,m, l ≥ 0 },
{ aα1

1 aα2
2 · · · aαk

k $(bak−1)α1·α2···αk | α1, α2, . . . , αk ≥ 0 },
{ anbamb(baaaa)n2·m3 | n,m ≥ 0 },
{ an1am2 al3$(baaaaaa)n

2·m3·l2 | n,m, l ≥ 0} and, given constants j1, j2, . . . , jk ≥ 0,

{aα1
1 aα2

2 · · · aαk
k $(baj1+j2+···+jk−1)α

j1
1 ·αj2

2 ···αjk
k | α1, α2, . . . , αk ≥ 0 }

are accepted by one-message IA1 in real-time.

4. What Some of the Arrays with Limited Inter-Cell Band-
width Can Do

To obtain a valuable tool to show that certain languages cannot be accepted
by iterative arrays with limited inter-cell bandwidth, we define two equivalence
relations and derive upper bounds on the number of equivalence classes which can
be distinguished by IAk. If the number of equivalence classes induced by a certain
language exceeds this upper bound, the language is not accepted by any IAk.

Definition 4.1. Let L ⊆ A∗ be a language over an alphabet A and l ≥ 1 be a
constant.

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 19

(1) Two words w ∈ A∗ and w′ ∈ A∗ are l-right-equivalent with respect to L if
for all y ∈ A≤l: wy ∈ L ⇐⇒ w′y ∈ L.

(2) Nr(l, L) denotes the number of l-right-equivalence classes with respect to L.
(3) Two words w ∈ A≤l and w′ ∈ A≤l are l-left-equivalent with respect to L if

for all y ∈ A∗: wy ∈ L ⇐⇒ w′y ∈ L.
(4) Nℓ(l, L) denotes the number of l-left-equivalence classes with respect to L.

The next lemma provides upper bounds for the number of equivalence classes
distinguished by IAk.

Lemma 4.2. Let k ≥ 1 be a constant.

(1) If L ∈ Lrt(IAk), then there exists a constant p ≥ 0 such that

Nr(l, L) ≤ p(l+1)

and
(2) if L ∈ Lt(IAk), then there exists a constant p ≥ 0 such that

Nℓ(l, L) ≤ p · (k + 1)l

for all l ≥ 1 and all time complexities t : N → N.

Now, we fix the time complexity to real time and consider the number of
different messages. For any number of messages k ≥ 1 we define an alphabet
Ak = {a0, . . . , ak} and a language

Lbit(k) = { ex$u1u2 · · · um | x ≥ 1 and m ≥ 2x− 1

and ui ∈ Ak, 1 ≤ i ≤ m, and uj = uj+2x−1, 1 ≤ j ≤ m− (2x− 1) }.
The languages Lbit(k) are witnesses for an infinite, strict, and tight hierarchy

dependent on the number of different messages [14].

Theorem 4.3. Let k ≥ 1 be a constant. The language Lbit(k + 1) belongs to the
difference Lrt(IAk+1) \ Lrt(IAk). Therefore, Lrt(IAk) ⊂ Lrt(IAk+1).

The previous result can be extended to iterative arrays of any higher dimen-
sion [14]. Without formal definition we mention that a d-dimensional iterative array
IAd is an iterative array, where the cells are arranged as d-dimensional grid (Nd) as
extention of a line (N1). Each cell is connected to its immediate neighbors in any
dimension. Moreover, we fix the time complexity to real time, the number of dif-
ferent messages to constants k ≥ 1, and consider the dimension. For any dimension
d ≥ 2 we define a language Ldim(d) as follows. We start with a series of regular sets:

X1 = ${a, b}+, Xi+1 = $X+
i , for i ≥ 1.

Due to the separator symbol $, every word u ∈ Xi+1 can uniquely be decomposed
into its subwords from Xi. So, we can define the projection on the jth subword as
usual: Let u = $u1 · · · um, where uj ∈ Xi, for 1 ≤ j ≤ m. Then u[j] is defined to
be uj , if 1 ≤ j ≤ m, otherwise u[j] is undefined. Now define the language

M(d) = {u¢exd$ · · · $ex1$e2x$v | u ∈ Xd and xi ≥ 1, 1 ≤ i ≤ d,

and x = x1 + · · ·+ xd and v = u[xd][xd−1] · · · [x1] is defined }.
Finally, the language Ldim(d) is given as homomorphic image of M(d). More

precisely, Ldim(d) = h(M(d)), where h : {a, b, e, $, ¢}∗ → {a, b}∗ is defined by:
h(a) = ba, h(b) = bb, h(e) = b, h($) = ab, h(¢) = aa.

20 M. KUTRIB AND A. MALCHER

Theorem 4.4. Let d ≥ 1 and k ≥ 1 be constants. The language Ldim(d+1) belongs
to the difference Lrt(IA

d+1
1) \ Lrt(IA

d
k). Therefore, Lrt(IA

d
k) ⊂ Lrt(IA

d+1
k).

Interestingly, Ldim(d+ 1) belongs to Llt(IA
1
1), that is, one can trade all dimen-

sions and messages for a slow-down from real time to linear time.

Theorem 4.5. Let d ≥ 1 and k ≥ 1 be constants. Then Lrt(IA
d
k) ⊂ Llt(IA

d
k).

From Theorem 4.4 and Theorem 4.3 we obtain a double hierarchy concerning
messages and dimensions which is depicted in Figure 3.

··
·

··
·

··
·

⊂ ⊂ ⊂

Lrt(IA
d
1) ⊂ Lrt(IA

d
2) ⊂ · · · ⊂ Lrt(IA

d
k) ⊂ · · ·

⊂ ⊂ ⊂

··
·

··
·

··
·

⊂ ⊂ ⊂

Lrt(IA
2
1) ⊂ Lrt(IA

2
2) ⊂ · · · ⊂ Lrt(IA

2
k) ⊂ · · ·

⊂ ⊂ ⊂
Lrt(IA

1
1) ⊂ Lrt(IA

1
2) ⊂ · · · ⊂ Lrt(IA

1
k) ⊂ · · ·

Figure 3: Double hierarchy of fast IA with restricted inter-cell communication.

5. What Arrays with Limited Inter-Cell Bandwidth Cannot
Do

The main difference between cellular automata and iterative arrays is that the
input is processed in parallel by the former model and processed sequentially by the
latter model. An interesting variant of cellular automata is the restriction to one-way
information flow. The relations between iterative arrays and cellular automata with
two-way and one-way information flow are summarized in the left part of Figure 4.
Here, we will clarify the relation between the discussed language classes in the case
of restricted communication. It turns out that we obtain a finer hierarchy than in
the unrestricted case. The results are depicted in the right part of Figure 4.

Llt(CA) = Llt(IA)

Lrt(CA)

Lrt(OCA) Lrt(IA)

REG

Llt(CAk)

Lrt(CAk) Llt(IAk)

Lrt(OCAk) Lrt(IAk)

REG

Figure 4: Relations between unrestricted (left) and restricted (right) language fam-
ilies. Solid arrows are strict inclusions and dotted arrows are inclusions.
Families which are not connected by any path are incomparable.

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 21

The first difference between language classes with and without communication
restrictions is that there are regular languages which cannot be accepted by any
k-message cellular automaton CAk even if we add a constant number of time steps
to real time, whereas all regular languages are accepted in the unrestricted case.
Moreover, the witness languages can be accepted by a real-time CAk+1. Thus, we
obtain a strict message hierarchy for two-way real-time cellular automata. Further-
more, the witness languages are accepted by (n+ r+1)-time CAk. Thus, we obtain
a very dense strict time hierarchy. If we allow just one more time step, we obtain a
strictly more powerful device.

Theorem 5.1. Let k ≥ 1 and p ≥ 0 be constants.

(1) There is a regular language which is not accepted by any (n+ p)-time CAk.
(2) Then Lrt+p(CAk) ⊂ Lrt+p(CAk+1).
(3) Then Lrt+p(CAk) ⊂ Lrt+p+1(CAk).

If the communication channels of the CA have a sufficient capacity, the regular
languages are accepted.

Lemma 5.2. Let k ≥ 1 be a constant. Then every regular language over a k-letter
alphabet is accepted by some real-time CAk.

Together we obtain a two-dimensional infinite hierarchy for cellular automata
with restricted communication concerning the number of messages communicated
and the number of time steps performed, which is depicted in Figure 5.

··
·

··
·

··
·

⊂ ⊂ ⊂

Lrt+r(CA1) ⊂ Lrt+r(CA2) ⊂ · · · ⊂ Lrt+r(CAk) ⊂ · · ·

⊂ ⊂ ⊂

··
·

··
·

··
·

⊂ ⊂ ⊂

Lrt+1(CA1) ⊂ Lrt+1(CA2) ⊂ · · · ⊂ Lrt+1(CAk) ⊂ · · ·

⊂ ⊂ ⊂

Lrt(CA1) ⊂ Lrt(CA2) ⊂ · · · ⊂ Lrt(CAk) ⊂ · · ·

Figure 5: Two-dimensional infinite hierarchy of CA with restricted communication.

The next theorem clarifies the relation between iterative arrays and one-way
cellular automata.

Theorem 5.3. Let k ≥ 1 be a constant. There is a language belonging to the
difference Lrt(OCA1) \ Llt(IAk).

Next, we show proper inclusions between language families that are related by
inclusions for structural reasons. In [5] an unrestricted real-time iterative array ac-
cepting prime numbers in unary has been constructed. In [29] the result has been
improved to a one-message iterative array. However, while in the unrestricted case
any real-time iterative array can be simulated by a real-time two-way cellular au-
tomaton, here we have seen that both devices define incomparable language families.
By a different witness language the next result follows.

Theorem 5.4. Let k ≥ 1 be a constant. Then Lrt(OCAk) ⊂ Lrt(CAk).

22 M. KUTRIB AND A. MALCHER

The next result says that for cellular automata with restricted communication a
parallel processing of the input is more powerful than a sequential processing under
linear time conditions. This is in contrast to the unrestricted case where both input
modes imply the same computational capacity.

Theorem 5.5. Let k ≥ 1 be a constant. Then Llt(IAk) ⊂ Llt(CAk).

We complement our considerations with the following theorem.

Theorem 5.6. Let k ≥ 1 be a constant. Then the language families Lrt(OCAk)
and Lrt(CAk) are incomparable with REG, Lrt(IAk), and Llt(IAk).

It is a long-standing open problem whether linear-time cellular automata are
more powerful than real-time cellular automata. Since linear-time CAk can accept
all regular languages whereas real-time CAk cannot, we can answer this question
in the affirmative for the case of restricted communication. On the other hand,
Theorem 5.5 says that in the case of restricted communication parallel input mode
implies a more powerful model than sequential input mode whereas both input
modes are equally powerful in the unrestricted case.

In Figure 6 we summarize the relations between cellular automata with restricted
and unrestricted communication [13].

Llt(CA) Llt(CAk)

Llt(OCA) Llt(OCAk)

Lrt(CA)R Lrt(CAk)
R

Lrt(OCA) Lrt(OCAk)

REG

Figure 6: Relations between unrestricted and restricted language families. Solid
arrows are strict inclusions, dashed arrows are inclusions, and double lines
denote equivalence.

Decidability Questions

For real-time IA with unrestricted communication it is known that many de-
cidability questions are undecidable [21, 27]. One may ask under which additional
conditions undecidable questions become decidable. Since the recognizing power of
real-time IAk is weaker than general real-time IA, it is a natural question whether
undecidable questions for real-time IA are decidable for IAk. But this question has
been answered negatively [17]. In fact, several of the common decidability ques-
tions are even non-semidecidable for real-time IA1. A formal problem is semide-
cidable, if the algorithm halts on all instances for which the answer is yes. Thus,
non-semidecidability results for real-time IA1 show that even real-time IA with a
minimum amount of communication are very powerful devices.

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 23

A well-known non-semidecidable problem is emptiness for Turing machines (or
algorithms) [4, 26]. The proof of the non-semidecidability results relies on a reduc-
tion of the emptiness problem for Turing machines. To this end, Turing machine
computations are encoded into small grammars [7]. Roughly speaking, valid compu-
tations of Turing machines are histories of accepting Turing machine computations.
It suffices to consider deterministic Turing machines with a single tape and a sin-
gle read-write head. Without loss of generality and for technical reasons, one can
assume that any accepting computation has at least three and, in general, an odd
number of steps. Therefore, it is represented by an even number of configurations.
Moreover, it is assumed that the Turing machine cannot print blanks, and that a
configuration is halting if and only if it is accepting.

Let S be the state set of some Turing machine M, where s0 is the initial state,
T ∩ S = ∅ is the tape alphabet containing the blank symbol, A ⊂ T is the set of
input symbols, and F ⊆ S is the set of accepting states. Then a configuration of M
can be written as string of the form T ∗ST ∗ such that t1 · · · tisti+1 · · · tn is used to
express that M is in state s, scanning tape symbol ti+1, and t1 to tn is the non-
blank part of the tape inscription. The set of valid computations VALC(M) is now
defined to be the set of patterns of the form w1$w3$ · · · $w2k−1¢wR

2k$ · · · $wR
4 $w

R
2 ,

where wi are configurations, $ and ¢ are symbols not appearing in wi, w1 is an
initial configuration of the form s0A

∗, w2k is an accepting configuration of the form
T ∗FT ∗, and wi+1 is the successor configuration of wi, for 1 ≤ i ≤ 2k. The set of
invalid computations INVALC(M) is the complement of VALC(M) with respect to
the coding alphabet {$, ¢} ∪ T ∪ S.

The simple but nevertheless important and fruitful observation is that the set
VALC(M) is empty if and only if the set accepted by the Turing machine M is
empty. The following lemma is the starting point of the reductions. It has been
shown in [21], see also [12].

Lemma 5.7. Given a Turing machine M, (general) real-time IA can effectively be
constructed that accept VALC(M) and INVALC(M).

To establish non-semidecidability results for real-time IA1 we need some vari-
ation of the set of valid computations which still has the property that the set is
empty if and only if the corresponding Turing machine accepts the empty set. Thus,
we proceed as follows. Given a set of symbols A = {a1, a2, . . . , an}, for all k ≥ 1 we
define a homomorphism hk by hk(ai) = aki , 1 ≤ i ≤ n.

Lemma 5.8. Given a Turing machine M, there exists a number k ≥ 1 such
that real-time IA1 can effectively be constructed that accept hk(VALC(M)) and
hk(INVALC(M)).

Clearly, the application of the homomorphism preserves the property mentioned
before: The set hk(VALC(M)) is empty if and only if the set accepted by the Turing
machine M is empty. So, we obtain the next result immediately.

Theorem 5.9. Emptiness, universality, finiteness, infiniteness, equivalence, and
inclusion are undecidable for real-time IA1.

With respect to language theory there are more relations between (in)valid
computations and non-semidecidable problems. The following reasonings originate
from [7], see also [12, 21].

Let M be some Turing machine, and assume that M accepts a finite set. Then
VALC(M) is finite and, clearly, context free. If conversely M accepts an infinite

24 M. KUTRIB AND A. MALCHER

set, then an application of the pumping lemma shows that VALC(M) is not context
free. Therefore, M accepts a finite set if and only if VALC(M) is context free.

Moreover, if M accepts a finite set, then VALC(M) is finite and its complement
INVALC(M) is regular. Conversely, if INVALC(M) is regular, then VALC(M) is
regular since the regular languages are closed under complementation. Therefore,
VALC(M) is context free which implies that M accepts a finite set. Therefore, M
accepts a finite set if and only if INVALC(M) is regular.

Corollary 5.10. Regularity and context-freeness are undecidable for real-time IA1.

Now, the previous results can be applied to show that there is no general pump-
ing lemma and no minimization algorithm for real-time IA1. In general, a family of
languages possesses a pumping lemma in the narrow sense if for each language L
from the family there exists a constant n ≥ 1 computable from L such that each
z ∈ L with |z| > n admits a factorization z = uvw, where |v| ≥ 1 and u′viw′ ∈ L,
for infinitely many i ≥ 0. The prefix u′ and the suffix w′ depend on u, w and i.

Theorem 5.11.

(1) The family of languages accepted by real-time IA1 does not possess a pumping
lemma (in the narrow sense).

(2) There is no minimization algorithm converting some real-time IA1 to an
equivalent real-time IA1 having a minimal number of states.

6. Limiting the Number of Messages

In the following we turn to measure the communication in cellular automata
by the number of uses of the links between cells. It is understood that whenever a
communication symbol not equal to ⊥ is sent, a communication takes place. Here
we do not distinguish whether either or both neighboring cells use the link. More
precisely, the number of communications between cell i and cell i + 1 up to time
step t is defined by

com(i, t) = |{ j | 0 ≤ j < t and (br(cj(i)) 6= ⊥ or bl(cj(i+ 1)) 6= ⊥) }| .
For computations we now distinguish the maximal number of communications be-
tween two cells and the total number of communications. Let c0, c1, . . . , ct(|w|) be the
sequence of configurations computed on input w by some cellular automaton with
time complexity t(n), that is, the computation on w. Then we define

mcom(w) = max{ com(i, t(|w|)) | 1 ≤ i ≤ |w| − 1 } and

scom(w) =

|w|−1∑

i=1

com(i, t(|w|)).

Let f : N → N be a mapping. If all w ∈ L(M) are accepted with computations
where mcom(w) ≤ f(|w|), then M is said to be max communication bounded by f .
Similarly, if all w ∈ L(M) are accepted with computations where scom(w) ≤ f(|w|),
thenM is said to be sum communication bounded by f . In general, it is not expected
to have tight bounds on the exact number of communications but tight bounds on
their numbers in the order of magnitude. For the sake of readability we denote the
class of CA that are max communication bounded by some function g ∈ O(f) by
MC(f)-CA, where it is understood that f gives the order of magnitude. In addition,

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 25

we use the notation const for functions from O(1). Corresponding notations are
used for OCA and sum communication bounded CA and OCA. (SC(f)-CA and
SC(f)-OCA).

Computational Capacity

In order to identify the computational power of communication bounded real-
time devices we begin by describing the relationship to previous works. In [30, 31]
two-way cellular automata are considered where the number of proper state changes
is bounded. Similar as in the present paper the sum of all state changes or the
maximal number of the state changes of single cells are bounded. By applying
the technique of saving communication steps by storing the last signal received
in the state and to interpret an arriving ⊥ suitably [19], it is not hard to see,
that such a device can be simulated by the corresponding communication bounded
device. Whether or not state change bounded devices are strictly weaker than
communication bounded ones is an open problem. However, we adapt some of the
results shown in connection with state changes in the next theorem.

Theorem 6.1 ([30, 31]).

(1) Lrt(MC(const)-CA) ⊂ Lrt(SC(n)-CA).
(2) REG ⊂ Lrt(MC(const)-CA) ⊂ Lrt(MC(

√
n)-CA) ⊂ Lrt(MC(n)-CA).

(3) Lrt(MC(const)-CA) ⊂ NL.

In order to clarify our notion and to show the power of the devices in question,
we give some examples of languages which can be accepted by MC(const)-OCA. It
has been shown in [19] that the family MC(const)-OCA contains the non-context-
free languages { an1an2 · · · ank | n ≥ 1 } for k ≥ 2, { anbmcndm | n,m ≥ 1 }, as well as
the languages { anw | n ≥ 1∧w ∈ (b∗c∗)kb∗ ∧ |w|b = n }, for all constants k ≥ 0. All
of these languages are either semilinear or non-bounded. But in contrast to many
other computational devices, for example certain multi-head finite automata, par-
allel communicating finite automata, and certain parallel communicating grammar
systems, MC(const)-OCA can accept non-semilinear bounded languages. This is
shown in the next example.

Example 6.2. The language L = { anbn+⌊√n⌋ | n ≥ 1 } belongs to the family
Lrt(MC(const)-OCA).

In [23] a CA is constructed such that its cell n enters a designated state exactly
at time step 2n+⌊√n⌋, and at most n cells are used for the computation. In fact, the
CA constructed is actually an OCA. Additionally, each cell performs only a finite
number of communication steps. Thus, the CA constructed is an MC(const)-OCA.

An MC(const)-OCA accepting L implements the mirror of the above construc-
tion on the a-cells of the input anbm. Thus, the leftmost cell enters the designated
state q at time step 2n + ⌊√n⌋. Additionally, in the rightmost cell a signal s with
maximum speed is sent to the left. When this signal arrives in an a-cell exactly at a
time step at which the cell would enter the designated state q, the cell changes to an
accepting state instead. So, if m = n + ⌊√n⌋, then s arrives at time 2n + ⌊√n⌋ at
the leftmost cell and the input is accepted. In all other cases the input is rejected.
Clearly, the OCA constructed is an MC(const)-OCA.

26 M. KUTRIB AND A. MALCHER

Next, we turn to an infinite strict hierarchy of real-time SC(f)-CA families [19].
The top of the hierarchy is given by the next theorem.

Theorem 6.3. Let f : N → N be a function. If f ∈ o(n2/log(n)), then language
L = {wcwR | w ∈ {a, b}+ } is not accepted by any real-time SC(f)-CA.

In order to define witness languages that separate the levels of the hierarchy, for
all i ≥ 1, the functions ϕi : N → N are defined by ϕ1(n) = 2n, and ϕi(n) = 2ϕi−1(n),

for i ≥ 2, and we set Li = {w$ϕi(|w|)−2|w|wR | w ∈ {a, b}+ }.
Lemma 6.4. Let i ≥ 1 be an integer and f : N → N be a function.

(1) If f ∈ o((n log[i](n))/log[i+1](n)) then language Li is not accepted by any
real-time SC(f)-CA.

(2) Language Li is accepted by some real-time SC(n log[i](n))-CA.

So, we can derive the infinite hierarchy.

Theorem 6.5. Let i ≥ 0 be an integer. Then Lrt(SC(n log[i+1](n))-CA) is properly

included in Lrt(SC(n log[i](n))-CA).

Decidability Questions

As is the case for devices with limited inter-cell bandwidth, various problems
are undecidable even for the weakest non-trivial device with limited messages, that
is, for real-time MC(const)-OCA.

Two of the common techniques to show undecidability results are reductions
of Post’s Correspondence Problem or reductions of the emptiness and finiteness
problem on Turing machines using the set of valid computations. Both techniques
have been used successfully to obtain results for variants of cellular automata [15,
20, 21, 27]. Taking a closer look at these known techniques, it is not clear yet
whether they can be applied to MC(const)-OCA. In [19] it is shown that emptiness
is undecidable for real-time MC(const)-OCA by reduction of Hilbert’s tenth prob-
lem which is known to be undecidable. The problem is to decide whether a given
polynomial p(x1, . . . , xn) with integer coefficients has an integral root. That is, to
decide whether there are integers α1, . . . , αn such that p(α1, . . . , αn) = 0. In [10]
Hilbert’s tenth problem has been used to show that emptiness is undecidable for
certain multi-counter machines. As is remarked in [10], it is sufficient to restrict the
variables x1, . . . , xn to take non-negative integers only.

If p(x1, . . . , xn) contains a constant summand, then we may assume that it has a
negative sign. Otherwise, we continue with p(x1, . . . , xn) multiplied with −1, whose
constant summand now has a negative sign and which has the same integral roots
as p(x1, . . . , xn).

Such a polynomial then has the following form:

p(x1, . . . , xn) = t1(x1, . . . , xn) + · · ·+ tr(x1, . . . , xn)

where each tj(x1, . . . , xn) (1 ≤ j ≤ r) is of the form tj(x1, . . . , xn) = sjx
ij,1
1 · · · xij,n

n

with ij,1, . . . , ij,n ≥ 0. If |sj| > 1 we replace sjx
ij,1
1 · · · xij,n

n by sj copies of x
ij,1
1 · · · xij,n

n .
So, we may assume without loss of generality that all constant factors are either 1
or −1.

Sketchy speaking, the reduction is as follows. For a polynomial p(x1, . . . , xn)
with integer coefficients that has the above form, languages L(tj) for every term

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 27

tj are defined that evaluate the terms tj. The next step is to simulate an evalu-
ation of the given polynomial p. To this end, the evaluations of the single terms
have to be put together, which is done by concatenating certain regular languages
around each language L(tj) resulting in L̃(tj), and intersecting the reversals of all

these languages. This gives a language L̃(p) =
⋂r

j=1 L̃(tj)
R. From L̃(p) another

language L(p) is constructed which is empty if and only if p(x1, . . . , xn) has no so-
lution in the non-negative integers. In a long proof it is shown that L(p) belongs to
Lrt(MC(const)-OCA). So, emptiness is undecidable for Lrt(MC(const)-OCA) and
we obtain the next theorem.

Theorem 6.6. Emptiness, finiteness, infiniteness, equivalence, inclusion, regular-
ity, and context-freeness are undecidable for real-time MC(const)-OCA.

Moreover, even the restrictions itself are not decidable:

Theorem 6.7. It is undecidable for an arbitrary real-time OCA whether it is a
real-time MC(const)-OCA.

So, even for the weakest non-trivial device with limited messages, that is, for
real-time MC(const)-OCA all the mentioned properties are undecidable.

An approach often investigated and widely accepted is to consider a given type
of device for special purposes only, for example, for the acceptance of languages
having a certain structure or form. From this point of view it is natural to start
with unary languages (for example, [1, 2, 11, 24, 25]). For general real-time one-way
cellular automata it is known that they accept only regular unary languages [27].
Since the proof is constructive, we derive that the borderline between decidability
and undecidability has been crossed. So, we generalize unary languages to bounded
languages. For several devices it is known that they accept non-semilinear languages
in general, but only semilinear bounded languages. Since for semilinear sets several
properties are decidable [6], constructive proofs lead to decidable properties for these
devices in connection with bounded languages [3, 8, 9, 10]. Example 6.2 witnesses
the following theorem.

Theorem 6.8. The language family Lrt(MC(const)-OCA) contains non-semilinear
bounded languages.

So, it is natural to consider decidability problems for the devices under consid-
eration accepting bounded languages. In [16] it has been shown that also with this
additional restriction none of the problems becomes decidable as long as the number
of messages allowed is not too small.

Theorem 6.9. Emptiness, finiteness, infiniteness, equivalence, inclusion, regular-
ity, and context-freeness are undecidable for arbitrary real-time SC(n)-OCA and
MC(log n)-OCA accepting bounded languages.

7. Both Restrictions At Once

Since it turned out that neither limiting the bandwidth nor limiting the number
of messages, even for bounded languages, reduces the computational capacity of
the devices such that certain properties become decidable, we next combine both
approaches and study real-time one-way cellular automata which are allowed to
communicate only a fixed, finite number of messages per time step. Additionally, the

28 M. KUTRIB AND A. MALCHER

communication links between two cells are allowed to be used constantly often only.
In the most restricted case, we consider real-time one-way cellular automata which
can communicate one message between two cells exactly once. The next example
reveals that real-time MC(const)-OCA1 accept non-regular context-free languages.
More precisely, only two messages per cell are used.

Example 7.1. We describe the computation of an MC(const)-OCA1 M on inputs
of the form anbcm. The acceptance of the language is governed by two signals.
During the first time step the rightmost cell receives the message 1 associated with
the boundary symbol and identifies itself to be the rightmost cell. During the second
time step the cell with input symbol b (b-cell) sends a message. In this way, the
unique a-cell with right neighboring b-cell can identify itself. Subsequently, the a-cell
sends the message 1 with speed 1/2, and the rightmost cell sends the message 1 with
maximal speed to the left. So, the slow signal starts at time step 2 in the rightmost
a-cell, takes 2n − 2 further time steps to reach the leftmost cell, and thus stays at
time steps 2n and 2n+1 in the leftmost cell. The fast signal is set up at time step 1
and takes n + m further time steps to reach the leftmost cell. When both signals
meet in a cell, that is, n+m+1 = 2n+1, an accepting state is entered. Therefore,
the leftmost cell accepts if and only if n = m. Moreover, each cell sends at most two
messages, and can be set up to send no more messages even for inputs of another
form.

Now assume that the language accepted byM is regular. Since regular languages
are closed under intersection, so is the language L(M) ∩ a∗bc∗ = anbcn, which is
non-regular but context free.

Turning to our key question, we present a lemma which relates languages ac-
cepted by real-time one-way cellular automata with a constant number of commu-
nications with languages accepted by real-time one-way cellular automata with a
constant number of communications and one-message communication [18]. In this
way, undecidability results can be derived from the undecidability results known.

Lemma 7.2. Let M = 〈S, F,A,B, #, bl, δ〉 be a real-time MC(const)-OCA and
$ 6∈ A be a new symbol. Then a real-time MC(const)-OCA1 M′ accepting the lan-

guage {w$(|B|+2)(|w|+1)v | v ∈ {$, A(A ∪ {$})∗}, w ∈ L(M) } can effectively be con-
structed.

It is straightforward to generalize this construction for cellular automata with
two-way communication. Furthermore, the construction increases the number of
communication steps per cell only linearly. Therefore, the construction also works
fine for SC(f)-CA and MC(f)-CA where f is not necessarily a constant function.
Now, we can use Lemma 7.2 in order to reduce the undecidability problems for
MC(const)-OCA to MC(const)-OCA1.

Theorem 7.3. Emptiness, finiteness, infiniteness, equivalence, inclusion, regular-
ity, and context-freeness are undecidable for arbitrary real-time MC(const)-OCA1.

Clearly, the undecidability carries over to, for example, MC(const)-CAk with
two-way communication and the models SC(n)-OCAk and SC(n)-CAk. The unde-
cidability results for real-time SC(n)-OCA and MC(log n)-OCA accepting bounded
languages cannot be translated directly to the corresponding automata with one
communication symbol by using the construction of Lemma 7.2, since the construc-
tion does not preserve the boundedness of the languages. However, if we allow an

MEASURING COMMUNICATION IN CELLULAR AUTOMATA 29

additional communication symbol, then we obtain undecidability results also for
bounded languages accepted by real-time SC(n)-OCA and MC(log n)-OCA with
restricted communication alphabet of size two.

Lemma 7.4. Let M = 〈S, F,A,B, #, bl, δ〉 be a real-time MC(const)-OCA and $ 6∈
A be a new symbol. Then a real-time MC(const)-OCA2 M′ accepting the language

{w$(|B|+2)(|w|+1)$ | w ∈ L(M)} can effectively be constructed.

It is obvious that L(M′) is a bounded language if L(M) is. Thus, we obtain
the following undecidability results.

Theorem 7.5. Emptiness, finiteness, infiniteness, inclusion, equivalence, regular-
ity, and context-freeness are undecidable for arbitrary real-time SC(n)-OCA2 and
MC(log n)-OCA2 accepting bounded languages.

References

[1] Book, R.V.: Tally languages and complexity classes. Inform. Control 26 (1974) 186–193
[2] Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986) 149–158
[3] Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical

Approach to Distribution and Cooperation. Gordon and Breach, Yverdon (1984)
[4] Cudia, D.F., Singletary, W.E.: Degrees of unsolvability in formal grammars. J. ACM 15

(1968) 680–692
[5] Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM

12 (1965) 388–394
[6] Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw Hill, New York

(1966)
[7] Hartmanis, J.: Context-free languages and Turing machine computations. Proc. Symposia in

Applied Mathematics 19 (1967) 42–51
[8] Ibarra, O.H.: Simple matrix languages. Inform. Control 17 (1970) 359–394
[9] Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown automata.

Inform. Process. Lett. 3 (1974) 25–28
[10] Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM

25 (1978) 116–133
[11] Klein, A., Kutrib, M.: Cellular devices and unary languages. Fund. Inform. 78 (2007) 343–368
[12] Kutrib, M.: Cellular automata and language theory. In: Encyclopedia of Complexity and

System Science. Springer (2009) 800–823
[13] Kutrib, M., Malcher, A.: Cellular automata with limited inter-cell bandwidth. Theoret. Com-

put. Sci., to appear
[14] Kutrib, M., Malcher, A.: Fast cellular automata with restricted inter-cell communication:

Computational capacity. In: Theoretical Computer Science (IFIP TCS2006). Volume 209 of
IFIP, Springer (2006) 151–164

[15] Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform.
Comput. 206 (2008) 1142–1151

[16] Kutrib, M., Malcher, A.: Bounded languages meet cellular automata with sparse communi-
cation. In: Descriptional Complexity of Formal Systems (DCFS 2009), Otto-von-Guericke-
Universität Magdeburg (2009) 211–222

[17] Kutrib, M., Malcher, A.: Computations and decidability of iterative arrays with restricted
communication. Parallel Process. Lett. 19 (2009) 247–264

[18] Kutrib, M., Malcher, A.: On one-way one-bit O(one)-message cellular automata. Electron.
Notes Theor. Comput. Sci. 252 (2009) 77–91

[19] Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theoret. Comput.
Sci. 411 (2010) 3516–3526

[20] Malcher, A.: Descriptional complexity of cellular automata and decidability questions. J.
Autom., Lang. Comb. 7 (2002) 549–560

30 M. KUTRIB AND A. MALCHER

[21] Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf. Syst.
E87-D (2004) 721–725

[22] Mazoyer, J.: A minimal time solution to the firing squad synchronization problem with only
one bit of information exchanged. Technical Report TR 89-03, Ecole Normale Supérieure de
Lyon (1989)

[23] Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret. Comput. Sci.
217 (1999) 53–80

[24] Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Com-
put. 30 (2001) 1976–1992

[25] Pighizzini, G., Shallit, J.O.: Unary language operations, state complexity and Jacobsthal’s
function. Int. J. Found. Comput. Sci. 13 (2002) 145–159

[26] Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York (1967)

[27] Seidel, S.R.: Language recognition and the synchronization of cellular automata. Technical
Report 79-02, Department of Computer Science, University of Iowa (1979)

[28] Umeo, H., Kamikawa, N.: A design of real-time non-regular sequence generation algorithms
and their implementations on cellular automata with 1-bit inter-cell communications. Fund.
Inform. 52 (2002) 257–275

[29] Umeo, H., Kamikawa, N.: Real-time generation of primes by a 1-bit-communication cellular
automaton. Fund. Inform. 58 (2003) 421–435

[30] Vollmar, R.: On cellular automata with a finite number of state changes. Computing 3 (1981)
181–191

[31] Vollmar, R.: Some remarks about the ‘efficiency’ of polyautomata. Internat. J. Theoret. Phys.
21 (1982) 1007–1015

[32] Worsch, T.: Linear time language recognition on cellular automata with restricted commu-
nication. In: LATIN 2000: Theoretical Informatics. Volume 1776 of LNCS, Springer (2000)
417–426

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 31-42

A QUANTUM GAME OF LIFE

PABLO ARRIGHI 1 AND JONATHAN GRATTAGE 2

1 Université de Grenoble, LIG
E-mail address: pablo.arrighi@imag.fr
URL: http://membres-lig.imag.fr/arrighi

2 École Normale Supérieure de Lyon, LIP
E-mail address: jonathan.grattage@ens-lyon.fr
URL: http://www.grattage.co.uk/jon

Abstract. This research describes a three dimensional quantum cellular automa-
ton (QCA) which can simulate all other 3D QCA. This intrinsically universal QCA
belongs to the simplest subclass of QCA: Partitioned QCA (PQCA). PQCA are
QCA of a particular form, where incoming information is scattered by a fixed uni-
tary U before being redistributed and rescattered. Our construction is minimal
amongst PQCA, having block size 2 × 2 × 2 and cell dimension 2. Signals, wires
and gates emerge in an elegant fashion.

1. Introduction

(Quantum) Cellular Automata. Cellular automata (CA), first introduced by von
Neumann [41], consist of an array of identical cells, each of which may take one of
a finite number of possible states. The entire array evolves in discrete time steps by
iterating a function G. This global evolution G is shift-invariant (it acts the same
everywhere) and causal (information cannot be transmitted faster than some fixed
number of cells per time step). Because this is a physics-like model of computation
[21], Feynman [18], and later Margolus [22], suggested early in the development
of quantum computation (QC) that quantising this model was important. This
was for two main reasons. Firstly, in QCA computation occurs without extraneous
(unnecessary) control, hence eliminating a source of decoherence, which is problem
for QC implementation. Secondly, they are a good framework in which to study
the quantum simulation of a quantum system, which is predicted to be a major
application of QC. From a Computer Science perspective there are other reasons
to study QCA, such as studying space-sensitive problems in computer science (e.g.
‘machine self-reproduction’, ‘Firing Squad Synchronisation’, . . .) in the quantum
setting, or having more complete and formal models of physics ability to compute.
There is also the theoretical physics perspective, where CA are used as toy models
of quantum space-time [20]. The first approach to defining QCA [2, 16, 42] was later
superseded by a more axiomatic approach [9, 10, 35] together with more operational
approaches [12, 27, 32, 33, 39, 42].

Key words and phrases: cellular automata, quantum computation, universality.

c

31

32 P. ARRIGHI AND J. GRATTAGE

Intrinsic universality. Probably the most well known CA is Conway’s ‘Game of
Life’, a 2D CA which has been shown to be universal for computation, in the sense
that any Turing Machine (TM) can be encoded within its initial state and then
executed by evolution of the CA. As TM are often regarded as a robust definition of
‘what an algorithm is’ in classical computer science, this provides a key result in CA
research. However, more can be achieved using CA than just running any algorithm.
They run distributed algorithms in a distributed manner, model phenomena together
with their spatial structure, and allow the use of the spatial parallelism inherent
to the model. These features, modelled by CA and not by TM, are all worthy of
investigation, and so the concept of universality should be revisited in this context to
account for space. This is achieved by returning to the original meaning of the word
universality [1, 11, 13], namely the ability for one instance of a computational model
to be able to simulate other instances of the same computational model. Intrinsic
universality formalises the ability of a CA to simulate another in a space-preserving
manner [23, 30, 37], and has been extended to the quantum setting [4, 6, 7]. In
previous work [7] it was shown that, when the dimension of space is greater than
one, the problem of intrinsic universality reduces to the ability to code for signals,
wires and a universal set of quantum gates, as expected from the classical CA case
[30].

Related work. There are several related results in the current CA literature. For
example, several works [21, 25, 26] provide computation universal Reversible Parti-
tioned CA constructions, and [24] deals with their ability to simulate any CA in the
one-dimensional case. The problem of minimal intrinsically universal CA has been
addressed [31], and for Reversible CA (RCA) the issue of intrinsic universality has
been tackled [14, 19]. The difficulty is in having an n-dimensional RCA simulate all
other n-dimensional RCA and not, say, the (n − 1)-dimensional RCA, otherwise a
history-keeping dimension could be used, as shown by Toffoli [38]. Concerning QCA,
Watrous [42] proved that QCA are universal in the sense of QTM. Shepherd, Franz
and Werner [36] defined a class of QCA where the scattering unitary Ui changes at
each step i (CCQCA). Universality in the circuit-sense has been achieved by Van
Dam [39], Cirac and Vollbrecht [40], Nagaj and Wocjan [27] and Raussendorf [33].
In the bounded-size configurations case, circuit universality coincides with intrinsic
universality, as noted by Van Dam [39]. QCA intrinsic universality in the one-
dimensional case has been resolved [5], and also in the general n > 1-dimensional
case [7]. Both results rely on recent work [6], where it was shown that a simple sub-
class of QCA, namely Partitioned QCA (PQCA), are intrinsically universal. This
enables the focus here to be on this simple, natural class of QCA, as previously pro-
posed ([33, 35, 39, 42] etc.). PQCA are QCA of a particular form, where incoming
information is scattered by a fixed unitary U before being redistributed and rescat-
tered. Hence the problem of finding an intrinsically universal PQCA is reduced to
finding some scattering unitary U that supports the implementation of signals, wires
and a universal set of quantum gates.

Game of Life. As the more general case of finding a general n-dimensional intrin-
sically universal QCA has been resolved [6], one could question the necessity of
focusing on the particular 3D case of this problem. Our answer to this question is
threefold.

A QUANTUM GAME OF LIFE 33

• In the study of models of computation, the definition of the model is often
followed by the search for a universal instance, and then for a minimal uni-
versal instance. Reaching this final step is generally regarded as a sign of
maturity of the model. It shows that the entire model can be reduced to
a particular simplest instance. Moreover, sometimes a particular instance
stands out, either for its elegance and simplicity, or the richness of its be-
haviour. This was clearly the case with the Game of Life within the realm
of Classical CA, and it is echoing this impression that we have named this
QCA the ‘Quantum Game of Life’. This is not because of a resemblance in
the construction of the local rule, which clearly owes more to the Billiard
Ball Model CA [19].
• Dimension three is particularly interesting, not only because of the relevance

to physics, but because intrinsic universality QCA constructions lend them-
selves to a striking simplification. In dimension one the simplest known
intrinsically universal QCA has cell dimension 36 [5]. In dimension two it
has cell dimension 4 [7], and seems reducible to 3 via a costly and inelegant
variation of the scheme [7], but probably no further. The solution we present
here is in dimension three and has cell dimension 2; it is therefore minimal.
• Animations of the QCA operating, plus an implementation of this QCA, are

available on the companion website [8]. Although it lacks a friendly way of
preparing the initial configuration, it turns out to be quite interesting and
entertaining already, as is the Game of Life. We plan to implement the QCA
in a more graphical, interactive, computationally efficient fashion. The end
result could be a pedagogical tool, both for discussing quantum theory and
in order to start exploring the dynamical behaviour of QCA, such as in [28],
perhaps using methods inspired by similar work on Probabilistic CA [34].

2. The Universal QCA

Definitions. Configurations hold the basic states of an entire array of cells, and hence
denote the possible basic states of the entire QCA:

Definition 2.1 (Finite configurations). A (finite) configuration c over Σ is a func-
tion c : Z3 −→ Σ, with (i1, i2, i3) 7−→ c(i1, i2, i3) = ci1,i2,i3 , such that there exists
a (possibly empty) finite set I satisfying (i1, i2, i3) /∈ I ⇒ ci1,i2,i3 = q, where q is a
distinguished quiescent state of Σ. The set of all finite configurations over Σ will be
denoted CΣ

f .

As this work relates to QCA rather than classical CA, the global state can be
a superposition of these configurations. To construct the separable Hilbert space of
superpositions of configurations the set of configurations must be countable. This
is why finite, unbounded, configurations are considered; the quiescent state of a CA
is analogous to the blank symbol of a TM tape.

Definition 2.2 (Superpositions of configurations). Let HCΣ
f

be the Hilbert space

of configurations. Each finite configuration c is associated with a unit vector |c〉,
such that the family (|c〉)c∈CΣ

f
is an orthonormal basis of HCΣ

f
. A superposition of

configurations is then a unit vector in HCΣ
f
.

34 P. ARRIGHI AND J. GRATTAGE

Figure 1: Signals propagate diagonally across the partition.

Detailed explanations of these definitions, as well as axiomatic definitions of
QCA, are available [9, 10, 35]. Building upon these works, we have shown [6, 7]
that Partitioned QCA (PQCA) are intrinsically universal. Since they are the most
canonical description of QCA, and since the aim of this paper is to construct the
most canonical, and yet universal, QCA, we will assume that all QCA are PQCA
throughout this work.

Definition 2.3 (Partitioned QCA). A partitioned three-dimensional quantum cel-
lular automaton (PQCA) is defined by a scattering unitary, a unitary operator, U

such that U : H⊗23

Σ −→ H⊗23

Σ , and U |qq . . . qq〉 = |qq . . . qq〉, i.e. that takes a cube
of 23 cells into a cube of 23 cells and preserves quiescence. Consider G = (

⊗
2Z3 U),

the operator over H. The induced global evolution is G at odd time steps, and σG
at even time steps, where σ is a translation by one unit in all directions.

Here we provide a specific instance of a U -defined PQCA which is capable of
intrinsically simulating any V -defined PQCA, for any V . In order to describe such
a U -defined PQCA in detail, two things are required: the dimensionality of the cells
(including the meaning attached to each of the states they may take); and the way
in which the scattering unitary U acts upon these cells.

2.1. Signals and wires

Classical CA studies often refer to ‘signals’ without an explicit definition. In
this context, a signal refers to the state of a cell which may move to a neighbouring
cell consistently, from one step to another, by the evolution of the CA. Therefore a
signal would appear as a line in the space-time diagram of the CA.

The U -defined PQCA constructed in this paper is minimal, in the sense that it is
a 3D PQCA with the smallest non-trivial block-size and cell-dimension. Hence, each
cell has only two possible states, either empty or occupied; it is a binary automaton,
with scattering unitary U acting on 2 × 2 × 2 cell neighbourhoods (a cube). The
description of the scattering unitary U that defines the behaviour of the automaton
will now be provided in a case by case manner.

2.1.1. Signals. Signals in our scheme will be encoded as isolated occupied cells.
If a neighbourhood trivially contains no signals, then no change is made. If a
neighbourhood contains only one signal, i.e. only one cell is occupied, and the other
seven are empty, then the signal is shifted by one in every direction, yielding a 3D
diagonal propagation. This rule is given in Fig. 1. These two rules, together with
their rotations, define the action of the scattering unitary U upon the subspace with
zero or one occupied cells. Notice that U can easily be seen to be unitary upon this
subspace, as it performs a permutation of the basis states.

A QUANTUM GAME OF LIFE 35

Figure 2: Two occupied cells which share one face form a static barrier.

Figure 3: Two vertical barriers placed in adjacent partitions horizontally form a
2 × 2 × 1 barrier (left). At the next time step, the repartitioning is still
stable, with two horizontal barriers in adjacent vertical partitions formed
from those same cells (right).

Figure 4: Four occupied cells occupying a face of the partition neighbourhood form
a wall.

2.1.2. Barriers. Two or more occupied cells that share a common face form a barrier,
which is intended to be a stationary pattern. The rule is given in Fig. 2. Such
a barrier is stable for one partition, but in the next partition it appears as two
signals moving away from each other, and hence it will scatter. This can be avoided
by extending beyond the current partition, using at least four occupied cells. For
example, a 2× 2× 1 block of cells which overlaps a partition and forms a barrier in
each partition, as shown in Fig. 3, is stable. This rule, together with its rotations,
defines the action of the scattering unitary U upon the subspace of two adjacent
occupied cells. Upon this subspace the scattering unitary U acts like the identity,
which is unitary.

2.1.3. Walls. When two barriers, made of four occupied cells, form a square that fits
within a partition, as in Fig. 4, we say that they form a wall. A wall is able to redirect
a fifth occupied cell, that shares only one face with the wall, which represents the
incoming signal. Again a wall in one partition appears as signals moving away from
each other in the next partition, but again they can be made stable following Fig. 3,
by extending them across partitions. The behaviour required is for an incoming
signal to “bounce” off the wall, and the rule producing this behaviour is given in
Fig. 5. This rule suffices to define signal redirection, or “rewiring”. These rules,
together with their rotations, define the action of the scattering unitary U upon
the subspace of walls and walls with a signal. Notice that U is unitary upon this
subspace, as it performs a permutation of the basis states.

36 P. ARRIGHI AND J. GRATTAGE

Figure 5: A signal which interacts with a wall in a neighbourhood “bounces” off
the wall, causing it to change direction along one axis. Compare with the
unhindered signal propagation shown in Fig. 1.

Figure 6: Qubits are implemented as parallel tracks of signals. No qubit is modelled
as no signal (left), |0〉 is modelled as a signal on the lower track (centre),
while a signal on the upper track models a qubit in state |1〉 (right).

12�
12�

12�
12�

+
-

Figure 7: The rules implementing the Hadamard operation. The first gives |0〉 7→
1√
2
|0〉+ 1√

2
|1〉 while the second gives |1〉 7→ 1√

2
|0〉 − 1√

2
|1〉.

2.2. Qubits and quantum gates

To allow a universal set of gates to be implemented by the PQCA, certain com-
binations of signals and barriers need to be given special importance. To implement
qubits, pairs of signals will be used. Indeed in our scheme a qubit is formed by
two parallel “tracks” of signals, as shown in Fig. 6. A signal on the bottom track
indicates a |0〉 state, whereas the top track indicates a |1〉 state. Qubits in super-
positions are modelled by appropriate superpositions of the configurations, as in
Def. 2.2. We can now define rules which implement quantum gates on those qubits1.

2.2.1. Hadamard. The Hadamard gate is a requirement for universal quantum com-
putation, where H : |0〉 7→ 1√

2
|0〉+ 1√

2
|1〉 , |1〉 7→ 1√

2
|0〉− 1√

2
|1〉. In order to achieve

this typically quantum behaviour, a special meaning is attached to the interaction of
a signal with a single two-cell barrier (as defined in section 2.1.2). The corresponding
rule is given by Fig. 7.

1In Quantum Mechanics, a qubit can be encoded into any 2 degrees of freedom of a system.
Some experiments in quantum optics, for example, use the spin degree of freedom, whereas others
use a spatial degree of freedom. This model is analogous to the latter case. See the conclusion
section for a discussion of relevance to physical systems.

A QUANTUM GAME OF LIFE 37

Figure 8: A stable Hadamard configuration, formed by two barriers extended across
partitions (left). The Hadamard configuration can be extended with two
cubed “walls”. The first cube, on the top left, redirects the top track |1〉
signal, incoming from the bottom left and travelling to the far top right,
into the barrier. The second cube, bottom right, redirects the output
bottom |0〉 track so that it is again moving parallel to the |1〉 track, keeping
the qubit representation consistent (right).

As all the rules we provide are rotation invariant, the unambiguity of the
Hadamard rule may not be clear. To be unambiguous, the |0〉 and |1〉 cases need
be to distinguished from each other, and the signal distinguishable from the barrier.
This can be done as follows: if the cube can be rotated such that all three signals
are on a single face, forming an “L” shape, then the input to the Hadamard is |0〉,
and the signal is at the top of the L. If instead a lone occupied cell is on the top
left of the furthest face, with a two-cell barrier along the bottom of the closest face,
forming a dislocated L shape, then the input to the Hadamard is |1〉 and the signal
is the isolated, top left cell.

On its own, a barrier is not enough to implement the Hadamard gate, because
it does not respect the parallel track convention of qubits defined earlier. Rather,
inputs and outputs are orthogonal. To rectify this, the barrier can be combined
with two walls, which redirect the signals appropriately, as shown in Fig. 8. Further
rewiring can be added so the qubit can arrive and leave in any direction, but these
are not easily represented in 2D projections.

These two rules, together with their rotations, define the action of the scattering
unitary U upon the subspace of two-cell barriers plus a signal. Notice that U is
unitary upon this subspace, as it is a composition of a Hadamard gate upon the
input states, together with the permutation of the basis states that perform the
movement described in Fig. 7.

2.2.2. Controlled rotations. A two qubit controlled gate is another requirement for
universal quantum computation, and in this case we choose the controlled-R(π

4
)gate,

where cR(π/4): |11〉 7→ e
iπ
4 |11〉, and is the identity otherwise. To encode a two

qubit controlled gate, signal collisions, where two moving signals cross each other
diagonally, will be interpreted as adding a global phase of e

iπ
4 . This rule is given by

Fig. 9.
This allows a controlled-R(π

4
) operation to be defined, by redirecting the |1〉

(true) signal track so that the tracks will cross each other in this way, and then
recreating the qubits by rejoining the |1〉 tracks back with the appropriate |0〉 tracks,
using walls to redirect and delay signals as in the Hadamard case. Again, this 3D
configuration cannot easily be presented in 2D.

38 P. ARRIGHI AND J. GRATTAGE

e
i!

4

Figure 9: When two signals cross each other diagonally, a complex phase is added
to the configuration state.

This same rule can also be used to implement a single qubit phase change op-
eration by causing a control signal to loop such that it will intersect with the true
track of the qubit, thus adding the global phase to the configuration. This needs
to be correctly timed so that the tile implementing the single qubit rotation can be
iterated, following the same reasoning as in [7].

This rule defines, together with its rotations, the action of the scattering unitary
U upon the subspace of two non-adjacent signals on face. U can again be seen to be
unitary upon this subspace, as it is a permutation of the basis states, with a phase.

2.3. Universality, erosion and dynamics

We have seen that the scattering unitary U is a unitary on the subspaces upon
which it has been defined. Additionally, following arguments given previously [7], it
may be concluded that the U -defined PQCA given here is intrinsically universal:

• In space dimension greater than one, it suffices to implement signals, wires
and a universal set of gates to achieve intrinsic universality;
• The controlled-R(π

4
) and the Hadamard gate are universal for Quantum

Computation.

Indeed the standard set of cNot, H, R(π
4
) can be recovered as follows:

cNot |ψ〉 = (I⊗H)(cR(π/4))4(I⊗H) |ψ〉
where cR(π

4
)4 denotes four applications of the controlled-R(π

4
) gate, giving the

controlled-Phase operation.
We could let the action of the scattering unitary U be the identity in all other

subspaces. However, some patterns would then be unmovable and indestructible,
such as the wall of Fig. 4. This would arguably make the dynamics of the QCA
presented here a little plain. Moreover, since walls could be built through simulta-
neous signal collision, it would be natural to be able to dismantle them. If we are
interested in the dynamics, different ways of completing the definition of U upon
the remaining subspaces should be considered. A natural way is to consider that
all of the other cases are made of non-interacting signals, where the occupied cells
propagate past each other diagonally. This allows, for instance, for the demolition
of walls and the creation of new stable patterns.

Animated examples and an implementation of this cellular automaton can be
found online [8]. We hope to explore its dynamics in future simulations.

3. Comparison with Two-Dimensional Rules & Tiles

In previous work we provided a generic construction of an n-dimensional in-
trinsically universal QCA [7]. In this section we will compare the two dimensional
instance given previously with the scheme presented here.

A QUANTUM GAME OF LIFE 39

Figure 10: The 2D ‘controlled-R(π
4
) gate’ tile, with a signal interaction at the high-

lighted cell.

Objects. In [7] the cell-dimension is 4. A cell can be either empty, a wall, or a
binary signal (0 and 1). In a sense the same objects are recovered in the scheme
presented here, but as the cell dimension is 2 these are conveyed as patterns of cells.
Walls are now coded as 22 squares as in Fig. 4. Signals no longer have a bit attached
to them; instead the location of the signal is used to encode this bit of information.

Rules. Once the above observations have been made; it can be seen that the
two dimensional, cell-dimension four scheme previously described [7] is almost a
projection of the scheme presented here. Indeed:

- the 2D signal travelling rule of [7];

∣∣∣∣ s

〉
7→
∣∣∣∣

s
〉

, is a height-projection

of the corresponding rule in Fig. 1;

- the 2D signal bouncing rule;

∣∣∣∣ s

〉
7→
∣∣∣∣ s

〉
, again a height-projection of

the corresponding rule in Fig. 5;
- the 2D control-phase rule;∣∣∣∣

1
1

〉
7→ e

iπ
4

∣∣∣∣
1
1

〉
,

∣∣∣∣
x
y

〉
7→
∣∣∣∣

y
x

〉
otherwise,

is a width-depth projection of the corresponding rule in Fig. 9;
- only the 2D Hadamard rule of [7] differs slightly:∣∣∣∣ 0

〉
7→ 1√

2

∣∣∣∣
0
〉

+
1√
2

∣∣∣∣
1
〉

∣∣∣∣ 1

〉
7→ 1√

2

∣∣∣∣
0
〉
− 1√

2

∣∣∣∣
1
〉

Tiles. Previously, not only were the above rules provided, but a set of fixed-sized
(16×14) tiles, taking a fixed number of time steps (24) to be travelled through, and
each accomplishing one of the universal quantum gates upon the incoming signals
were also given [7]. The example of the controlled-R(π

4
) tile is reproduced in Fig. 10

for concreteness. The difference between such tiles and the corresponding rule (the
controlled-R(π

4
) rule in this case) is that tiles need only to be placed next to one

another so as to make up a circuit, with all signal wiring and synchronisations being
accounted for. It would be cumbersome to describe the equivalent of all these tiles
in the scheme presented here, particularly due to their 3D nature. Some are shown
on the companion website [8]. The reader may convince himself of their feasibility
through the following arguments: since those tiles exist in 2D, and since the 2D

40 P. ARRIGHI AND J. GRATTAGE

rules are projections of the 3D rules, there must exist some 3D tiles for which the
2D ones are, in some sense, projections.

4. Conclusion

This paper presents a minimal 3D PQCA which is capable of simulating all
other PQCA, preserving the topology of the simulated PQCA. This means that the
initial configuration and the forward evolution of any PQCA can be encoded within
the initial configuration of this PQCA, with each simulated cell encoded as a group
of adjacent cells in the PQCA, i.e. intrinsic simulation. The main, formal result of
this work can therefore be stated as:

Claim 4.1. There exists an 3D U -defined PQCA, with block size 2 and cell dimen-
sion 2, which is an intrinsically universal PQCA. Let H be a 3-dimensional V -defined
PQCA such that V can be expressed as a quantum circuit C made of gates from
the set Hadamard, Cnot, and R(π

4
). Then G is able to intrinsically simulate H.

Any finite-dimensional unitary V can always be approximated by a circuit C(V)
with an arbitrary small error ε = max|ψ〉 ||V |ψ〉−C |ψ〉 ||. Assuming instead that G
simulates the C(V)-defined PQCA, for a region of s cells over a period t, the error
with respect to the V -defined PQCA will be bounded by stε. This is due to the
general statement that errors in quantum circuits increase, at most proportionally
with time and space [29]. Combined with the fact that PQCA are universal [7, 6],
this means that G is intrinsically universal, up to this unavoidable approximation.

Discussion. This PQCA is definitely minimal amongst the 3D PQCA. Reducing
the block size or the cell dimension necessarily results in a trivial PQCA. Moreover,
PQCA are the simplest and most natural class of QCA [3]. Nevertheless, it is not so
clear that this PQCA is minimal amongst all intrinsically universal 3D QCA. Indeed,
PQCA-cells are really QCA-subcells, and PQCA-blocks need to be composed with
them shifted in order to yield the QCA neighbourhood. Based on these observations
our QCA has QCA-cell dimension 28 and the 3D radius–1

2
neighbourhood. Whether

there are some further simplifications in this more general setting is an open question.
An important source of inspiration, along with the original Game of Life, was

the the simplest known intrinsically universal classical Partitioned CA [22], which
has cell dimension 2. Called the BBM CA, it was itself directly inspired by the Bil-
liard Ball Model [19]. Our scheme also features signals (billiard balls, or particles)
bouncing and colliding. This analogy with physics is a desirable feature; Feynman’s
sole purpose for the invention of QC [17] was that quantum computers would be able
to simulate quantum systems efficiently, and hence predict their behaviour. It is still
thought that quantum simulation will be one of most important uses of quantum
computers for society, with expected and potentially unexpected impact in quan-
tum chemistry, biochemistry or nanotechnologies (e.g. in terms of the synthesis of
specific purpose molecules). This was also one of the reasons why Feynman immedi-
ately promoted the QCA model of QC [18]; they are a natural mathematical setting
in which to encode the continuous-time and space, sometimes complex, behaviour
of elementary physical elements (such as wave equations of particles, possibly in-
teracting, under some field, for example) into the more discrete-data discrete-time
framework of quantum computation. This issue of encoding is non-trivial, but has
largely been solved for the one-dimensional case, by using QCA as a mathematical
framework in which to model the system of interest. For example, several works

A QUANTUM GAME OF LIFE 41

simulate quantum field theoretical equations in the continuous limit of a QCA dy-
namics (such as [32], etc.) These results do not extend to more-than-one dimensions
due to the problem of isotropy. Whilst in one-dimension the division of space into a
line of points is an acceptable model, because it does not privilege the left over the
right direction, in two-dimensions the grid seems to inevitably favour the cardinal
directions (N, E, S, W) over the diagonal ones. That this construction is similar
to the Billiard Ball Model CA suggests a Quantum Billiard-Ball Model could be
defined, moving away from the underlying grid, which would remedy this problem.
This is planned this for future work.

Acknowledgements

The authors would like to thank Jérôme Durand-Lose, Jarkko Kari, Simon Mar-
tiel, Kenichi Morita, Guillaume Theyssier and Philippe Jorrand.

References

[1] J. Albert and K. Culik. A simple universal cellular automaton and its one-way and totalistic
version. Complex Systems, 1:1–16, 1987.

[2] P. Arrighi. Algebraic characterizations of unitary linear quantum cellular automata. In Pro-
ceedings of MFCS, LNCS, volume 4162, page 122. Springer, 2006.

[3] P. Arrighi. Quantum cellular automata. Thèse d’habilitation à diriger les recherches, Univer-
sity of Grenoble, 2009.

[4] P. Arrighi and R. Fargetton. Intrinsically universal one-dimensional quantum cellular au-
tomata. In Proceedings of DCM, 2007.

[5] P. Arrighi, R. Fargetton, and Z. Wang. Intrinsically universal one-dimensional quantum cel-
lular automata in two flavours. Fundamenta Informaticae, 21:1001–1035, 2009.

[6] P. Arrighi and J. Grattage. Partitioned quantum cellular automata are intrinsically universal.
Accepted for publication, Post-proceedings of the Physics and Computation workshop, 2009.

[7] P. Arrighi and J. Grattage. A Simple n-Dimensional Intrinsically Universal Quantum Cellular
Automaton. LATA 2010, LNCS, 6031:70–81, 2010.

[8] P. Arrighi and J. Grattage. Companion website: www.grattage.co.uk/jon/3DQCA, 2010.
[9] P. Arrighi, V. Nesme, and R. Werner. Unitarity plus causality implies localizability. QIP 2010

and Journal of Computer and System Sciences, ArXiv preprint: arXiv:0711.3975, 2010.
[10] P. Arrighi, V. Nesme, and R. F. Werner. Quantum cellular automata over finite, unbounded

configurations. In Proceedings of MFCS, LNCS, volume 5196, pages 64–75. Springer, 2008.
[11] E. R. Banks. Universality in cellular automata. In SWAT ’70: Proceedings of the 11th Annual

Symposium on Switching and Automata Theory (SWAT 1970), pages 194–215, Washington,
DC, USA, 1970. IEEE Computer Society.

[12] G. K. Brennen and J. E. Williams. Entanglement dynamics in one-dimensional quantum
cellular automata. Phys. Rev. A, 68(4):042311, Oct 2003.

[13] B. Durand and Z. Roka. The Game of Life: universality revisited Research Report 98-01.
Technical report, Ecole Normale Suprieure de Lyon, 1998.

[14] J. O. Durand-Lose. Reversible cellular automaton able to simulate any other reversible one
using partitioning automata. In In LATIN’95: Theoretical Informatics, number 911 in LNCS,
pages 230–244. Springer, 1995.

[15] J. O. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automaton. In
Proceedings of STACS 97, LNCS, page 439. Springer, 1997.

[16] C. Durr, H. Le Thanh, and M. Santha. A decision procedure for well-formed linear quantum
cellular automata. In Proceedings of STACS 96, LNCS, pages 281–292. Springer, 1996.

[17] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6):467–488, 1982.

[18] R. P. Feynman. Quantum mechanical computers. Foundations of Physics (Historical Archive),
16(6):507–531, 1986.

42 P. ARRIGHI AND J. GRATTAGE

[19] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics,
21(3):219–253, 1982.

[20] S. Lloyd. A theory of quantum gravity based on quantum computation. ArXiv preprint: quant-
ph/0501135, 2005.

[21] N. Margolus. Physics-like models of computation. Physica D: Nonlinear Phenomena, 10(1-2),
1984.

[22] N. Margolus. Parallel quantum computation. In Complexity, Entropy, and the Physics of
Information: The Proceedings of the 1988 Workshop on Complexity, Entropy, and the Physics
of Information Held May-June, 1989, in Santa Fe, New Mexico, page 273. Perseus Books,
1990.

[23] J. Mazoyer and I. Rapaport. Inducing an order on cellular automata by a grouping operation.
In Proceedings of STACS’98, in LNCS, volume 1373, pages 116–127. Springer, 1998.

[24] K. Morita. Reversible simulation of one-dimensional irreversible cellular automata. Theoretical
Computer Science, 148(1):157–163, 1995.

[25] K. Morita and M. Harao. Computation universality of one-dimensional reversible (injective)
cellular automata. IEICE Trans. Inf. & Syst., E, 72:758–762, 1989.

[26] K. Morita and S. Ueno. Computation-universal models of two-dimensional 16-state reversible
cellular automata. IEICE Trans. Inf. & Syst., E, 75:141–147, 1992.

[27] D. Nagaj and P. Wocjan. Hamiltonian Quantum Cellular Automata in 1D. ArXiv preprint:
arXiv:0802.0886, 2008.

[28] V. Nesme and J. Gütschow. On the fractal structure of the space-time diagrams of clifford
cellular automata. manuscript, 2009.

[29] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, October 2000.

[30] N. Ollinger. Universalities in cellular automata a (short) survey. In B. Durand, editor, First
Symposium on Cellular Automata “Journées Automates Cellulaires” (JAC 2008). Proceedings,
pages 102–118. MCCME Publishing House, Moscow, 2008.

[31] N. Ollinger and G. Richard. A Particular Universal Cellular Automaton. In EPTCS 1, 2009,
pp. 205-214, pages 205–214.

[32] C.A. Pérez-Delgado and D. Cheung. Local unreversible cellular automaton ableitary quantum
cellular automata. Physical Review A, 76(3):32320, 2007.

[33] R. Raussendorf. Quantum cellular automaton for universal quantum computation. Physical
Review A, 72(2):22301, 2005.

[34] D. Regnault, N. Schabanel, and É. Thierry. Progresses in the analysis of stochastic 2D cellu-
lar automata: a study of asynchronous 2D minority. Theoretical Computer Science, 410(47-
49):4844–4855, 2009.

[35] B. Schumacher and R. Werner. Reversible quantum cellular automata. ArXiv pre-print quant-
ph/0405174, 2004.

[36] D. J. Shepherd, T. Franz, and R. F. Werner. A universally programmable quantum cellular
automata. Phys. Rev. Lett., 97(020502), 2006.

[37] G. Theyssier. Captive cellular automata. In Proceedings of MFCS 2004, in LNCS, volume
3153, pages 427–438. Springer, 2004.

[38] T. Toffoli. Computation and construction universality of reversible cellular automata. J. of
Computer and System Sciences, 15(2), 1977.

[39] W. Van Dam. Quantum cellular automata. Masters thesis, University of Nijmegen, The
Netherlands, 1996.

[40] K. G. H. Vollbrecht and J. I. Cirac. Reversible universal quantum computation within
translation-invariant systems. New J. Phys Rev A, 73:012324, 2004.

[41] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Cham-
paign, IL, USA, 1966.

[42] J. Watrous. On one-dimensional quantum cellular automata. Complex Systems, 5(1):19–30,
1991.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 43-53

THE BLOCK NEIGHBORHOOD

PABLO ARRIGHI 1 AND VINCENT NESME 2

1 Université de Grenoble, LIG, 220 rue de la chimie, 38400 Saint-Martin-d’Hères, France
E-mail address: pablo.arrighi@imag.fr
URL: http://membres-lig.imag.fr/arrighi/

2 Quantum information theory, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476
Potsdam, Germany
E-mail address: vnesme@gmail.com
URL: http://www.itp.uni-hannover.de/~nesme/

Abstract. We define the block neighborhood of a reversible CA, which is related
both to its decomposition into a product of block permutations and to quantum
computing. We give a purely combinatorial characterization of the block neigh-
borhood, which helps in two ways. First, it makes the computation of the block
neighbourhood of a given CA relatively easy. Second, it allows us to derive upper
bounds on the block neighborhood: for a single CA as function of the classical
and inverse neighborhoods, and for the composition of several CAs. One conse-
quence of that is a characterization of a class of “elementary” CAs that cannot be
written as the composition of two simpler parts whose neighborhoods and inverse
neighborhoods would be reduced by one half.

Introduction

Otherwise decent people have been known to consider reversible cellular au-
tomata (RCAs) and look for ways to decompose them into a product of reversible
blocks permutations. One big incentive for doing so is to ensure structural reversibil-
ity, as was the concern in [Mar84], as it helps to design RCAs (see for instance
[MH89, MU92]), whereas determining from its local transition function whether a
CA is reversible is undecidable [Kar90].

Sadly, the relation is not clearly understood between both frameworks; several
articles tackle this problem [Kar96, Kar99, DL01], whose conclusion, in a nutshell,
is the following. It is always possible, by increasing the size of the alphabet, to
simulate a d-dimensional CA by a reversible block CA of depth at most d�1. In the
case of dimensions 1 and 2, up to shifts, no additional space and no coding is needed;
it is still an open problem whether the same can be said in higher dimensions.

We will be here concerned with the size of the blocks, or rather, with the in-
formation on the neighborhood that is deducible purely geometrically from a block
structure decomposition.

2000 ACM Subject Classification: F.1.1.
Key words and phrases: cellular automata, neighborhood, quantum, block representation.

c

43

44 P. ARRIGHI AND V. NESME

�k, . . . , k � 1 k, . . . , 3k � 1

� � �

�3k, . . . ,�k � 1

�2k, . . . ,�1 0, . . . , 2k � 1

� � �

� � �

� � �

Figure 1: The geometric neighborhood in a block structure.

If we just know that the CA is defined by such a structure, we can deduce, for
instance, that the cell 0 has an influence only on the cells �2k, . . . , 2k � 1, which
means the neighborhood of this CA has to be included in rr �2k � 1; 2k ss. But it is
also true that the cells �k and k� 1 influence only the cells �2k, . . . , 2k� 1, so the
translation invariance tells us more: we can deduce that the neighborhood of this
CA is included in rr �k; k ss. Another way to look at it is to modify slightly the block
structure, and update cell 0 once and for good on the first step, so that the new
structure would look something like Figure 2.

� � �1, . . . , 2k � 1�2k, . . . ,�1� � �

�k, . . . , k� � � � � �

Figure 2: Block structure with a tooth gap.

If we concentrate only on the central block on the first line and the fact that no
block of the second line acts on cell 0 and ask what can then be the minimal size of
the central block, we get to Figure 3 and our definition of the block neighborhood
in Definition 1.4. Section 1 is devoted to the basic properties of this neighborhood,
in particular Proposition 1.5 gives an expression of it in terms of combinatorics on
words.

1, . . . ,�8�8, . . . ,�1

�k, . . . , k

Figure 3: Simplified block structure.

So, how large must this central block be? Since it does all the work updating
the state of cell 0, it should at least include the neighborhood of this cell. But there
is a dual way to look at Figure 2 when it is turned upside-down. What we know
see is a block decomposition of the inverse CA, where the first step updates the
complement of rr �k; k ss, so we also have a condition involving the neighborhood of
the inverse CA, which has little to no relation to that of the CA itself. Hence, there is
something non trivial to say about that, and these considerations will be developed
in Section 2, where the two results needed for bounding block neighborhoods are
stated. Proposition 2.1 is not new — although it is the first time that it is put in
direct relation with block decomposition — but Corollary 2.2 and Proposition 2.3
are.

A last caveat: while this article is written in a purely classical perspective,
everything it deals with also has to do with quantum CAs (QCAs). The definition

THE BLOCK NEIGHBORHOOD 45

of QCAs we are dealing with was introduced in [SW04] as the natural extension of
the usual definition of CAs to a universe ruled by reversible quantum laws. It is
founded on the same principles that rule usual CAs: discrete space-time, translation
invariance, locality; in particular, QCAs have a similar notion of neighborhood.
It was already proven in that first article that reversible CAs can be naturally
embedded into a quantum setting, turning them into QCAs. However, curiously
enough, the neighborhood of these QCAs — the quantum neighborhood — was not
shown to be equal to that of the original CAs; rather, a nontrivial bound was given
(which is to be found as Proposition 2.1 of the present article). It was then made
explicit in [ANW08] that the quantum neighborhood can indeed, and typically will,
be strictly larger than the original one.

The authors tried to translate into purely classical terms a definition of the
quantum neighborhood of quantized reversible CAs, and found the expression of
Proposition 1.5, before realizing the close connection to block structures. In retro-
spect, the link is hardly surprising, since a construction was given in [ANW] that
uses auxiliary space to write a CA in a block structure, where each block acts on
exactly the quantum neighborhood — the construction is given in the quantum case,
but applies to the classical case, mutatis mutandis. Notions such as semicausality
(Definition 1.3) and semilocalizability (Definition 1.4) are also imported from the
quantum world, cf. [ESW02].

So, in good conscience, the block neighborhood could be called the quantum
neighborhood, but since in the final version no explicit reference to the quantum
model needs to be made, the name sounded a bit silly. Nevertheless, if other natural
neighborhoods were to be defined in relation to block structures, let it be said that
the neighborhood we define and study in this article will always deserve “quantum”
as a qualifier.

Notations

 Σ is the alphabet.
 a.b denotes the concatenation of words a and b.
 a|X is the restriction of word a on a subset of indices X.
 a � b|X means that words a and b coincide on X.
 X̄ denotes the complement of X, usually in Z.
 For A,B � Z, A�B is their Minkowski sum ta� b | a P A, b P Bu; similarly

with A�B.
 rr x; y ss is the integer interval rx; ys X Z.
 fg denotes the composition of CAs f and g.
 � denotes the operation reversing the order in a tuple : �px1, x2, . . . , xnq �
pxn, xn�1, . . . , x1q. It acts similarly on ΣZ by �paqn � a�n.

1. Definitions

Definition 1.1. For a bijection f whose domain and range are written as products,
its dual is defined by f̃ � �f�1

�. This applies in particular to the case where f is
a CA. In this case f̃ is the conjugation of f by the central symmetry.

46 P. ARRIGHI AND V. NESME

For instance, shifts are self-dual. Clearly, f ÞÑ f̃ is an involution. In the
remainder of this article, each time a notion (like a function or a property) is defined
in term of a CA f , its dual, denoted by adding a tilde, is defined in the same way
in term of f̃ .

Definition 1.2. The (classic) neighborhood N pfq is the smallest subset A of Z such
that v|A determines fpvq|0.

The dual neighborhood Ñ is thus defined by Ñ pfq � N pf̃q. The following two
definitions are imported from [ESW02], where they are shown to be equivalent in
the quantum case.

Definition 1.3. A function f : A � B Ñ C � D is semicausal if its projection C
depends only on A, i.e. if there exists g : AÑ C such that fpa, bqC � gpaq.

Definition 1.4. A bijection f : A � B Ñ C � D is (reversibly) semilocalizable if
there exists a seevit E and bijections g : AÑ C �E and h : D Ñ B �E such that
fpa, bq � pgCpaq, h̃pgEpaq, bqq, as illustrated in Figure 4.

B

C D

g

E

A

h̃

Figure 4: a semilocalizable bijection

Semilocalizability is, as the name suggests, an asymmetric property, in the sense
that applying a symmetry on Figure 4 along a vertical axis, i.e. swapping A with
B and C with D, breaks the semilocalizability. However, a transformation that
preserves the property is the central symmetry, which corresponds to taking the
dual of f : the notion of semilocalizability is self-dual.

Proposition 1.5. f : A � B Ñ C � D is semilocalizable if and only if the three
following conditions are met:

(1) f is semicausal;

(2) f̃ is semicausal;
(3) for every a, a1 P A and b, b1 P B, if fpa, bqD � fpa1, bqD then fpa, b1qD �

fpa1, b1qD.

Proof. Suppose f is semilocalizable. Then obviously from Figure 4 both f and f̃ are
semicausal. Let a, a1 P A and b, b1 P B such that fpa, bqD � fpa1, bqD. That means
h�1pb, gEpaqq � h�1pb, gEpa

1qq therefore gEpaq � gEpa
1q, and it follows immediately

fpa, b1qD � fpa1, b1qD.
Suppose now conditions (1), (2), (3) are met. Let �A be the binary relation on

A defined by a �A a1 iff @b P B fpa, bq � fpa1, bq. Note that because of (3) this is

THE BLOCK NEIGHBORHOOD 47

equivalent to Db P B fpa, bq � fpa1, bq (except if B � H, which is too trivial a case
to worry about), from which we deduce

@c, c1 P C @d P D f̃pd, cq �A f̃pd, c
1q (1.1)

It is clearly an equivalence relation, so using the fact that f is semicausal we
can define g : A Ñ C � pA{ �Aq by gpaq � pfpa, bqC , rasq, where b is an arbitrary
element of B and ras is the class of a in A{ �A. One can define dually �D on D

and define h : D Ñ B � pD{ �Dq by hpdq � pf̃pd, cqB, rdsq.

It remains to be proven that α :

�
A{�A Ñ D{�D

ras ÞÑ rfpa, bqDs

is a well-defined

bijection. To prove that it is well-defined, we need to show that for every a, a1 P A
such that a �A a

1 and every b, b1 P B, fpa, bqD �D fpa1, b1qD, which is easily done in
two small steps. First, by definition of �A, fpa, bqD � fpa1, bqD. Then, by the dual
of (1.1), fpa1, bqD �D fpa1, b1q. We now prove that α is bijection by showing that its

inverse is its dual, defined by α̃prdsq � rf̃pd, cqAs, so that α̃αprasq � rf̃pfpa, bqD, cqAs.
Since this value is independent of c, we can try in particular with c � fpa, bqC , where
it is clear that we get ras.

Definition 1.6. For a CA f on the alphabet Σ and X, Y two subsets of Z, let QY
Xpfq

be the property: “f seen as a function from ΣX�ΣX̄ to ΣY �ΣȲ is semilocalizable”.

Some property are obvious from the definition of semilocalizability, especially
from Figure 4. Let us give two basic examples.

Lemma 1.7. If QY
Xpfq holds, then so does QY 1

X 1pfq for every X 1 � X and Y 1 � Y .

 For a CA seen as a function from ΣX � ΣX̄ to ΣY � ΣȲ , being semicausal
means X � Y �N pfq; the semicausality of f̃ means X � Y � Ñ pfq.

The following property, however, is easier to prove with Proposition 1.5 in mind.

Lemma 1.8. If QY
Xpfq and QY

X 1pfq, then QY
XXX 1pfq.

Proof. Let a, b be words on X X X 1, and u, v words on X XX 1, and suppose
fpa.uq � fpb.uq|Ȳ . Let u1 be the word on X XX 1 that is equal to u on XzX 1, v
elsewhere. According to QY

Xpfq, fpa.u
1q � fpb.u1q|Ȳ ; we then conclude from QY

X 1pfq
that fpa.vq � fpb.vq|Ȳ .

Not that we get immediately the following corollary from the selfduality of
semilocalizability: if QY

Xpfq and QY 1

X pfq, then QYYY 1

X pfq.
We have now established all the properties on QY

Xpfq required to define the
block neighborhood.

Definition 1.9. The block neighborhood BN pfq of f is the smallest X such that

Q
t0u
X pfq holds.

The word “neighborhood” is not gratuitous. In fact, QY
Xpfq behaves exactly like

“X includes the neighborhood of Y for some CA f 1 such that N pf 1q � BN pfq”, as
stated in the next lemma. The idea is that BN characterizes a notion of dependency
that is very similar to the usual one characterized by N .

Lemma 1.10. QY
Xpfq is equivalent to X � Y � BN pfq.

48 P. ARRIGHI AND V. NESME

Proof. Suppose X � Y � BN pfq. By translation invariance, for all y P Y , we have

Q
tyu
tyu�BN pfqpfq, which, according to Lemma 1.7, implies Q

tyu
X pfq. Invoking now the

dual of Lemma 1.8, we get QY
Xpfq.

For the reciprocal, suppose now QY
Xpfq. According to Lemma 1.7, we have,

for every y P Y , Q
tyu
X pfq; but that is, by definition of BN , equivalent to X �

tyu � BN pfq, so we must have X � Y � BN pfq.
So, the block neighborhood is just one kind of neighborhood. However, BN has

by contruction one property that N does not share: it is self-dual. It is not enough
to make interesting, and many questions are left open at this point. We just know
BN � N Y Ñ , but do we have a lower bound on BN ? Is it always finite? The
answer is in Corollary 2.2. How do the block neighborhoods compose? It can be
easily inferred from Figure 4 that BN pgfq � BN pgq � BN pfq, which is certainly
good news, but Proposition 2.3 provides much more interesting bounds.

2. Main theorem

Proposition 2.1. BN � N �N � Ñ .

Sanity check: N �N �Ñ contains indeed N because N XÑ � H, which follows
from t0u � N pff�1q � N pfq � Ñ pfq.
Proof. The proof of this proposition can be essentially found in [SW04], where the
result is stated as Lemma 4, albeit in a foreign formalism. Another avatar of the
proposition and its proof can be found in the form of Lemma 3.2 of [AN08]. In order
to keep this article self-contained, we give yet another proof.

Let us then prove Q
t0u

N pfq�N pfq�Ñ pfq
pfq. Let a, b be words on N pfq�N pfq�Ñ pfq

and u, v words on its complement such that fpa.uq � fpb.uq|t0u. Applying f�1 to that

equality we get a.u � b.u|Ñ pfq
, which implies of course a.v � b.v|Ñ pfq

, from which we

obtain fpa.vq � fpb.vq|
�N pfq�Ñ pfq

. On the other hand, fpwq|�N pfq�Ñ pfq is a function

of w|N pfq�N pfq�Ñ pfq, so fpa.uq � fpa.vq|�N pfq�Ñ pfq and fpb.uq � fpb.vq|�N pfq�Ñ pfq,

which in the end proves fpa.vq � fpb.vq|t0u.

Rather surprisingly, this bound is not self-dual, which allows us to reinforce it
immediately.

Corollary 2.2. BN � pN �N � Ñ q X pÑ � Ñ �N q.
Proposition 2.3. Let f1, . . . fn be reversible CAs. Then

BN pfn � � � f1q �
n¤
k�1

�
Ñ pfn � � � fk�1q � BN pfkq �N pfk�1 � � � f1q

	
.

This formula could seem at first glance not to be self-dual, and therefore obvi-
ously suboptimal, but there is more to the duality than just putting and removing

tildes. Since �fg � g̃f̃ , we have �BN pfn � � � f1q � BN pf̃1 � � � f̃nq; it is from here
straightforward to check that the formula is indeed self-dual.

Proof. Let V �
n�
k�1

�
Ñ pfn � � � fk�1q � BN pfkq �N pfk�1 � � � f1q

	
; we have to prove

Q
t0u
V pfq. Let a, b be words on V , u, v words on V̄ , and assume fn � � � f1pa.uq �

fn � � � f1pb.uq|t0u.

THE BLOCK NEIGHBORHOOD 49

For k P rr 0;n ss, let Ck � Ñ pfn � � � fk�1q; for k P rr 1;n ss, let Kk � Ck �BN pfkq and

Dk � N pfk�1 � � � f1q. For k P rr 1;n ss, let Vk � Kk �Dk; by definition, V �
n�
k�1

Vk.
We will prove by induction the following hypothesis (Hk) for k P rr 0;n ss:

 fk � � � f1pa.uq � fk � � � f1pb.uq|Ck and
 fk � � � f1pa.vq � fk � � � f1pb.vq|Ck .

Since we already know a.u � b.u|C0 , it follows immediately a.v � b.v|C0 , so (H0)
is true.

Suppose (Hk) for some k P rr 0;n� 1 ss. Let a1 � fk � � � f1pa.uq|Kk�1
and b1 �

fk � � � f1pb.uq|Kk�1
; since Kk�1 � Dk�1 � V , a1 and b1 are respectively equal to

fk � � � f1pa.vq|Kk�1
and fk � � � f1pb.vq|Kk�1

. Let us define u1 � fk � � � f1pa.uq|Kk�1
and

v1 � fk � � � f1pa.vq|Kk�1
. We have

Ck � Ñ pfn � � � fk�1q � Ñ pfn � � � fk�2q � Ñ pfk�1q � Ck�1 � BN pfk�1q � Kk�1.

We can therefore deduce from (Hk) that u1 and v1 are respectively equal to
fk � � � f1pb.uq|Kk�1

and fk � � � f1pb.vq|Kk�1
. By definition of Ck�1, since fn � � � f1pa.uq �

fn � � � f1pb.uq|t0u, we have fk � � � f1pa.uq � fk � � � f1pb.uq|Ck , which is the first point

of (Hk�1). Since Kk�1 � Ck�1 � BN pfk�1q, according to Lemma 1.10, we have

Q
Ck�1

Kk�1
pfk�1q. We therefore deduce the second point of (Hk�1).

So in the end we get (Hn), which concludes the proof because Cn � t0u.

Corollary 2.4. Suppose N pfq � rr �α; β ss and Ñ pfq � rr �γ; δ ss. Then BN pfkq �
rr �pk � 1qmax pα, γq � min pβ, δq ; pk � 1qmax pβ, δq � min pα, γq ss.

For X � R, let X� be its convex hull and for λ P R, λX � tλx | x P Xu. We get,
for any reversible CA, the asymptotic relation lim

kÑ�8

1
k
BN pfkq� � N pfq� Y Ñ pfq�.

Let us assume we are in the case lim
kÑ�8

1
k
N pfkq� � N pfq� and lim

kÑ�8

1
k
Ñ pfkq� �

Ñ pfq� Y Ñ pfq�. Then what this means informally is that condition (3) in Proposi-
tion 1.5 applied to fk becomes less restrictive as k grows, and fades at the limit.

It is interesting to note the relation with Kari’s constructions in [Kar96] and
[Kar99]. We will briefly discuss the latter; it is of course stated in dimension 2,
but that is not an obstacle to comparison, as the same construction can be made
in dimension 1, or our analysis generalized to dimension 2 (cf. section 3.2). Let
us place ourselves in dimension 1. Let f be a CA whose neighborhood and dual
neighborhood are both included in rr �1; 1 ss. In this case, Corollary 2.4 implies
BN pfkq � rr �pk � 2q; k � 2 ss. Kari proves that there is an embedding ϕ and a CA
g such that f � ϕgϕ�1, where g fulfills by construction BN pgq � rr �1; 1 ss. Kari’s
construction therefore contains an asymptotically optimal bound on BN pfkq.
Corollary 2.5. If the neighborhoods and dual neighborhoods of f and g are included
in rr �n;n ss, then BN pfgq � rr �4n; 4n ss.

The contraposition is actually more interesting. Consider h, whose neighborhood
and dual neighborhood are both included in rr �n;n ss; its block neighborhood has to
be contained in 3 rr �n;n ss. It seems perfectly reasonable to assume that h could be
a composition of two more elementary reversible cellular automata f and g having
strictly smaller neighborhoods, containing 1

2
rr �n;n ss but close to it. Actually, if

no restriction is imposed on the behaviour of f�1 and g�1, maybe even allowing f

50 P. ARRIGHI AND V. NESME

and g to be nonreversible, it is certainly possible to decompose h in such a way by
increasing the size of the alphabet. However, if the dual neighborhoods of f and
g are also required to be close to 1

2
rr �n;n ss, then such a decomposition will not be

possible if BN phq is too large. For instance, if BN phq is not contained in 5
2
rr n;n ss,

then N pfq, Ñ pfq, N pgq and Ñ pgq cannot all be included in 5
8
rr �n;n ss. In this sense,

h can be considered “elementary”.

3. Remarks

We gather in this section several unrelated observations about the block neigh-
borhood.

3.1. Subtraction Automata

Suppose Σ can be provided with a binary operation � � � such that:

 there exists an element of Σ denoted 0 such that x � y is equivalent to
x� y � 0;

 f is an endomorphism of pΣZ,�q, where � is defined component-wise on ΣZ.

We say in this case f admits a subtraction. For instance, linear automata as
defined in [GNW10] admit subtractions.

Proposition 3.1. Automata with subtractions have minimal block neighborhoods. In
other words, for any automaton f admitting a subtraction, BN pfq � N pfqY Ñ pfq.
Proof. Let A be any subset of Z, a, b be words on A, u, v words on Ā, and suppose
fpa.uq � fpb.uq. Then fpa.vq�fpb.vq � fpa.v�b.vq � fppa�bq.0q � fpa.u�b.uq �
fpa.uq � fpb.uq � 0.

3.2. Generalization

We can actually drop many properties of the CAs that are irrelevant to the
notions developed in this article. We don’t need translation invariance. We don’t
need the alphabet to be finite. We don’t need the neighborhoods to be finite. We
don’t need the domain and range cell structures to be identical. In this abstract
setting, a “reversible automaton” is a bijection from

±
iPI

Xi to
±
jPJ

Yj and N pfq is a

function from PpJq to PpIq which to B � J associates the minimal subset A of I
such that fpxq|B depends only on x|A. In general, a function α :

±
iPI

Xi Ñ
±
jPJ

Yj is a

neighborhood scheme if for all Y , αpY q �
�
X�Y αpXq; N pfq is of course one example

of a neighborhood scheme. The usual definition of the neighborhood in the case of a
cellular automaton corresponds here to N pfqpt0uq. Any function α : PpJq Ñ PpIq
has a transpose α: : PpIq Ñ PpJq defined by α:pAq being the largest subset B of
J such that αpBq � A. We have indeed pα:q: � α, and for usual one-dimensional
CAs, : corresponds to N ÞÑ �N .

There is not anymore any good notion of duality on automata, but Ñ pfq can be
defined as N :pf�1q. Of course the definition of BN pfq cannot make any reference
to 0, instead BN pfqpBq is now the smallest subset of I fulfilling QB

Apfq. The self-
duality of BN is of course still valid. Lemmas 1.7 and 1.8 state respectively that
BN is well-defined and that it is a neighborhood scheme.

THE BLOCK NEIGHBORHOOD 51

Lemma 1.10 (used once at the end of the proof of Proposition 2.3) becomes
“QY

Xpfq is equivalent to X �
�
yPY

BN pfqpY q”, which is precisely the definition of

BN ; it can therefore be forgotten, as the triviality it is now. Proposition 2.1 becomes
BN � N �N : � Ñ , Corollary 2.2 changes accordingly, and Proposition 2.3 remains
true when “�” is substituted with “�”. It follows that indecomposability results
such as Corollary 2.5 are extremely robust: they cannot be overcome by increasing
the size of the alphabet or relaxing the translational invariance. It also shows of
course the limitations of this method, namely that it is utterly unable to exploit
these parameters.

3.3. Optimality

The bounds presented in Corollary 2.2 and Proposition 2.3 seem peculiar enough
as to be suspect of non-optimality. However, we have been unable to come up with a
better approximation, and would rather tend to think that they cannot be improved.
We will concentrate on Corollary 2.2 alone, whose optimality is conjectured in the
following statement.

Conjecture 3.2. For any subsets X, Y and Z of Z such that X Y Y � Z �
pX�X�Y qXpY �Y �Xq, if there exists a CA f such thatN pfq � X and Ñ pfq � Y ,
then there exists a CA g such that N pgq � X, Ñ pgq � Y and BN pgq � Z.

This section will be devoted to proving the following weaker version:

Proposition 3.3. Conjecture 3.2 is true when Z � t2y � x | x, y P X X Y u. In
particular it is true if X and Y are equal intervals.

Proof. Given that there is by hypothesis a CA f such thatN pfq � X and Ñ pfq � Y ,
we only need to prove that for every z P Z there exists a CA gz such thatN pgzq � X,
Ñ pgzq � Y and z P N pgzq � Z. Then the proposition is proven by considering the
direct sum of f and all these gz’s.

The Toffoli automaton presented in [ANW08] (definition 12), defined by Σ �
pZ{2Zq2 and T pvq0 � pv2

0 � v1
0v

1
1, v

1
1q, will serve as the basic constructing tool for

gz. Its inverse is given by T�1pvq0 �
�
v2
�1, v

1
0 � v2

�1v
2
0

�
, so we clearly have N pT q �

Ñ pT q � t0; 1u. Let us prove BN pT q � rr 0; 2 ss, by proving first that QN
NpT q is true,

and then that Q
t0u
t0;1upT q is false. Let then a, b be words on N and u, v words on its

complement, and suppose T pa.uq � T pb.uqN̄. In particular, T pa.uq2�1 � T pb.uq2�1,

which implies a1
0 � b1

0, so we get immediately T pa.vq � T pb.vqN̄, which proves QN
NpT q.

Consider now the words a � p0, 0qp0, 0q and b � p0, 0qp1, 1q on t0; 1u, and u, v the
words on its complement that are p0, 0q everywhere except in position 2, where
u2 � p1, 0q. We have T pa.uq � T pb.uqt0u but T pa.vq1 � p0, 0q while T pb.vq1 � p1, 0q,

therefore Q
t0u
t0;1upT q is false.

This CA can be obviously expanded into an automaton Tl such that N pTlq �
Ñ pTlq � t0; lu and BN pTlq � t0; l; 2lu.

More generally, for any nonempty intervals X and Z of Z such that X � Z �
X � X � X, there is a CA f such that N pfq � Ñ pfq � X and BN pfq � Z. We
can engineer such an f by considering the direct sum of several CAs. First, for each
element x P X, consider the shift by �x: the sum of all these shifts is a CA g such
that N pgq � Ñ pgq � BN pgq � X. Then, for each element z P Z, choose x and y in

52 P. ARRIGHI AND V. NESME

XXY such that z � 2y�x. The automaton gz � σxTy�x, where σ is the elementary

shift to the left, is then such that N pTlq � Ñ pTlq � tx; yu and BN pTlq � tx; y; zu,
which concludes the proof.

Conclusion

Of course a lot of questions remain. Are the upper bounds on the block neigh-
borhood given in this article optimal under all circumstances? And is it possible to
make these bounds more efficient by including as parameters the size of the alphabet
and the requirement that the transformations be translation invariant? This would
probably require a whole different technique.

Something happened in this article that is increasingly common: after a theory
grows a quantum extension (in this case QCAs join the family of CAs) and new
tools and techniques are invented to study the quantum setup, they come back to
the classical setup (semilocalizability comes to mind, and a lot of others are disguised
as combinatorial properties) and bring various insights, simpler proofs and/or new
results.

The block neighborhood is nothing else than the quantum neighborhood. It
shows what had been grasped until then only intuitively: whereas CAs can be
defined by their local transition functions, QCAs are intrisically block-structured.
In that sense, working on QCAs is a lot like working on CAs with a restricted
bag of tools that includes only local permutations — duplication or destruction
of information are stricly forbidden. It also means that, even staying in a purely
classical framework, finding this kind of constructions is worthwhile and meaningful,
even in the case where a result is already known to be attainable by another method.
Not only will the construction be nicer in a purely abstract way, because it will
employ only elementary means: it will also have the benefit of being immediately
transposable to the quantum case.

Acknowledgements

The authors would like to thank Jarkko Kari for showing them, to their amaze-
ment, how the neighborhood and the inverse neighborhood of CAs depend so little
on each other, even in the iterated dynamics. They also gratefully acknowledge the
support of the Deutsche Forschungsgemeinschaft (Forschergruppe 635) and the EU
(project QICS).

References

[AN08] Pablo Arrighi and Vincent Nesme. Quantization of cellular automata. In Bruno Durand,
editor, Proceedings of the First Symposium on Cellular Automata “Journées Automates
Cellulaires” JAC 2008, Exploratory paper track, pages 204–215, Uzès France, 04 2008.
Izdatel~stvo MCNMO. ISBN 978-5-94057-377-7.

[ANW] Pablo Arrighi, Vincent Nesme, and Reinhard F. Werner. Unitarity plus causality implies
localizability. To appear in Journal of Computer and System Sciences. arXiv:0711.

3975v3.

THE BLOCK NEIGHBORHOOD 53

[ANW08] Pablo Arrighi, Vincent Nesme, and Reinhard F. Werner. One-dimensional quantum cel-
lular automata over finite, unbounded configurations. In Language and Automata The-
ory and Applications: Second International Conference, LATA 2008, Tarragona, Spain,
March 13-19, 2008. Revised Papers, pages 64–75, Berlin, Heidelberg, 2008. Springer-
Verlag.

[DL01] Jérôme Durand-Lose. Representing reversible cellular automata with reversible block
cellular automata. In Robert Cori, Jacques Mazoyer, Michel Morvan, and Rémy Mosseri,
editors, Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG ’01,
volume AA of Discrete Mathematics and Theoretical Computer Science Proceedings,
pages 145–154, 2001.

[ESW02] T. Eggeling, Dirk Schlingemann, and Reinhard F. Werner. Semilocal operations are
semilocalizable. Europhysics Letters, 57(6):782–788, 2002.

[GNW10] Johannes Gütschow, Vincent Nesme, and Reinhard F. Werner. The fractal structure of
cellular automata on abelian groups. 2010.

[Kar90] Jarkko Kari. Reversibility of 2d cellular automata is undecidable. Physica D, 45(1-
3):386–395, 1990.

[Kar96] Jarkko Kari. Representation of reversible cellular automata with block permutations.
Mathematical Systems Theory, 29(1):47–61, 1996.

[Kar99] Jarkko Kari. On the circuit depth of structurally reversible cellular automata. Fundam.
Inf., 38(1-2):93–107, 1999.

[Mar84] Norman Margolus. Physics-like models of computation. Physica D, 10:81–95, 1984.
[MH89] Ken’ichi Morita and Masateru Harao. Computation universality of one-dimensional re-

versible (injective) cellular automata. IEICE Transactions on Information and Systems,
E, 72:758–762, 1989.

[MU92] Ken’ichi Morita and Satoshi Ueno. Computation-universal models of two-dimensional
16-state reversible cellular automata. IEICE Transactions on Information and Systems,
E, 75:141–147, 1992.

[SW04] Benjamin Schumacher and Reinhard F. Werner. Reversible quantum cellular automata.
05 2004. arXiv:quant-ph/0405174.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 54-64

COMPUTING (OR NOT)
QUASI-PERIODICITY FUNCTIONS OF TILINGS

ALEXIS BALLIER AND EMMANUEL JEANDEL

Laboratoire d’Informatique Fondamentale de Marseille, CMI, 39 rue Joliot-Curie, F-13453
Marseille Cedex 13, France
E-mail address, A. Ballier: alexis.ballier@lif.univ-mrs.fr
E-mail address, E. Jeandel: emmanuel.jeandel@lif.univ-mrs.fr

Abstract. We know that tilesets that can tile the plane always admit a quasi-
periodic tiling [4, 8], yet they hold many uncomputable properties [3, 11, 21, 25].
The quasi-periodicity function is one way to measure the regularity of a quasi-
periodic tiling. We prove that the tilings by a tileset that admits only quasi-
periodic tilings have a recursively (and uniformly) bounded quasi-periodicity func-
tion. This corrects an error from [6, theorem 9] which stated the contrary. Instead
we construct a tileset for which any quasi-periodic tiling has a quasi-periodicity
function that cannot be recursively bounded. We provide such a construction for
1−dimensional effective subshifts and obtain as a corollary the result for tilings of
the plane via recent links between these objects [1, 10].

Tilings of the discrete plane as studied nowadays have been introduced by Wang
in order to study the decidability of a subclass of first order logic [26, 27, 5]. After
Berger proved the undecidability of the domino problem [3], interest has grown for
understanding how complex are these simply defined objects [11, 21, 9, 6]. Despite
being able to have complex tilings, any tileset that can tile the plane admits a quasi-
periodic tiling [4, 8]; roughly speaking, a quasi-periodic tiling is a tiling in which
every finite pattern can be found in any sufficiently large part of the tiling. It is
therefore natural to define the quasi-periodicity function of a quasi-periodic tiling: it
associates to an integer n the minimal size in which we are certain to find any pattern
of size n [8, 6]. This is one way to measure the complexity of a quasi-periodic tiling
and, to some extent, of a tileset τ since τ must admit at least one quasi-periodic
tiling. We start by proving in Section 2 that tilings by tilesets that admit only
quasi-periodic tilings have a recursively (and uniformly) bounded quasi-periodicity
function (Theorem 1.4). Remark that there exists non-trivial tilesets that admit
only quasi-periodic tilings [23, 19, 22] and that the property of having only such
tilings can be reduced to the domino problem [3, 23] and is thus undecidable1.

Both authors are partly supported by ANR-09-BLAN-0164. A. Ballier has been partly supported
by the Academy of Finland project 131558. We thank Pierre Guillon for discussions that lead to
the constructions provided in Section 3.

1Take a tileset τu that admits only one uniform tiling (and thus only quasi-periodic tilings),
a tileset τf that admits non quasi-periodic tilings (e.g., a fullshift on {0, 1}) then it is clear that
(τ × τf) ∪ τu admits only quasi-periodic tilings if and only if τ does not tile the plane.

c

54

COMPUTING (OR NOT) QUASI-PERIODICITY FUNCTIONS OF TILINGS 55

With the aim to study discretization of dynamical systems, 1−dimensional sub-
shifts have been extensively studied in symbolic dynamics [18, 16]. Quasi-periodic
tilings correspond to almost periodic sequences [12] or uniformly recurrent sequences
in this context. Again, the existence of complex uniformly recurrent sequences has
been shown [20]. In Section 3 we show, given a partial recursive function ϕ, how
to construct an effective subshift in which every uniformly recurrent configuration
has a quasi-periodicity function greater than ϕ where it is defined (Theorem 3.3).
This allows us to correct the error from [6] as we obtain as a corollary (using recent
links between tilings and effective 1−dimensional subshifts [1, 10]) that there exists
tilesets for which no quasi-periodic tiling can have a quasi-periodicity function that
is recursively bounded (Theorem 3.5).

1. Definitions

A configuration is an element of QZ2
where Q is a finite set or, equivalently, a

mapping from Z2 to Q. A pattern P is a function from a finite domain DP ⊆ Z2 to
Q. The shift of vector v (v ∈ Z2) is the function denoted by σv from QZ2

to QZ2

defined by σv(c)(x) = c(v + x). A pattern P appears in a configuration c (denoted
P ∈ c) if there exists v ∈ Z2 such that σv(c)|DP

= P. Similarly, we can define the
shift of vector v of a pattern P by the function σv(P)(x) = P(v + x); then we can
say that a pattern P appears in another pattern M if there exists v ∈ Z2 such that
σv(M)|DP

= P and denote it by P ∈M. We use the same vocabulary and notations
for both notions of shift and appearance but there should not be any confusion since
configurations are always denoted by lower case letters and patterns by upper case
letters.

Given a finite set of colors Q, a tileset is defined by a finite set of patterns F ; we
say that a configuration c is a valid tiling for F if none of the patterns of F appear
in c. We denote by TF the set of valid tilings for F . If TF is non-empty we say that
F can tile the plane. A set of configurations T is said to be a set of tilings if there
exists some finite set of patterns F such that T = TF . This notion of set of tilings
corresponds to subshifts of finite type [16, 15]. When we impose no restriction on
F these are subshifts and when F is recursively enumerable we say that TF is an
effective subshift (see, e.g., [7, 14, 13, 1, 10]).

A periodic configuration c is a configuration such that the set {σv(c), v ∈ Z2} is
finite. It is well known (since Berger [3]) that there exists tilesets that do not admit
a periodic tiling but can still tile the plane. On the other hand, quasi-periodicity is
the correct regularity notion if we always want a tiling with this property. Periodic
configurations are quasi-periodic but the converse is not true. Several characteriza-
tions of quasi-periodic configurations exist [8], we give one here that we use for the
rest of the paper.

Definition 1.1 (Quasi-periodic configuration). A configuration c ∈ QZ2
is quasi-

periodic if any pattern that appears in c appears in any sufficiently large pattern of
c.

More formally, if a pattern P appears in c then there exists n ∈ N such that for
every pattern M defined on [−n;n]2 that appears in c, P appears in M.

We denote by n(P,c) the smallest such n for finding a pattern P in the quasi-
periodic configuration c.

56 A. BALLIER AND E. JEANDEL

Theorem 1.2 ([4, 8]). Any non-empty set of tilings contains a quasi-periodic con-
figuration.

For an integer n, the set of patterns defined on a square domain [−n;n]2 is finite,
it is therefore natural to define the quasi-periodicity function of a quasi-periodic
configuration.

Definition 1.3 (Quasi-periodicity function). The quasi-periodicity function of a
quasi-periodic configuration c, denoted by Qc, is the function from N to N that
maps a given integer n to the smallest integer m such that any pattern of domain
[−n;n]2 that appears in c appears in any pattern of c of domain [−m;m]2.

Qc(n) = max
{
n(P,c),P ∈ c,DP = [−n;n]2

}

The function Qc measures in some sense the complexity of the quasi-periodic
configuration c: the faster it grows, the more complex c is. Since one can construct
tilesets whose tilings have many uncomputable properties (e.g., such that every tiling
is uncomputable as a function from Z2 to Q [11, 21] or such that every pattern that
appears in a tiling has maximal Kolmogorov complexity [9]), it is natural to expect
the quasi-periodicity function to inherit the non-recursive properties of tilings. This
is what had been proved in [6].

In some particular cases it is easy to prove that this function is actually com-
putable. Consider a tileset such that any pattern that appears in a tiling appears
in every tiling; in that case every tiling is quasi-periodic and the quasi-periodicity
function is the same for every tiling. Moreover there exists an algorithm that decides
if a pattern can appear in a tiling or not (this has been proven by different ways,
either by considering the fact that the first order theory of the tileset is finitely
axiomatizable and complete therefore decidable [2] or by using a direct compactness
argument [14]). Given this algorithm, it is easy to compute the quasi-periodicity
function (that does not depend on the tiling): for a given p, compute all the [−p; p]2
patterns that appear in a tiling and then compute all the [−n;n]2 patterns for n ≥ p
until every [−p; p]2 pattern appears in every [−n;n]2 pattern and output the smallest
such n.

In the remainder of this paper, we improve this technique to obtain a less re-
strictive condition on the tileset while proving that the quasi-periodicity function is
recursively bounded:

Theorem 1.4. If a tileset (defined by F) admits only quasi-periodic tilings then
there exists a computable function q : N→ N such that for any tiling c of TF , c has
a quasi-periodicity function bounded by q, i.e., ∀c ∈ TF ,∀n ∈ N,Qc(n) ≤ q(n).

Note that this result is contrary to a result in [6] stating that there exists tile-
sets admitting only quasi-periodic tilings with quasi-periodicity functions with no
computable upper bound. There is indeed a mistake in [6] that will be examined
later.

2. Computable bound on the quasi-periodicity function

In this section we consider a tileset defined by a finite set of forbidden patterns
F such that every tiling by F is quasi-periodic. The only hypothesis we have is the
following: For any tiling c ∈ TF and for any pattern P that appears in c, there exists
an integer n(P,c) such that any [−n(P,c), n(P,c)]

2 pattern that appears in c contains

COMPUTING (OR NOT) QUASI-PERIODICITY FUNCTIONS OF TILINGS 57

P. In order to prove Theorem 1.4, we first have to prove that there exists a bound
that does not depend on the tiling:

Lemma 2.1. If a tileset F admits only quasi-periodic tilings then, for any pattern
P that appears in some tiling of TF , there exists an integer n such that any tiling
that contains P also contains P in all its [−n;n]2 patterns.

We define n(P,F) to be the smallest integer with this property.

Remark that the converse of this lemma is obviously true by definition: if for
any pattern there exists such an integer then all the tilings are quasi-periodic.

Proof. Suppose this is not true: there exists a pattern P and a sequence (cn)n∈N of
configurations that contain P and such that cn also contains a [−n;n]2 pattern that
does not contain P.

For a given n, consider On, one of the largest square patterns of cn that does
not contain P. Since cn is quasi-periodic and contains P by hypothesis, there does
not exist arbitrary large square patterns that do not contain P and thus On is well
defined. Note that On is defined on at least [−n;n]2. Since we supposed On of
maximal size, there must be a pattern P adjacent to it like depicted on Figure 1.

On

P

Figure 1: On near P.

Now if we center our view on this P adjacent to On, for infinitely many n’s
the largest part of On always appears in the same quarter of plane (with origin P).
Since On is defined on at least [−n;n]2, by compactness we obtain a tiling with P at
its center and a quarter of plane without P. Such a tiling cannot be quasi-periodic.

Lemma 2.1 shows that if all the tilings that are valid for F are quasi-periodic
then there exists a global bound on the quasi-periodicity function of any tiling: define
f(n) = max

{
n(P,F),DP = [−n;n]2,P appears in a tiling by F

}
; for any tiling c ∈

TF and any integer n, we have Qc(n) ≤ f(n). The only part left in the proof of
Theorem 1.4 is to prove that f is computably bounded.

In a quasi-periodic tiling, if a pattern P defined on [−n;n]2 appears in it then it
must appear close to P (at distance less than f(n) + n) in each of the four quarters
of plane starting from the corners of P. In general, we cannot compute whether
a pattern will appear in some tiling or not, however, we can compute whether a
pattern is valid with respect to F .

58 A. BALLIER AND E. JEANDEL

Lemma 2.2. If a tileset F admits only quasi-periodic tilings then, for any pattern
P defined on [−n;n]2 that appears in some tiling of TF , there exists an integer m
such that any pattern R defined on [−n − m;n + m]2 that is valid with respect to
F and contains P at its center (i.e., R|[−n;n]2 = P) is such that the four patterns
R|[−n−m;−n]2, R|[−n−m;−n]×[n;n+m], R|[n;n+m]×[−n−m;−n], R|[n;n+m]2 all contain P.

We define m(P,F) to be the smallest integer m with this property.

Those four patterns may seem obscure at a first read, they are depicted on
Figure 2.

m

m

PP appears somewhere here

Figure 2: The four patterns in which we must find another occurrence of P.

Proof. For a given pattern P, suppose that there exists no such m. This means
that there exist arbitrarily large m and valid patterns Rm (defined on [−n −
m;n+m]2) such that one of the four patterns Rm|[−n−m;−n]2 , Rm|[−n−m;−n]×[n;n+m],
Rm|[n;n+m]×[−n−m;−n], Rm|[n;n+m]2 does not contain P.

Without loss of generality, we can assume that this always happens in the same
quarter of plane. By extracting a tiling centered on the pattern P at the center of
Rm (which we can do by compactness), there exists a tiling c of TF that contains
P and a quarter of plane without P, contradicting the quasi-periodicity of c.

Note that the converse of Lemma 2.2 is also true: if, for any pattern P, there
exists such an m(P,F) then all the tilings of TF are quasi-periodic.

Lemma 2.3. If F is a tileset that allows only quasi-periodic tilings then, for any
pattern P defined on [−p; p]2 that appears in some tiling of TF , we have:

n(P,F) ≤ 2(m(P,F) + p)

Proof. Let c be a (quasi-periodic) tiling of TF that contains P and a pattern O
defined on [−k; k]2 that does not contain P with k > 2(m(P,F) + p). Without loss of
generality, we may assume that O is of maximal size. That is, there is a pattern P
adjacent to O. Let R be the pattern defined on [−p−m(P,F); p+m(P,F)]

2 centered on
the pattern P adjacent to O in c. Since k > 2(m(P,F) + p) and O does not contain
P, at least one of the four patterns R|[−p−m(P,F);−p]2 , R|[−p−m(P,F);−p]×[p;p+m(P,F)],
R|[p;p+m(P,F)]×[−p−m(P,F);−p], R|[p;p+m(P,F)]

2 does not contain P as depicted on Figure 3;

COMPUTING (OR NOT) QUASI-PERIODICITY FUNCTIONS OF TILINGS 59

since R is a valid pattern with respect to F , this contradicts the definition of m(P,F).

P

> 2(m(P,F) + p)

P

≥ m(P,F)

Figure 3: Bounding the size of the patterns not containing P.

Now that we have a bound that deals only about locally valid patterns instead
of patterns that appear in tilings (and therefore is computably checkable), we can
proceed to the proof of Theorem 1.4:

Proof of Theorem 1.4. F is a tileset that admits only quasi-periodic tilings. For an
integer n, compute all the patterns P1, . . . ,Pk defined on [−n;n]2 that are valid for
F .

For each of these Pj use the following algorithm: For each integer i, compute
the set R1, . . . ,Rp of patterns defined on [−i − n; i + n]2 that contain Pj at their
center and are valid with respect to F .

(1) If there is no such pattern R, claim that Pj cannot appear in any tiling by
F , and define e.g., bPj

= 0. Then continue with Pj+1

(2) If all these patterns R restricted to either [−n−i;−n]2, [−n−i;−n]×[n;n+i],
[n;n + i]× [−n− i;n] or [n;n + i]2 all contain P then define bPj

= 2(i + n)

and continue with Pj+1
2.

For any pattern, one of these cases always happens: If Pj appears in at least
one tiling of TF then, by Lemma 2.2, for i = m(Pj,F) we are in case 2. If Pj does
not appear in any tiling of TF then case 1 must happen, otherwise we would have
arbitrary large extensions of Pj and hence a tiling containing Pj by compactness.
Note that we may halt in case 2 even if Pj does not appear in any tiling.

Now compute q(n) = max
{
bPj
,DPj

= [−n;n]2
}

.
For any tiling c ∈ TF and any pattern P defined on [−n;n]2 that appears in c

we have:
n(P,c) ≤ n(P,F) by definition of n(P,F)

≤ 2(m(P,F) + n) by Lemma 2.3
≤ bP by minimality of m(P,F)

≤ q(n) by definition of q

Therefore, for any configuration c and any integer n, we have Qc(n) ≤ q(n) and
q is the computable function that completes the proof of Theorem 1.4.

2Remark that these patterns are exactly those depicted in Figure 2.

60 A. BALLIER AND E. JEANDEL

We remark that all the arguments used in the proofs of the lemmas involve only
compactness and the fact that we can decide if a given pattern is valid for F . Hence,
we may remove some restrictions on F : TF is still compact if F is infinite and we
can still decide if a given pattern is valid for F when F is recursive. Moreover, if F
is recursively enumerable then there exists a recursive set of patterns F ′ such that
TF = TF ′ : consider the (computable) enumeration f(0), f(1), . . . of F ; when enu-
merating f(i), we can compute an integer n such that all the previously enumerated
patterns are defined on a domain included in [−n;n]2; then we enumerate all the
extensions of f(i) defined on [−n−1;n+1]2∪Df(i). This enumeration enumerates a
new set of patterns F ′ that is now recursive since they are enumerated by increasing
sizes. It is straightforward that TF = TF ′ . We conclude that F needs not to be
finite in order for Theorem 1.4 to be valid but we may assume that it is only re-
cursively enumerable. Sets of tilings with a recursively enumerable set of forbidden
patterns are usually called effective subshifts in the literature [7, 14, 13, 1, 10] or
also Π0

1 subshifts [25, 17] and are a special case of effectively closed sets as studied
in computable analysis (see e.g., [28])3.

3. Large quasi-periodicity functions

In this section we prove that we can construct tilesets whose every quasi-periodic
tiling has a large quasi-periodicity function. We start from a 1-dimensional effective
subshift X over an alphabet Σ and then build an effective subshift over the alphabet
Σ× {0, 1}, and the complexity of the quasi-periodicity function will come from the
top layer. For this, consider all occurrences of a word u in the subshift X. There are
infinitely many of them, so the top layer restricted to occurrences of u will contain
a bi-infinite word over {0, 1}. If we can find infinitely many words in the subshift
X so that occurrences of different words do not somehow overlap in a configuration
c, then this would give us an infinite number of bi-infinite words within a single
configuration c, in which we could code something.

The following lemma tells us how to find such words in the general case of min-
imal effective subshifts; a minimal subshift is a subshift in which every pattern that
appears in a configuration appears in every configuration, or equivalently, a subshift
that does not admit a proper non-empty subshift. In this case, all configurations
are of course quasi-periodic.

Lemma 3.1. For any (non-empty) 1−dimensional minimal effective subshift X ⊆
ΣZ that has no periodic configuration there exists a computable sequence (un)n∈N of
words in the language of X such that no un is prefix of another one.

Proof. We build recursively a sequence (u0, . . . , un) and a word vn such that the set
{uk, k ≤ n} ∪ {vn} is prefix-free. For n = 0, take two different letters in Σ (|Σ| > 1
comes from the hypothesis as X is non-empty and does not contain any periodic
configuration).

Now suppose we obtain (u0, . . . un) and vn. Since X is supposed to be minimal, v
appears in an uniformly recurrent way in a configuration of X and since X contains
no periodic configuration, there exists two different right-extensions of v: w and w′

of the same length. Taking un+1 = w and vn+1 = w′ ends the recurrence.

3The definitions are usually given in dimension one, i.e., for (bi-)infinite, words even though
they are the same for multi-dimensional configurations.

COMPUTING (OR NOT) QUASI-PERIODICITY FUNCTIONS OF TILINGS 61

To obtain our theorem, we will need a subshift X for which we control precisely
the sequence un.

Lemma 3.2. There exists a (non-empty) 1-dimensional minimal effective subshift
X and a computable sequence (un)n∈N of words in the language of X so that |un| ≤ n
and no un is prefix of another one.

Proof. We will use a construction based on Toeplitz words. Let p be an integer. For
an integer n, denote by φp(n) the first non-zero digit in the writing of n in base p,
e.g., φ3(15) = 2.

Let wp = φp(1)φp(2) For example w4 = 12311232123312311231123
Now let Xp be the shift of all configurations c so that all words of c are words

of wp. Note that any word of size n appearing in wp appears at a position less than
pn so that Xp is an effective subshift.

Now the following statements are clear:

• For every word w in wp, there exists k so that for every configuration c ∈ Xp,
w appears periodically in c of period pk (w might appear in some other places)
• Xp is minimal (a consequence of the previous statement)

If u1 and u2 are two words over Σ1 and Σ2 of the same size, we write u1⊗u2 for
the word over Σ1 × Σ2 whose ith projection is ui (i ∈ {1, 2}).

Now let X = X7 ⊗X8. X is a shift, and X is minimal4: If c1 ⊗ c2 ∈ X7 ⊗X8

and u1 and u2 are two patterns resp. of w7 and w8 of the same size, then u1 appears
periodically in c1 of period 7k1 and u2 appears periodically in c2 of period 8k2 . As
these two numbers are relatively prime, there exists a common position i so that u1

(resp. u2) appears in position i in c1 (resp c2), so that u1 ⊗ u2 appears in c1 ⊗ c2.
Now we can find the sequence un.
Let u be a word in {5, 6, 7}?{1, 2, 3, 4}. We define f8(u) inductively as follows:

• If |u| = 1, then f8(u) = u.
• If u = xu1 then let v = f8(u1) and n be the length of v.

– If x = 5 then f8(u) = 567v11234567v21234567v31 . . . vn1234
– If x = 6 then f8(u) = 67v11234567v21234567v31 . . . vn12345
– If x = 7 then f8(u) = 7v11234567v21234567v31 . . . vn123456

Now it is clear that each f8(u) is in w8 and by a straightforward induction, no f8(u)
is prefix of another. Let S8 = {f8(u)|u ∈ {5, 6, 7}?{1, 2, 3, 4}} Note that f8(u) is of
length 8|u|−1. In particular we have 4× 3n−1 words of length 8n−1 in S8.

We do the same with w7, with words u ∈ {4, 5, 6}?{1, 2, 3}, to obtain a set S7

containing 3× 3n−1 words of length 7n−1. We can always enlarge all words in S7 to
obtain a set S ′7 containing 3× 3n−1 words of length 8n−1.

Now take S = S ′7 ⊗ S8. This set contains 12× 9n−1 > 8n words of size 8n−1 for
each n and no word of S is prefix of one another. Now an enumeration in increasing
order of S gives the sequence (un)n∈N.

The whole construction is clearly effective.

Theorem 3.3. Given a partial computable function ϕ, there exists a 1−dimensional
effective subshift Xϕ such that any quasi-periodic configuration c in Xϕ has a quasi-
periodicity function Qc such that Qc(n) ≥ ϕ(n) when ϕ(n) is defined.

Proof. Consider the subshift X and the computable sequence (un)n∈N that are given
by Lemma 3.2. Since Lemma 3.2 ensures that |un| ≤ n, a sequence (un)n∈N with

4Note that the Cartesian product of two minimal shifts is not always minimal [24].

62 A. BALLIER AND E. JEANDEL

the additional property that |un| = n is also computable since we can compute an
extension of the words un in X since it is minimal and effective and the prefix-free
property is retained while taking extensions. We assume this additional property in
this proof.

Let Σ′ = Σ× {0, 1}. We define Xϕ as a subshift of X× {0, 1}Z.
Compute in parallel all the ϕ(n). When ϕ(n) is computed we add the following

additional constraints: On the {0, 1} layer of Σ′ we force a 1 to appear on the
first letter of un once every ϕ(n) + 1 occurrences of un, the first letter of all other
occurrences of un being 0. There is no ambiguity since no un is prefix of another
one. This defines Xϕ as an effective subshift since X is effective and (un)n∈N is
computable.

Every un appears in every configuration of X since it is minimal. If ϕ(n) is
defined, then every un with a 1 on the {0, 1} layer appears exactly every ϕ(n) occur-
rences of un’s with a 0 on its {0, 1} layer in every configuration of Xϕ. Therefore,
for any quasi-periodic configuration c of Xϕ we have that Qc(n) ≥ ϕ(n) where ϕ(n)
is defined which completes the proof.

Corollary 3.4. There exists a 1-dimensional effective subshift X such that every
quasi-periodic configuration c in X has a quasi-periodicity function which is not
bounded by any computable function.

Proof. Let (ϕn)n∈N be an effective enumeration of partial computable functions.
Let ϕ(n) = ϕn(n) + 1; ϕ is also a partial computable function; we can therefore

find an effective one dimensional subshift Xϕ ⊆ ΣZ via Theorem 3.3 such that any
quasi-periodic configuration c of Xϕ is such that Qc ≥ ϕ where ϕ is defined, hence
Qc is not recursively bounded.

Theorem 3.5. There exists a tileset such that every quasi-periodic tiling has a
quasi-periodicity function that is not recursively bounded.

Proof. Take the effective 1−dimensional subshift of the previous corollary (as a
subshift of ΣZ): Xϕ. There exists a set of tilings (or 2−dimensional SFT) X2

ϕ ⊆
(Q× Σ)Z

2
encoding it [1, 10] in the following way:

In any configuration of X2
ϕ, the rows of the Σ−layer are identical, that is, if we

write this configuration as cQ×cΣ ∈ QZ2×ΣZ2
, for any i, j in Z, cΣ(i, j) = cΣ(i, j+1).

Moreover, the projection:

p : (Q× Σ)Z
2 → ΣZ

cQ × cΣ → Z → Σ
n → cΣ(n, 0)

of X2
ϕ is exactly Xϕ (i.e., p(X2

ϕ) = Xϕ). Since the configurations of X2
ϕ are the Carte-

sian product of a construction layer (the QZ2
part) and the effective 1−dimensional

subshift Xϕ repeated on the rows, the quasi-periodicity function of any quasi-
periodic configuration of X2

ϕ is greater or equal to the quasi-periodicity function
of the quasi-periodic 1-dimensional configuration it represents.

Note that quasi-periodicity configurations obtained in the constructions in [1, 10]
are rather benign. If we start from a 1−dimensional quasi-periodic configuration c,
then the quasi-periodic tilings x that are projected onto c have a quasi-periodicity
function that is computable knowing the quasi-periodicity function of c.

COMPUTING (OR NOT) QUASI-PERIODICITY FUNCTIONS OF TILINGS 63

4. Note

Theorem 9 in [6] stated the contrary of Theorem 1.4: “there exists a tileset such
that all its tilings are quasi-periodic and none of its quasi-periodicity function is
computably bounded”. Besides some errors that can be easily corrected, there is a
big problem in the construction they claim to give. They encode K, a recursively
enumerable but not recursive set, in every tiling in a way such that if i ∈ K then
it must appear in every tiling in a pattern of size g(i) where g is a computable
function. This property allows by itself to decide K: For an integer i, compute g(i)
and all the possible encodings of i if it were to appear in a tiling; patterns that do
not appear in a tiling of the plane are recursively enumerable5 and thus, when we
have enumerated all the patterns coding i we know that i 6∈ K. Since K is supposed
recursively enumerable, this allows to decide K.

References

[1] Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional
SFT and a generalization. preprint, 2010.

[2] Alexis Ballier and Emmanuel Jeandel. Tilings and model theory. First Symposium on Cellular
Automata Journées Automates Cellulaires., 2008.

[3] Robert Berger. The undecidability of the domino problem. Memoirs of the American Mathe-
matical Society, 66, 1966.

[4] George David Birkhoff. Quelques théorèmes sur le mouvement des systèmes dynamiques.
Bulletin de la Société Mathématique de France, 1912.

[5] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

[6] Julien Cervelle and Bruno Durand. Tilings: recursivity and regularity. Theoretical computer
science, 310(1-3):469–477, 2004.

[7] Jean-Charles Delvenne, Petr Kůrka, and Vincent D. Blondel. Computational universality in
symbolic dynamical systems. Machines, Computations, and Universality 4th International
Conference, MCU 2004, pages 104–115, 2004.

[8] Bruno Durand. Tilings and quasiperiodicity. Theoretical Computer Science, 221(1-2):61–75,
1999.

[9] Bruno Durand, Leonid A. Levin, and Alexander Shen. Complex Tilings. Journal of Symbolic
Logic, 73(2):593–613, 2008.

[10] Bruno Durand, Andrei Romashchenko, and Alexander Shen. Effective Closed Subshifts in 1D
Can Be Implemented in 2D. In Fields of Logic and Computation, number 6300 in Lecture
Notes in Computer Science, pages 208–226. Springer, 2010.

[11] William P. Hanf. Nonrecursive Tilings of the Plane. I. Journal of Symbolic Logic, 39(2):283–
285, 1974.

[12] Gustav Arnold Hedlund. Endomorphisms and automorphisms of the shift dynamical systems.
Mathematical Systems Theory, 3(4):320–375, 1969.

[13] Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete
and Continuous Dynamical Systems S, 2(2), 2009.

[14] Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones Mathematica, 176(1), April 2009.

[15] Douglas Lind. Multidimensional Symbolic Dynamics. In Symbolic dynamics and its applica-
tions, volume 11 of Proceedings of Symposia in Applied Mathematics, pages 61–80, 2004.

[16] Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York, NY, USA, 1995.

[17] Joseph S. Miller. Two notes on subshifts.

5Simply try to tile arbitrary big patterns around it and if it is not possible claim that the pattern
does not appear in a tiling.

64 A. BALLIER AND E. JEANDEL

[18] Marston Morse and Gustav Arnold Hedlund. Symbolic Dynamics. American Journal of Math-
ematics, 60(4):815–866, October 1938.

[19] Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them. Jour-
nal d’analyse mathématique, 53:139–186, 1988.

[20] An. Muchnik, A. Semenov, and M. Ushakov. Almost periodic sequences. Theoretical Computer
Science, 304(1-3):1–33, 2003.

[21] Dale Myers. Nonrecursive Tilings of the Plane. II. Journal of Symbolic Logic, 39(2):286–294,
1974.

[22] Nicolas Ollinger. Two-by-two substitution systems and the undecidability of the domino prob-
lem. In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, CiE, volume
5028 of Lecture Notes in Computer Science, pages 476–485. Springer, 2008.

[23] R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Math-
ematicae, 12:177–209, 1971.

[24] Pavel Salimov. On Uniform Recurrence of a Direct Product. AutoMathA 2009, To Appear in
DMTCS.

[25] Steve Simpson. Medvedev degrees of 2-dimensional subshifts of finite type. Ergodic Theory
and Dynamical Systems, 2007.

[26] Hao Wang. Proving Theorems by Pattern Recognition I. Communications of the ACM,
3(4):220–234, April 1960.

[27] Hao Wang. Proving theorems by pattern recognition II. Bell system technical journal, 40:1–41,
1961.

[28] Klaus Weihrauch. Computable analysis. Springer, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 65-75

A SIMULATION OF OBLIVIOUS MULTI-HEAD ONE-WAY
FINITE AUTOMATA BY REAL-TIME CELLULAR AUTOMATA

ALEX BORELLO

Laboratoire d’Informatique Fondamentale de Marseille, 39 rue Frédéric Joliot-Curie, 13453
Marseille, France
E-mail address : alex.borello@lif.univ-mrs.fr

Abstract. In this paper, we present the simulation of a simple, yet significantly
powerful, sequential model by cellular automata. The simulated model is called
oblivious multi-head one-way finite automata and is characterised by having its
heads moving only forward, on a trajectory that only depends on the length of the
input. While the original finite automaton works in linear time, its corresponding
cellular automaton performs the same task in real time, that is, exactly the length
of the input. Although not truly a speed-up, the simulation may be interesting
and reminds us of the open question about the equivalence of linear and real times
on cellular automata.

1. Introduction

Cellular automata (CA for short), first introduced by J. von Neumann [7] as
self-replicating systems, are recognised as a major model of massively parallel com-
putation since A. R. Smith, in 1969, used this Turing-complete model to compute
functions [8]. Their simple and homogeneous description as well as their ability to
distribute and synchronise the information in a very efficient way contribute to their
success. However, to determine to what extent CA can fasten sequential computa-
tion is not a simple task.

As regards specific sequential problems, the gain in speed by the use of CA is
manifest [1, 2, 3]. But when we try to get general simulations, we have to face the
delicate question of whether parallel algorithms are always faster than sequential
ones. An inherent difficulty arises from the fact that efficient parallel algorithms
make often use of techniques that are radically different from the sequential ones.
There might also exist a faster CA for each singular sequential solution whereas no
general simulation exists.

Hence, no surprise: the known simulations of Turing machines by CA provide
no parallel speed-up. The early construction of Smith [8] simulates one step of the
Turing machine by one step of the CA. Furthermore, no faster simulations have
been reported yet, even for almost all restricted variants. In particular, we do not

2000 ACM Subject Classification: F.1.1, F.1.2.
Key words and phrases: simulation, oblivious multi-head one-way finite automata, cellular au-

tomata, real time.

65

66 A. BORELLO

know whether any finite automata with k heads can be simulated on CA in less than
O(nk) steps, which is the sequential time complexity.

We will not give answers to such issues here, but we shall examine in this context
a simple sequential model, called oblivious multi-head finite automata. This device
was introduced by M. Holzer in [4] as multi-head finite automata with an additional
constraint of obliviousness: the trajectory of the heads only depends on the length
of the input. As emphasised in [4], such finite automata lead to significant compu-
tational power: they characterise parallel complexity NC1. Their properties have
been further discussed in [5].

We will focus on the one-way version of this model, that is, for which the reading
heads can only move forward (that makes it strictly less powerful). While no true
speed-up can be hoped for, as these one-way finite automata already perform their
task in linear time, we will describe a simulation of them by real-time CA, that is, CA
working in linear time with a multiplicative constant equal to 1. Whereas specifying
this constant is usually irrelevant, CA represent a particular case amongst models
of computation, as we do not know whether linear and real times are equivalent for
it.

The article is organised as follows: section 2 introduces the two models consid-
ered, section 3 displays some of their features and abilities and section 4 presents
the simulation algorithm.

2. Definitions

2.1. Multi-head finite automata

Given an integer k ≥ 1, a one-way k-head finite automaton is a finite automaton
reading an input word using k heads that can move to the right or stand still.

Definition 2.1. A (deterministic) one-way multi-head finite automaton (1DFA(k)
for short) is a septuple (Σ, Q,⊳, q0, Qa, k, δ), where Σ is a finite set of input symbols
(or letters), Q is a finite set of states, ⊳ /∈ Σ is the (right) end-marker, q0 ∈ Q is
the initial state, Qa ⊆ Q is the set of the accepting states, k ≥ 1 is the number
of heads and δ : Q × (Σ ∪ {⊳})k → Q × {0, 1}k the transition function; 1 means
to move the head one letter to the right and 0 to keep it on its current letter.
For the heads to be unable to move beyond the end-marker, we require that if
δ(q, a1, . . . , ak) = (q′,m1, . . . ,mk), then for any i ∈ J1, kK, ai = ⊳⇒ mi = 0.

A configuration of a 1DFA(k) on an input word w ∈ Σn at a certain time t ≥ 0
is a couple (p, q) where p ∈ J0, nKk is the position of the multi-head and q the current
state. The computation of such a device on this input word starts with all heads on
the first letter, and ends when all heads have reached the end-marker. If the current
state is then within Qa, the word is said to be accepted, otherwise it is rejected.
The language L(F) recognised by a 1DFA(k) F is the set of the words accepted by
F . One can notice a 1DFA(k) ends its computation in linear time.

We will focus now on data-independent 1DFA (1DIDFA), a particular class of
1DFA for which the path followed by the heads only depends on the length of the
input word, not on the letters thereof.

FROM 1DIDFA TO REAL-TIME CA 67

Definition 2.2. Given k ≥ 1, a 1DFA(k) F is said to be oblivious (or data-
independent) if there exists a function fF : N2 → Nk such that the position of
its multi-head at time t ∈ N on any input word w is fF(|w|, t).

2.2. Cellular automata

A cellular automaton is a parallel synchronous computing model consisting of
an infinite number of finite automata called cells which are distributed on Z and
share the same transition function, depending on the considered cell’s previous state
as well as its two neighbours’.

Definition 2.3. A cellular automaton is a quintuple (Σ, Q,#, Qa, δ), where Σ is
the finite set of input symbols (or letters), Q ⊃ Σ is the finite set of states and
δ : Q3 → Q the transition function1. # ∈ Q \ Σ is a particular quiescent state,
verifying δ(#,#,#) = #. Qa ⊆ Q is the set of the accepting states.

A configuration is a function C : Z → Q. A site is a cell at a certain time step
of the computation we consider; 〈c, t〉 will denote the state of the site (c, t) ∈ Z×N.
The computation of a CA C on an input word w of size n ≥ 1 starts at time 0
with all cells in state # except cells 0 to n − 1 where the letters of the word are
written. This is the initial configuration Cw associated to w. Then the cells update
in parallel their respective states according to δ: for all (c, t) ∈ Z × N, 〈c, t + 1〉 =
δ(〈c− 1, t〉, 〈c, t〉, 〈c+ 1, t〉).

This input word is accepted in time t ≥ n if and only if cell 0 (the origin) is
in an accepting state at time t. The language Lτ (C) recognised by the automaton
in time τ : N → N is the set of the words w it accepts in time τ(|w|). If τ is the
identity function Id, Lτ (C) is said to be recognised in real time.

Real time represents for CA the most simple time complexity that is nontrivial,
in the sense it is the minimal time required for the output to depend on all letters
of the input. Yet, it is significantly powerful, as we do not even know whether linear
time can achieve strictly more. Real time had already been evoked in [8].

3. Preliminaries

We would like to simulate a 1DIDFA on a CA as fast as possible. A computation
of a general 1DFA requires a number of time steps that is linear in the size of the
input word. Whereas it is rather easy for a CA to simulate such a device in linear
time, there is a priori no obvious way to reduce this time bound. But we can do it in
the case of DIDFA by taking the constraint of obliviousness into account. Though,
before performing such a simulation, we should detail some useful features of DIDFA
and CA.

1Notice CA are defined herein with the standard neighbourhood of radius 1, that is, such that
the state of a cell at time t+1 depends on the states at time t of this same cell and its two nearest
neighbours.

68 A. BORELLO

3.1. Some features of multi-head finite automata

Let F = (Σ, Q,⊳, q0, Qa, k, δ) be a 1DIDFA, n ≥ 1 be an integer and w ∈ Σn

be a word of size n. Let us look at the computation of F on input word w. For the
multi-head is composed of k heads, it can be regarded as a device moving one point
at a time in any direction within the set W = J0, nKk.

As F is data-independent, we can separate the path P taken by the multi-head
from the consecutive states of the automaton (depending on the letters of w). In
other words, we can take a look at the path of the multi-head on input word an, for
any a ∈ Σ; it will be the same for w. Hence, the trajectory will become periodic
after at most |Q| moves, until one head reaches an end-marker. Then, while the
latter head does not move any longer, after another |Q| moves the trajectory will
become periodic again, and so on until all heads have reached the end of the input
word. The key points ofW where a head reaches the end-marker will be useful to us
and denoted as finite sequence (pi)i∈J0,kK, with p0 = (0, . . . , 0) and pk = (n, . . . , n).

Some notations. For convenience, we number the heads such that for all i ∈ J0, k−
1K, head i is the one that reaches the end-marker as the multi-head arrives at key
point pi+1. For all i ∈ J0, kK and all j ∈ J0, k−1K, we denote the (j+1)-th coordinate
of pi by pi,j , and if i < k name Pi ⊆ P the portion of trajectory that lies between pi
and pi+1.

p0

p1 p2
p3

P0

P1 P2

Figure 1: A representation of W for k = 3. The periodic parts of the path of the
multi-head are drawn in black.

3.2. A few basic techniques on cellular automata

A given computation of a CA can be easily represented by drawing successive
configurations each one above its predecessor. We thus obtain a space-time diagram,
composed of sites, of which we only need to represent those in a non-quiescent state.

We will often have to perform several rather independent computations at the
same time; this can easily be done by a ‘product’ automaton which works with a
finite number of layers, each one of which supports a specific computation. Although
rather independent, the layers can communicate between one another to exchange
information, as any cell can see all of them.

FROM 1DIDFA TO REAL-TIME CA 69

Compression of the input word. In section 4, we will need to compress the input by
some rational factor ρ ≥ 2. This is easy to do with a CA. It consists in having the
input word written on the (discrete) straight line of equation t− 1 = (ρ− 1)(c+1),
where t represents the time and c a cell, as shown on fig. 2. As the concerned sites
‘know’ that they lie on this straight line, a computation using the compressed input
word can then occur within the triangle of real time (in light grey on fig. 2).

Acceleration by a constant. For any constant T ∈ N and any CA C, there exists a
CA C ′ such that LId(C ′) = LId+T (C). In other words, to prove that a given language
is CA-recognisable in real time, it suffices to exhibit a CA recognising it in time
Id + T . For more details, one can refer to [6].

0 n− 1

t− 1 = (ρ− 1)(c+ 1)

ρ = 2
0 n− 1

t− 1 = (ρ− 1)(c+ 1)

ρ = 5/2

←
− t

Figure 2: Schematic space-time diagrams during which input word w is compressed
by rational factor ρ. Each sequence of linked dots represent a letter of
w. The sites containing the compressed version of w are encircled. Notice
that even though it seems the letters could be shifted one time step earlier,
this first step is in fact used to mark the last letter; it is necessary because
of rounding issues.

4. Simulation

Theorem 4.1. Given k ≥ 1, for any 1DIDFA(k) F recognising a language L, there
exists a CA C recognising L in real time.

The rest of this paper will be devoted to the proof of this theorem. We assume
now that we have a 1DIDFA(k) F = (Σ, Q,⊳, q0, Qa, k, δ). We will define a CA
C = (Σ, Q′,#, Q′

a, δ
′) such that LId(C) = L. Instead of giving the full description of

its state set and transition function, we will describe its behaviour on an arbitrary
input word w ∈ Σn, given an integer n ≥ 1. Within this coming description (and
similarly in the whole article) the terms ‘constant’ and ‘finite’ refer to quantities
that do not depend on n.

70 A. BORELLO

4.1. Principle

The general principle of the simulation is rather simple: instead of having k heads
moving along w, we will have (at least) k copies of w shifted over a segment S of
sites (of strictly increasing time steps) so that each site sees the correct letters of w.
Moreover, the letters for each head will be seen in reverse order compared to what
F does.

Each part Pi of the trajectory of the multi-head can be assimilated to a discrete
straight line, with no aperiodic part. Indeed, as illustrated in fig. 3, the distance
(in letters) between any point of Pi and the point of this line corresponding to same
time step is bounded by some value K = O(|Q|). Thus, during the execution of C
over w, before doing anything, all cells bearing the input will gather the letters of
their K nearest neighbours. This is done in time K.

pi

pi+1

Pi

O(|Q|)

O(|Q|)

O(|Q|)

Figure 3: Pi lies within a band of width O(|Q|), here drawn in white. It can hence
be assimilated to a (discrete) straight line, provided a counter (within the
shifting copies of w during the execution of C) indicates for each point
of this line the corresponding position within the period of Pi. Notice
that although the band can broaden as i increases, this index only rises
up to a constant value, so that the maximal width K remains bounded
independently of the size of the input.

4.2. Key sites

We will set S = {(c, n − 1 − c + T) : c ∈ J0, n − 1K}, where T , which is to be
defined (cf. subsection 4.3), is an integer greater than K that does not depend on n.
The result of the execution is to appear on site s0 = (0, n− 1 + T). To know which
speed the copies of w should be shifted at over each site of S, the latter segment
should be divided into parts Si, each one of which corresponds to part Pi of P . In
other words, we want to mark some key sites si = (ci, n − 1 − ci + T) ∈ S that
represent key points pi ∈ P . The main difficulty is that key cell ci has to represent
coordinate pi,j for any head j.

For this purpose, we observe first that for all (i, j) ∈ J0, kK×J0, k−1K, since each
part of P is as illustrated in fig. 3, there exists αi,j ∈ Q∩[0, 1] such that |pi,j−αi,jn| ≤
K, whatever the size n of the input. One can notice that we automatically have
α0,j = 0 and αi,j = 1 for all i > j, and that (αi,j)i is an increasing sequence for all j.

Then, we provisionally assume that αj,j = 0⇒ j = 0, and set key cell ci = ⌊αin⌋,
where αi =

1
2

∏k−1
j=i αj,j. The case wherein there exists some j that does not verify

this hypothesis will be treated in subsection 4.6.

FROM 1DIDFA TO REAL-TIME CA 71

Now, how to mark site si? No trouble if i = 0, as c0 is the origin. If i > 0, it
is also feasible: it suffices to send a signal from the origin at speed ςi =

αi

1−αi
≤ 1

(cf. fig. 4). Note that in the definition of αi, we have divided by 2 in case some key
cells would be too far from the origin to be marked in time (in CA configurations,
information cannot travel at speed of absolute value strictly greater than 1). All
our computation has hence to be performed within half as much space than what
S provides. In any case, the definition of αi is based on the assumption that the
copies of the input shifting over Si are compressed versions of w.

s0

s1

s2

s3

S

0 c1 c2 c3 n− 1
t = 0

t = K

t = T

t = n− 1 + T

{{
{

S2

S1

S0

D3

D2

D1

Figure 4: Schematic space-time diagram of the marking of cells ci, for k = 3.
Notice that (ci)i = (⌊αin⌋)i is always an increasing sequence (since
αi = αi,iαi+1 ≤ αi+1), with c0 = 0 and ck = ⌊n2 ⌋.

4.3. Compression of the input

For each i ∈ J1, kK, we want to compress input word w (on a specific layer ℓi−1

corresponding to head i − 1) by factor 1
αi

as illustrated in fig. 2, that is, on some

straight line Di of direction vector (1, 1
ςi
) = (1, 1

αi
− 1). One can notice we are able to

choose Di such that it crosses the origin at any time t > ⌊1
ςi
⌋. Thus, we will make all

such lines cross the origin at the same time T ∈ N. As (1
ςi
)i is a decreasing sequence

and as we have done some computations in time K beforehand, we set T = K+⌊ 1
ς1
⌋.

Hence, we have finally set Di to be the line of equation t− T = c
ςi
(cf. fig. 4).

4.4. Shift of the input

Consider some head j ∈ J0, k − 1K and an integer i ∈ J1, jK. On layer ℓj,
which corresponds to this head, we want to shift the compressed input at some
constant speed ςi,j ∈]−1, ςi] between Di+1 and Di, so that the correct letters pass
over Si. One can notice ςj,j = 0 by the definition of αj+1 and αj. But this not

necessarily the case when i < j. Indeed, ςi,j should be defined as equal to
βi,j

1−βi,j
,

with βi,j = αi − αi,j
αi+1−αi

αi+1,j−αi,j
if αi+1,j − αi,j > 0 and βi,j = αi otherwise. This way,

ςi,j is the speed of the signal we would use to mark cell ci,j = ⌊βi,jn⌋ (cf. fig. 5).

72 A. BORELLO

0 c n− 1
t = 0

t = K

t = T

t = n− 1 + T

(ℓ0)

−→ ς0,0

0 c n− 1

−→ ς1,1

−→ ς0,1

(ℓ1)
0 cc1,2

=⌊β1,2n⌋
n− 1

−→ ς2,2

−→

ς1,2

−→ ς0,2

(ℓ2)

p0

p1
p2 p3

Figure 5: Different compressed copies of the input shifted over S, with the trajectory
of the letter initially contained by some cell c displayed. Layer ℓj corre-
sponds to head j < k = 3. In this example, we have (α1,1, α1,2, α2,2) =
(5
8
, 1
4
, 3
4
). Hence, (α0, α1, α2, α3) = (0, 15

64
, 3
8
, 1
2
) and β1,2 =

21
128

.

4.5. Backtracking

Now that we have ensured the correct letters are seen in reverse order for each
head on each segment Si, how do we get site s0 to know the result of the execution
of F over w? All we need to know is whether the final state of F is accepting, that
is, belongs to Qa.

Let p be a point of P such that p 6= p0. One can observe that if we know q, the
state F is in when its multi-head is on p, as well as the letter lj ∈ Σ each head j
reads when the multi-head lies on the predecessor p′ of p, then we can compute

FROM 1DIDFA TO REAL-TIME CA 73

the possible states of F at point p′. That is, the subset Q′ of Q such that for all
q′ ∈ Q, δ(q′, l0, . . . , lk−1) = (q, p − p′) ⇔ q′ ∈ Q′. Likewise, if we know F is in a
state of Q′′ ⊆ Q at point p, we can determine the subset Q′ such that for all q′ ∈ Q,
δ(q′, l0, . . . , lk−1) ∈ Q′′ × {p− p′} ⇔ q′ ∈ Q′. We will refer to this process as reading
δ backward.

Let then s = (c + 1, t − 1) be a site of S. As the letters it sees come from
compressed versions of w, it can represent a (finite) range of points of P instead
of only one, depending on the part Si it belongs to. Now suppose it contains some
subset of Q for each of the successive points of P it represents. Suppose also these
subsets are consistent with one another (regarded as the possible states F is in at
each of these points). Then successor site s′ = (c, t) can read δ backward a finite
(but sufficient) number of times to get the possible subsets of its own points.

Site sk represents the last points of P , amongst which the very last point pk.
So, we initiate our ‘reverse’ computation by setting the state of sk (on some layer ℓ
on which this computation is to be held) to contain subset Qa for point pk and
consistent ones for the predecessors it represents. By induction, every element of
S will contain subsets that are consistent with Qa on layer ℓ. In particular, s0 will
have the corresponding subset Q0 for p0, so that it just has to check whether q0 ∈ Q0

to know if w is accepted by F .

4.6. Adjustments

In the preceding construction, we have put some details or particular cases aside.
First, we have to mention that the whole process obviously works only for input
words of size greater than some value depending on K (for all Pi to be assimilated
to straight lines as in fig. 3). Nevertheless, that leaves us a finite number of words
that are treated as special cases, so that the result is not affected.

Possibilities. As each Pi is not a real straight line, the next part Pi+1 of the path
depends on which point of the period of Pi the multi-head is at (that is, which state
it is in over word an) when head i reaches the end-marker. In particular, there
can be at most |Q| possible values αi, depending on n. Anyway, that makes a finite
number of possible (k−1)-tuples (α1, . . . , αk−1), and we can thus process all of them
in parallel.

Remains to elect the right tuple at site s0 or before. It can be done by looking at
the remainder of the Euclidean division of n−|Q| by some finite value f(|Q|). That
can be easily checked, for instance, on line Dk with a finite counter. The choice will
be known at site sk and spread toward s0.

Aperiodic parts. It may seem we know at any site along any Si, thanks to what
precedes, which points of the period of Pi we are simulating and so, which available
letters the cell has to use. This is in fact not true yet: when reaching site si, we
have to take the aperiodic part of Pi into account, and therefore we must be able to
modify the last |Q| moves (that is, to adjust the choice of letters) we have simulated
backward. That can be done by adding to the sites of S a finite memory of the
letters seen.

74 A. BORELLO

Immobile heads. Suppose that, contrary to the hypothesis made in subsection 4.2,
there exists some j > 0 such that αj,j = 0. That means that head j remains
motionless until pj and then covers the totality of the input during Pj. The trouble
is that it implies for all i ≤ j, αi = 0. Therefore, sj = sj−1 = · · · = s0, so that a
linear number of moves would have to be simulated on a single site.

A simple trick allows us to overcome this problem: for all j ∈ J1, k − 1K, we set
α′
j,j = αj,j if αj,j > 0 and α′

j,j =
1
2
otherwise2, and set α′

0,0 = α0,0 = 0. Then, in our
construction, we replace any αj,j by α′

j,j.
Finally, for each j > 0 verifying αj,j = 0, we still have to adjust shift speed ςj,j,

which is equal to 0. All we have to do is to replace it by ς ′j,j =
αj

1−αj
(only for this j),

which makes the totality of the copy of w on layer ℓj shift over Sj. As regards indices
i < j, we do not need to redefine the corresponding speed ςi,j , since head j makes
no more moves.

Conclusion

We have described a construction that simulates oblivious multi-head one-way
finite automata on real-time cellular automata. This is better (if linear and real
times are not equivalent) than what would achieve the näıve (though nontrivial)
simulation of general multi-head finite automata, which would result in a linear-
time CA.

In any case, this result fully exploits the obliviousness of the sequential compu-
tation. Now, it is another challenge to get a similar parallel algorithm without the
constraint of data-independence.

Acknowledgement

I would like to thank G. Richard and V. Terrier for introducing me to the matter
of DIDFA (which resulted in a common article about a speed-up of two-way DIDFA
by CA). I would also like to thank J. Ferté for useful brainstorming sessions before
the blackboard and V. Poupet for his help.

References

[1] A. J. Atrubin. A one-dimensional real-time iterative multiplier. IEEE Transactions on Elec-
tronic Computers, 14(1):394–399, 1965.

[2] Stephen N. Cole. Real-time computation by n-dimensional iterative arrays of finite-state ma-
chines. IEEE Trans. Comput., 18(4):349–365, 1969.

[3] Karel Čuĺık II. Variations of the firing squad problem and applications. Information Processing
Letters, 30(3):152–157, 1989.

[4] Markus Holzer. Multi-head finite automata: Data-independent versus data-dependent compu-
tations. Theoretical Computer Science, 286(1):97–116, 2002.

[5] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-head finite automata: Charac-
terizations, concepts and open problems. In Turlough Neary, Damien Woods, Anthony Karel
Seda, and Niall Murphy, editors, The Complexity of Simple Programs (CSP’08), EPTCS, pages
93–107, 2008.

[6] Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for cellular automata. Theo-
retical Computer Science, 101(1):59–98, 1992.

2Notice we could have chosen any rational value strictly between 0 and 1 instead of 1
2 .

FROM 1DIDFA TO REAL-TIME CA 75

[7] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana,
IL, USA, 1966.

[8] Alvy R. Smith III. Simple computation-universal cellular spaces. Journal of the ACM,
18(3):339–353, 1971.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 76-87

CONSTRUCTION OF µ-LIMIT SETS

LAURENT BOYER 1, MARTIN DELACOURT 2, AND MATHIEU SABLIK 3

1 LAMA, Université de Savoie

2 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence

3 Laboratoire d’Analyse, Topologie, Probabilités, Université de Provence

Abstract. The µ-limit set of a cellular automaton is a subshift whose forbidden
patterns are exactly those, whose probabilities tend to zero as time tends to in-
finity. In this article, for a given subshift in a large class of subshifts, we propose
the construction of a cellular automaton which realizes this subshift as µ-limit set
where µ is the uniform Bernoulli measure.

1. Introduction
A cellular automaton (CA) is a complex system defined by a local rule which acts

synchronously and uniformly on the configuration space. These simple models have
a wide variety of different dynamical behaviors. More particularly it is interesting
to understand its behavior when it goes to infinity.

In the dynamical systems context, it is natural to study the limit set of a cellular
automaton, it is defined as the set of configurations that can appear arbitrarily far
in time. This set captures the longterm behavior of the CA and has been widely
studied since the end of the 1980s. Given a cellular automaton, it is difficult to
determine its limit set. Indeed it is undecidable to know if it contains only one
configuration [Kar92] and more generally, every nontrivial property of limit sets
is undecidable [Kar94]. Another problem is to characterize which subshift can be
obtained as limit set of a cellular automaton. This was first studied in detail by
Lyman Hurd [Hur87], and significant progress have been made [Maa95, FK07] but
there is still no characterization. The notion of limit set can be refined if we consider
the notion of attractor [Hur90a, K ur03].

However, these topological notions do not correspond to the empirical point of
view where the initial configuration is chosen randomly, that is to say chosen accord-
ing a measure µ. That’s why the notion of µ-attractor is introduced by [Hur90b].
Like it is discussed in [KM00] with a lot of examples, this notion is not satisfactory
empirically and the authors introduce the notion of µ-limit set. A µ-limit set is
a subshift whose forbidden patterns are exactly those, whose probabilities tend to

Thanks to the project ANR EMC: ANR-09-BLAN-0164.

c

76

CONSTRUCTION OF µ-LIMIT SETS 77

zero as time tends to infinity. This set corresponds to the configurations which are
observed when a random configuration is iterated.

As for limit sets, it is difficult to determine the µ-limit set of a given cellular
automaton, indeed it is already undecidable to know if it contains only one configu-
ration [BPT06]. However, in the literature, all µ-limit sets which can be found are
very simple (transitive subshifts of finite type). In this article, for every recursively
enumerable family (Σi)i∈N of subshifts generated by a generic configuration, we con-
struct a cellular automaton which realizes

⋃
i∈N Σi as µ-limit set. In particular all

transitive sofic subshifts can be realized. It makes a strong difference with limit sets
since there are sofic subshifts, as the even subshift (subshift on alphabet {0, 1} in
which all words 01k0 with odd k are forbidden), which cannot be realized as limit
set [Maa95].

To construct a cellular automaton that realizes a given subshift as µ-limit set,
we first erase nearly all the information contained in a random configuration thanks
to counters (section 3). Then we produce segments, which are finite areas of com-
putation. On each segment we construct small parts of the generic configurations of
many subshifts, and as time passes, segments grow larger and every word of every
subshift appears often enough (section 5).

2. Definitions

2.1. Words and density

For a finite set Q called an alphabet, denote Q∗ =
⋃
n∈NQ

n the set of all finite
words over Q. The length of u = u0u1 . . . un−1 is |u| = n. We denote QZ the set of
configurations over Q, which are mappings from Z to Q, and for c ∈ QZ, we denote
cz the image of z ∈ Z by c. For u ∈ Q∗ and 0 ≤ i ≤ j ≤ |u|−1 we define the subword
u[i,j] = uiui+1 . . . uj; this definition can be extended to a configuration c ∈ QZ as
c[i,j] = cici+1 . . . cj for i, j ∈ Z with i ≤ j. The language of S ⊂ QZ is defined by

L(S) = {u ∈ Q∗ : ∃c ∈ S, ∃i ∈ Z such that u = c[i,i+|u|−1]}.
For every u ∈ Q∗ and i ∈ Z, we define the cylinder [u]i as the set of configurations

containing the word u in position i that is to say [u]i = {c ∈ QZ : c[i,i+|u|−1] = u}. If
the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q∗ define |u|v the number of occurences of v in u as:
|u|v = card{i ∈ [0, |u| − |v|] : u[i,i+|v|−1] = v}

For any two words u, v ∈ Q∗, let du(v) = |u|v
|u|−|v| .

For a configuration c ∈ QZ, the density dc(v) of a finite word v is:
dc(v) = lim sup

n→+∞
dc[−n,n](v).

These definitions could be generalized, for a set of words W ⊂ Q∗, we note |u|W
and dc(W).

Definition 2.1 (Normal configuration). A configuration is said to be normal for
an alphabet Q if all words of length n have the same density of apparition in the
configuration.

78 L. BOYER, M. DELACOURT, AND M. SABLIK

2.2. Subshifts

We denote by σ the shift map σ : QZ 7→ QZ defined by σ(c)i = ci−1. A subshift
is a closed, σ-invariant subset of QZ. It is well known that a subshift is completely
described by its language denoted L(Σ). Moreover, it is possible to define a subshift
by a set of its forbidden words which do not appear in the language.

As the shift invariance is preserved, intersections and closures of unions of sub-
shifts are still subshifts. And in particular, the union of a set (L(Σi))i of languages
describes the subshift that is the closure of the union of all subshifts:

⋃
i∈N Σi.

We define some classes of subshifts. A sofic subshift is a subshift whose language
of forbidden words is rational, i.e. given by a finite automaton. A subshift Σ is
transitive if for all u, v ∈ L(Σ) there exists a word w such that uwv ∈ L(Σ). Let
s : Q→ Q∗ be a primitive substitution (there exists k ∈ N such that for all a, b ∈ Q
a appears in sk(b)), the substitutive subshift associated to s is the subshift Σs such
that

L(Σs) = {u ∈ Q∗ : ∃a ∈ Q and n ∈ N such that u appears in sn(a)}.

2.3. Cellular automata

Definition 2.2 (Cellular automaton). A cellular automaton (CA) A is a triple
(QA, rA, δA) where QA is a finite set of states called the alphabet, rA is the radius of
the automaton, and δA : Q2rA+1

A 7→ QA is the local rule.

The configurations of a cellular automaton are the configurations over QA. A
global behavior is induced and we’ll note A(c) the image of a configuration c given
by: ∀z ∈ Z,A(c)z = δA(cz−rA , . . . , cz, . . . , cz+rA). Studying the dynamic of A is
studying the iterations of a configuration by the map A : QZ

A → QZ
A. When there is

no ambiguity, we’ll note Q, r and δ instead of QA, rA and δA.

2.4. µ-limit sets

Definition 2.3 (Uniform Bernoulli measure). For an alphabet Q, the uniform
Bernoulli measure µ on configurations over Q is defined by: ∀u ∈ Q∗, i ∈ Z, µ([u]i) =

1
|Q||u| .

For a CA A = (Q, r, δ) and u ∈ Q∗, we denote for all n ∈ N, Anµ([u]) =
µ (A−n([u])).

Definition 2.4 (Persistent set). For a CA A, and the uniform Bernoulli measure
µ, we define the persistent set Lµ(A) with: ∀u ∈ Q∗:

u /∈ Lµ(A)⇐⇒ lim
n→∞

Anµ([u]0) = 0.

Then the µ-limit set of A is Λµ(A) =
{
c ∈ QZ : L(c) ⊆ Lµ(A)

}
.

Remark 2.5. As this definition gives a set of forbidden finite words, we clearly see
that µ-limit sets are subshifts.

Definition 2.6 (Set of predecessors). We define the set of predecessors at time n of
a finite word u for a CA A = (Q, r, δ) as P n

A(u) =
{
v ∈ Q|u|+2rn : An([v]−rn) ⊆ [u]0

}
.

CONSTRUCTION OF µ-LIMIT SETS 79

Remark 2.7. As we consider the uniform Bernoulli measure µ, |PnA(u)|
|Q||u|+2rn → 0 ⇔

u /∈ Lµ(A).

Remark 2.8. The set of normal configurations has measure 1 in QZ. Which means
that a configuration that is randomly generated according to measure µ is a normal
configuration.

Lemma 2.9. Given a CA A and a finite word u, with µ the uniform Bernoulli
measure, for any normal configuration c:
u ∈ Λµ(A) ⇔ dAn(c)(u) 9 0 when n→ +∞.

Proof. Let n ∈ N, r be the radius of A and µ the uniform measure. We prove here
that: dAn(c)(u) = Anµ(u) =

|PnA(u)|
|Q||u|+2rn .

The second part of the equality is obtained by definition of Anµ(u). We focus on
the first part. Since any occurence of u in An(c) corresponds to an occurence of a
predecessor of u in c :

dAn(c)(u) = lim sup
k→+∞

|An(c)[−k,k]|u
2k + 1− |u| = lim sup

k→+∞

∑

v∈PnA(u)

|c[−k−rn,k+rn]|v
2k + 2rn+ 1− (|u|+ 2rn)

.

And as c is normal, for any v ∈ P n
A(u) : |c[−k−rn,k+rn]|v ∼k→+∞

2k+1
|Q||u|+2rn .

Then:

dAn(c)(u) =
∑

v∈PnA(u)
lim sup
k→+∞

(
1

2k + 1− |u|
2k + 1

|Q||u|+2rn

)
=

∑

v∈PnA(u)

1

|Q||u|+2rn
=
|P n
A(u)|

|Q||u|+2rn
.

Proposition 2.10. Let u ∈ Lµ(A), there exists a word w such that uwu ∈ Lµ(A).

Proof. Let u ∈ Lµ(A), there exists α > 0 and an increasing sequence (ni)i∈N such
that Aniµ([u]) > α. Thus, for a normal configuration c, one has dAni (c)(u) > α for
all i ∈ N. Let l ∈ N and ε > 0 such that 2|u|

2|u|+l < α− ε, we define

W1 = {w ∈ Q∗A : u is not a subword of w and |w| ≤ l} and
W2 = {w ∈ Q∗A : u is not a subword of w and |w| > l} .

Consider uWku = {uwu : w ∈ Wi} for k ∈ {1, 2}, one has

dAni (c)(uW2u) = lim sup
n→∞

|Ani(c)[−n,n]|uW2u

2n+ 1
≤ 2|u|

2|u|+ l

since a word of uW2u can appear at most 2|u| times for each pattern of length 2|u|+l
ofAni(c). Moreover dAni (c)(uW1u)+dAni (c)(uW2u) ≥ dAni (c)(u) so dAni (c)(uW1u) ≥ ε.

Since W1 is finite, there exists a word w ∈ W1 such that dAni (c)(uwu) ≥ ε for an
infinity of i ∈ N. Thus uwu ∈ Lµ(A).

Example 2.11. We consider here the “max” automaton AM . The alphabet contains
only two states 0 and 1. The radius is 1. When the rule applies to three 0 (no 1),
it produces a 0. In any other case, it produces a 1.

The probability to have a 0 at time t is the probability to have 02t+1 on the initial
configuration. Which tends to 0 when t → ∞ for the uniform Bernoulli measure.
So, 0 does not appear in the µ-limit set. And finally Λµ(AM) = {∞1∞}.

And this example gives a difference between subshifts that can be realised as
limit set (Λ(A) =

⋂
i∈NAi(QZ)) and subshifts that can be realised as µ-limit set.

80 L. BOYER, M. DELACOURT, AND M. SABLIK

Effectively, Λ(AM) = (∞10∗1∞)
⋃

(∞0∞)
⋃

(∞01∞)
⋃

(∞10∞), but if we apply propo-
sition 2.10 with the word 01, we conclude that Λ(AM) cannot be a µ limit set.

3. Counters
In this section and the following one, we describe an automaton AS, which, on

normal configurations, produces finite segments of size growing with time. In these
segments, we will make computations described in section 5.

Before starting the computation, the automaton AS has a transitory regime
which erases the random configuration and generate segments between # where
the computation is done. To do that, we have a special state ∗, that can only
appear in the initial configuration, and which generates two counters. Between two
counters, the states are initialized and when two counters intersect, they compare
their respective age. If they do not have the same age, the younger deletes the older
one; if they have the same age, they disappear and we put the state # in order
to start the computation. The notion of counters was introduced in [DPST10] to
produce equicontinuous points according to arbitrary curves.

We recall some ideas which allow to construct such automaton:
• no transition rule produces the state ∗;
• ∗ produces two couples of signals, one toward the left and another one toward
the right;
• a couple of signal (called counter) is formed by an inner signal and an outer
signal, which is faster. Their collisions are handled in the following way:
– nothing other than an outer signal can go through another outer signal;
– when two outer signals collide they move through each other and com-

parison signals are generated;
– on each side, a signal moves at maximal speed towards the inner border

of the counter, bounces on it and goes back to the point of collision;
– the first signal to come back is the one from the youngest counter and

it then moves back to the outer side of the oldest counter and deletes it;
– the comparison signal from the older counter that arrives afterwards is

deleted and will not delete the younger counter’s outer border;
• between a left counter and a right counter, the configuration is initialized;
• if two counters that have the same age meet, they disappear and produce
the state #S which start the computation described in section 5
• the state #S becomes # which delimitates segments, this state can disappear
if two adjacent segments decide to merge as described in section 4, or if a
counter (necessarily younger) encounters it.

The initialization of a configuration is illustrated in figure 1. The gray areas
of computation begin on the left of a # produced by the meeting of two counters
generated by a ∗.
Lemma 3.1. There exists a constant Kc such that if two # are distant of k, they
appeared before time k ×Kc.

Proof. Consider two states # in the space time diagram separated by k cells. If
is not in the initial configuration, the only way to appear is to result from the
collision of two counters coming from the left and from the right. Thus, in the initial

CONSTRUCTION OF µ-LIMIT SETS 81

∗∗∗∗∗∗
#

#

#
#

#

#

Figure 1: When two counters launched by a ∗ meet, a # is produced and a com-
putation is launched on the right. The computation area extends until it
meets the inner signal of a counter or another #.

configuration, it is necessary to have the state ∗ between the two # to create the two
#. This operation take at most k ×Kc where Kc is the speed of an inner signal.

4. Merging segments
We saw in Section 3, how a special state ∗ on the initial configuration gave birth

to counters protecting everything inside them until they meet some other counter
born the same way. In this section, we will describe the evolution of the automaton
AS after this time of initialization. When two counters of the same age meet, they
disappear and a # is produced.

Definition 4.1 (Segment). A segment u is a subword of a configuration delimited
by two # and containing no # inside. So, u ∈ # (Q \ {#})∗#. The size of a
segment is the number of cells between both #.

There will be computations made inside segments, but we will describe it later.
Thus, in a segment, there is a layer left for computations that remain inside the both
#, and a “merging layer” that will contain signals necessary to the behavior with
other segments. Every signal presented in this section will travel on this merging
layer. The idea is the following: at some times, two neighbor segments will decide
to merge together to form one single segment whose size will be the sum of both
sizes plus one. And we will assure that each segment will eventually merge, so that
no segment of finite size can still be in the µ-limit set of AS.

When a # is produced in automaton AS, it sends two signals, on its right and on
its left to detect the first # on each side. If the signal catches the inside of a counter
still in activity before reaching a #, it waits until the counter produces a #. Then
both # have recognised each other and the segment between them is “conscious”. It
launches a computation inside it, and waits until it is achieved. We will assure later
that this computation ends. When this is done, it will alternatively send signals to
its left and to its right in order to propose successively to each neighbor to merge.

For this purpose, it computes and stores the length n of the segment as a binary
representation. Then the segment puts a L mark on its left #, and waits for n2

timesteps. If, during this time, the left side neighbor has not put a R mark on the
common #, our segment erases the L mark, a signal is sent on the other side, and

82 L. BOYER, M. DELACOURT, AND M. SABLIK

#########

Figure 2: A # stays until two segments merge. Computation happens in gray areas,
and at its end a signal (...) is sent and stays on the left of the segment,
then goes to the right, stays and comes back. This cycle continues until
a neighbor’s signal is on the same # at the same time. Then the # is
deleted and another computation is started on the left.

it puts a R mark on its right #. It waits once again n2 timesteps before erasing the
R, sending a signal to its left, and starting over. The whole cycle takes 2(n2 + n)
timesteps as we consider a signal at speed 1 crossing a segment of size n. We request
the signal to stay n2 timesteps because as (n+1)2 > n2 +2n, if two segments do not
have the same size, their signals eventually meet during a cycle of the smallest one.
So, the only case in which two neighbor segments that try to merge do not merge,
is when they have same size and are correctly synchronized. Computing and storing
n, and waiting n2 can be done with a space log(n).

This process ends when at the same time, both a L and a R mark are written
on a #. When this happens, the two segments agree to merge together and they do
it: the # between them is erased, and the whole activity begins again, starting with
the computation inside the new segment.

The general behavior of the segments among themselves is illustrated in figure 2.
We prove the following claims for automaton AS.
Claim 4.2. For any two words u, v ∈ Q∗, with |u| 6= |v|, if the word w = #u#v#
appears at time t in a space-time diagram of AS, one of the 3 # of w has disappeared
at time t+ |Q||w| + 2(|w|2 + |w|).
Proof. If the word w exists at time t on a space time diagram, at time t + |Q||u|
(respectively t + |Q||v|) at most, the computation is achieved in u (resp. v). We
suppose here that no # in w has disappeared, which means, u and v do not merge

CONSTRUCTION OF µ-LIMIT SETS 83

with any other segment outside w. So at time t+ |Q||w| both segments try to merge
with another one. Assume |v| > |u| for example, the other case is totally symmetric.
Then, as |v|2 > |u|2 +2|u|, before the end of the cycle of v, they have put their mark
simultaneously on their common # for one timestep at least. And consequently,
they have merged and one # has disappeared at time t+ |Q||w| + 2(|w|2 + |w|).
Claim 4.3. If two segments of size less than k ∈ N merge together, they do it at
most |Q|2k + 2((2k)2 + 2k) timesteps after being formed.

Proof. If they don’t have the same size, lemma 4.2 let us conclude. If they have the
same size, their computations are achieved after |Q|2k. And as their merging cycle
takes the same time for both, if they do not merge during the first cycle, they will
never merge. So if they merge, they do it before |Q|2k + 2((2k)2 + 2k).

Claim 4.4. For any two words u, v ∈ Q∗, with |u| 6= |v|, the word w = #u#v#
does not appear in Λµ(AS).

Proof. We use the constant Kc from lemma 3.1. Denote
T = |w| ×Kc + |w|

(
|Q||w| + 2(|w|2 + |w|)

)
. We prove that for t > T , P t

AS(w) = ∅.
If the two # encircling w never disappear, the dynamic inside w is not affected
by the exterior. Through time, some other # possibly appeared and disappeared
between them. But after time at most |w|×Kc, they have all appeared. Since then,
they will only disappear. There are less than |w| − 1 excedentary # that have to
disappear. Considering lemma 4.3, one disappears at least every |Q||w|+2(|w|2+|w|)
timesteps. After that, the two segments of w are formed, and with lemma 4.2, one
of the # of w disappear before |Q||w|+ 2(|w|2 + |w|) new timesteps. Finally, at time
T , one of the # of w has disappeared and P t

AS(w) = ∅.
Proposition 4.5. There is no # in the µ-limit set of AS.
Proof. Assume that # ∈ Lµ(A), by Proposition 2.10, there exits u ∈ Q∗ such that
#u# ∈ Lµ(A), we can assume that u does not contain #. Let k = |u|, by Lemma 3.1,
the # encircling u appeared before time k×Kc. DenoteW = {#v# : v ∈ (Q\{#})k}
and Xn = {x ∈ QZ : Ak(x)[0,k+1] ∈ W for all k ∈ [k ×Kc, n]}. Since #u# ∈ Lµ(A),
there exists α > 0 such that µ(Xn) > α for an infinity of n ∈ N. Moreover, as
Xn+1 ⊂ Xn, we can conclude that µ(X∞) > α where X∞ = ∩n∈∞XN .

As µ is Bernoulli, we have µ(Y) > 0 where Y = [∗(Q r ∗)2k ∗ (Q r ∗)2k∗]0;
moreover there exist k1 ≥ 0 and k2 ≥ k1 + 4k + 1 such that µ(Z) > 0 where
Z = X∞ ∩ σ−k1(Y) ∩ σ−k2(X∞). For all n ≥ k × Kc one has F n(Z)[0,k+1] ⊂ W ,
F n(Z)[k2,k2+k+1] ⊂ W and F n(Z)[k1+k,k1+3k] ⊂ F n(Y)[k1+k,k1+3k] does not contain #.

We deduce that there exists a word w ∈ Q of length k2 − k − 1 such that
w[k1+k,k1+3k] does not contain # and #u#w#u# ∈ Lµ(A). However, in #u#w#u#
we can find two segments #u1#u2# which have different length. By Claim 4.4 we
obtain a contradiction. Thus, there is no # in the µ-limit set of AS.

Finally, we prove a lemma that will be useful later.

Claim 4.6. The density of cells outside segments generated by counters born in the
initial configuration tends to 0.

Proof. The proof is clear since such a cell needs predecessors without states ∗ on
each side in the initial configuration.

84 L. BOYER, M. DELACOURT, AND M. SABLIK

Lemma 4.7. Let u ∈ Q∗. If ∀k,∀l ≥ k, for any segment v ∈ Ql, dv(u) ≤ αk with
αk → 0 when k →∞, then u /∈ Lµ(AS).
Conversely, if ∀k,∀l ≥ k, for any segment v ∈ Ql, dv(u) ≥ αk with αk 9 0 when
k →∞, then u ∈ Lµ(AS).

Proof. Let’s consider a normal configuration c. For any k ∈ N, we denote

dtk =
∑

v∈#(QA)l#, l≤k
l × dAtS(c)(v)

the density of cells in segments of size less than k in the image at time t of c. Due
to proposition 4.5, dtk → 0 when t → ∞. And due to claim 4.6, the density at of
cells outside wellformed segments tends to 0 when t→∞.

Suppose ∀k,∀l ≥ k, ∀v ∈ Ql segment, dv(u) ≤ αk and αk → 0. Any occurence
of u is either in a segment of size less than k, either in a segment of size greater than
k, or out of segments. Finally, at a given time t, dAtS(c)(u) ≤ dtk + αk + at.

As this equation holds for any k, finally, when t → ∞, dAtS(c)(u) has a limit
which is 0. This concludes the proof of the first part of the lemma with lemma 2.9.

In the other side, suppose ∀k,∀l ≥ k, ∀v ∈ Ql segment, dv(u) ≥ αk and αk 9 0.
Therefore, dAtS(c)(u) ≥ (1 − dtk − at)αk which does not tend to 0 when t → ∞ and
k →∞. Thus, u ∈ Lµ(AS).

5. Infinite Unions
In this section we will see how to create a CA whose µ-limit set is the closure

of the infinite union of a recursively enumerable family of particular subshifts.

Definition 5.1 (Generable Subshift). We say that a Turing machineM generates a
subshift Σ ⊆ QZ if M computes a generic configuration of Σ in the following sense:

• the tape alphabet of M contains Q;
• on an empty tape, M writes the right half of a configuration c ∈ Σ such
that lim supn→∞

|c[0,n]|u
n+1

> 0 if and only if u ∈ L(Σ); c is called a generic
configuration;
• after a symbol of Q has been written on the tape, it is never changed.

Theorem 5.2. Given a recursively enumerable family (Σi)i∈N of generable subshifts,
that is to say that there exists a Turing machine that enumerates a set of machines
(Mi)i ∈ N such that Mi generates the subshift Σi, there exists a cellular automaton
A whose µ-limit set is exactly the subshift

⋃
i∈N Σi.

Proof. Let us consider a recursively enumerable family (Σi)i∈N of generable subshifts,
let us denote by M the Turing machine that enumerates the machines (Mi)i∈N such
that Mi generates the subshift Σi.

We now describe the behavior of such a cellular automaton A. A will work as
the automaton AS described in Section 4: starting from a normal configuration, it
will generate “counter signals” that will produce finite segments on the configuration
(separated by a # symbol). We now describe the computation performed by each
finite segment during the evolution of the cellular automaton.

The first thing a segment does is compute its length n and store it as a binary
number. By incrementing a binary counter moving across the segment, this is easily

CONSTRUCTION OF µ-LIMIT SETS 85

done in space log(n). Once this is done, the segment can simulate Turing machines
on its first log(n) cells (it is important to limit the computational space so that the
computation states become negligible and disappear from the µ-limit set).

On the initial log(n) cells of the segment the machineM is simulated to produce
the descriptions of the first k machines (Mi)i<k, with k as big as possible for M
computing on a tape of length log(n). And we also request that k ≤ log(log(n)). k
may be 0 for short segments, but we know that as the segments grow larger, k will
grow too.

The space of size log(n) is further divided into k fragments of size log(n)/k. On
the i-th fragment, the corresponding machine Mi is simulated to produce the word
wi beeing the begining of the generic configuration corresponding to the subshift Σi.
The word wi might be much smaller than log(n)/k depending on the space needed
by the machine Mi to compute, but again we know that as segments grow larger,
larger words will be computed.

After the k different wi have been computed, the initial segment of length n is
split into

√
n fragments of length

√
n. Each of these fragments is filled with copies

of one of the wi in the following manner: one out of two is filled with w1, one out of
four (i.e. one out of two among the remaining fragments) is filled with w2, one out
of eight is filled with w3 and so on. The remaining segments (if k is very small, we
might run out of wi before filling all the fragments) are filled with wk. Fragments
are separated by a symbol $1 /∈ Q and the copies of words wi inside a given fragment
are separated by a symbol $2 /∈ Q.

Remark 5.3. The previous construction can be done using only log(n) cells of
computation at each step (cells that are not active and that only contain a symbol
from Q∪{$1, $2} are not counted). To fill the fragments of size

√
n we only need to

compute the binary expression of
√
n and then advance through the segment while

filling the fragment with the appropriate wi while decreasing a counter to measure√
n cells. The important data (the words wi and different counters) are moved

through the segment so that they are always present near the location to be filled.
Thus the head of the Turing machine M carries only log(n) cells used to store the
wi and to its computation. No mark of the computation remains in the other cells,
even those already visited and rewritten.

When all the fragments of the segment have been filled with the wi, the segment
can erase all the remaining computation data and start the process of merging with
its neighbors as described in Section 4.

When two segments merge, the whole computation is restarted but this time
with a larger space. The segments are not erased immediately after a merge, but
rather the new data overwrites the previous as the

√
n fragments are filled.

We will prove that Lµ(A) =
⋃
i∈N L(Σi).

Claim 5.4. The states used for computation, signals inside segments, writing frag-
ments, $1 or $2 do not appear in Λµ(A).

Proof. Here we use the lemma 4.7 for each of these states.
We use the log(k) initial cells of a segment of size k to do the computation, so

the density of these cells is log(k)/k, and the property is proved. The head of the
Turing machine M carries at most log(k) cells for its computation or writing, thus
the same argument works. The signals for the merging process are in a finite number

86 L. BOYER, M. DELACOURT, AND M. SABLIK

in a segment, therefore their density in a segment tends to 0 too. The density of $1

is
√
k/k, and the lemma applies once again.
For the density of $2, let λ > 0, ∃k0 > 0 such that the word wi produced in

a segment of size k > k0 is such that |wi| > λ for any i ≤ λ. So, for k > k0, the
density of $2 in a segment of size k is less than 1/λ in fragments of Si, i ≤ λ and
less than 1 in the other fragments that have themselves a density lower than 1/2λ.
And thus, the density of $2 is lower than 1

λ
+ 1

2λ
in segments of size k > k0. Finally

the density of $2 tends to 0 when k →∞. And the claim is proved.

Claim 5.5. For any subshift Σi, i ∈ N, any word u ∈ L(Σi) and any family of
segments (vk)k of size |vk| = k, dvk(u) does not tend to 0 when k →∞.

Proof. As u ∈ L(Σi), its density α(u) in the generic configuration computed byMi is
positive. So, there exists li ∈ N such that any subword of this configuration contains
u with density at least α(u)/2. Let k0 such that in any segment of size k > k0, the
word wi computed has length |wi| > li.

For any segment vk of size k > k0, there are log(k) cells occupied for com-
putation, less than

√
(k) cells containing a $1 and 1

2i+1 among the remaining cells
attributed to the copies of wi. Among these copies, a proportion li−1

li
of the cells

contain $2. log(k) additional cells can be dedicated to the head of the Turing ma-
chine M writing in the segment and a finite number K of cells can contain signals
for the merging process. Finally,

dvk(u) ≥
((

k − log(k)−
√

(k)

2i+1

)
li − 1

li
− log(k)−K

)
1

k
.

Which does not tend to 0 when k →∞.

Claim 5.6. For any subshift Σi, i ∈ N and any word u ∈ L(Σi), u ∈ Lµ(A).

Proof. We clearly get the result by combining claim 5.5 and lemma 4.7.

Finally, the theorem is proven:
• the proposition 4.5 and the claim 5.4 assure that every state used for com-
putation does not appear in Λµ(A), which means Lµ(A) ⊆ ⋃i∈N L(Σi),
• the claim 5.6 assures that

⋃
i∈N L(Σi) ⊆ Lµ(A).

The next proposition gives some examples of generable subshifts.

Proposition 5.7. The following subshifts are generable:
• transitive sofic subshifts,
• substitutive subshift associated to a primitive substitution.

Proof. As a transitive sofic subshift Σ is given by the strongly connected automaton
recognizing its language. For example, we can write successively every cycle of size
k for k from 1 to ∞. In this case we obtain a configuration where the density of all
the words of the language of Σ is positive.

For a primitive substitution s, it is easy to generate the fix point configuration
denoted c[0;∞] whose all prefixes are given by sk(a) for all k ∈ N where a ∈ Q. It
is well know that all words of the substitutive subshift associated appears with a
positive density in c[0;∞] [Fog05].

CONSTRUCTION OF µ-LIMIT SETS 87

6. Conclusion and perspectives
In this paper, we prove that a large class of subshifts can be realized as µ-limit

sets of cellular automata. In particular, it is possible to obtain all transitive sofic
subshifts, this is a profound difference with the topological case since the even shift
cannot be realized as the limit set of one cellular automaton. This construction
allows to control the iterations of a random configuration in view to obtain an auto-
organized behavior. The construction can be adapted at least in two ways:

• to obtain the same result for a large class of measure (σ-ergodic measure of
full support) modulo some technical changes
• to obtain a subshift without any word of low complexity (as suggested by V.
Poupet).

Of course the main open question is in the reciprocal of the theorem, that is to
say to characterize subshifts that can possibly be realized as µ-limit sets.

Acknowledgments
We are deeply grateful to Victor Poupet and Guillaume Theyssier for their ideas,

and constant support to the writing of this article.

References
[BPT06] Laurent Boyer, Victor Poupet, and Guillaume Theyssier. On the Complexity of Limit

Sets of Cellular Automata Associated with Probability Measures. MFCS 2006, LNCS
4162:190–201, 2006.

[DPST10] Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume Theyssier. Directional
Dynamics along Arbitrary Curves in Cellular Automata. Theoretical Computer Science,
A paraître, 2010.

[Fog05] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics. V. Berthé,
S. Ferenczi, C. Mauduit, A. Siegel (Eds), 2005.

[FK07] Enrico Formenti and Petr K urka. A Search Algorithm for the Maximal Attractor of a
Cellular Automaton. STACS, 2007, pages 356–366, 2007.

[Hur87] Lyman P. Hurd. Formal Language Characterizations of Cellular Automata Limit Sets.
Complex Systems, 1:69–80, 1987.

[Hur90a] Mike Hurley. Attractors in cellular automata. Ergodic Theory Dynam. Systems,
10(1):131–140, 1990.

[Hur90b] Mike Hurley. Ergodic aspects of cellular automata. Ergodic Theory Dynam. Systems,
10(4):671–685, 1990.

[Kar92] Jarkko Kari. The Nilpotency Problem of One-Dimensional Cellular Automata. SIAM
J. Comput., 21(3):571–586, 1992.

[Kar94] Jarkko Kari. Rice’s Theorem for the Limit Sets of Cellular Automata. Theor. Comput.
Sci., 127(2):229–254, 1994.

[KM00] Petr K urka and Alejandro Maass. Limit sets of cellular automata associated to proba-
bility measures. Journal of Statistical Physics, 100(5):1031–1047, 2000.

[K ur03] Petr K urka. Topological and symbolic dynamics. Société Mathématique de France, Paris,
2003.

[Maa95] Alejandro Maass. On the sofic limit sets of cellular automata. Ergodic Theory Dynam.
Systems, 15:663–684, 1995.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 88-99

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA

SILVIO CAPOBIANCO AND TARMO UUSTALU

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618
Tallinn, Estonia
E-mail address: {silvio,tarmo}@cs.ioc.ee

Abstract. In programming language semantics, it has proved to be fruitful to
analyze context-dependent notions of computation, e.g., dataflow computation and
attribute grammars, using comonads. We explore the viability and value of similar
modeling of cellular automata. We identify local behaviors of cellular automata
with coKleisli maps of the exponent comonad on the category of uniform spaces
and uniformly continuous functions and exploit this equivalence to conclude some
standard results about cellular automata as instances of basic category-theoretic
generalities. In particular, we recover Ceccherini-Silberstein and Coornaert’s ver-
sion of the Curtis-Hedlund theorem.

1. Introduction

Since the seminal work of Moggi [13], it has become standard in programming
language semantics to analyze functions producing effects such as exceptions, input,
output, interactive input-output, nondeterminism, probabilistic choice, state, con-
tinuations using monads. Specifically, effectful functions are identified with Kleisli
maps of a suitable monad on the category of pure functions. Wadler [18] put this
view to further use in programming methodology by extracting from it a very useful
programming idiom for purely functional languages like Haskell.

The dual view of context-dependent functions as coKleisli maps of a comonad is
equally useful, but less well known. Brookes and Geva [2] explained the “intensional”
aspect of denotational semantics in terms of the ω-chain comonad on the category
of ω-cpos. More recently, Uustalu and Vene [15, 16, 17] employed comonads to
analyze dataflow computation and attribute grammars and Hasuo et al. [9] treated
tree transducers.

Characteristic of many context-dependent notions of computation is shape-
preserving transformation of some datastructure based on a value update rule which
is local in nature and applied uniformly to every node. This is the case with dataflow
computation where such a transformation is applied to a list or to a stream with a
distinguished position and with attribute grammars where computation happens on
a tree or a tree with a distinguished position (a “zipper”). Cellular automata are

This research was supported by the European Regional Development Fund (ERDF) through
the Estonian Center of Excellence in Computer Science (EXCS) and by the Estonian Science
Foundation under grant no. 6940.

c

88

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 89

similar, the datastructure being the integer line or plane or, more generally, a group.
It should therefore be worthwhile to test the slogan that context-dependent compu-
tation is comonadic also on cellular automata. To a degree, this has already been
done, as Piponi [14] programmed cellular automata in Haskell using the comonadic
interface. However, he did not use his modeling of cellular automata to prove prop-
erties about them and also dropped the classical requirement that cellular automata
rely on a finite neighborhood only.

In this paper, we study the comonadic aspect of cellular automata deeper. We
identify cellular automata (more exactly their local behaviors) with coKleisli maps
of the exponent monad on Unif , the category of uniform spaces and uniformly
continuous functions, and explore whether this view can be useful. We see that it
is: we can conclude some standard results about cellular automata as instances of
category-theoretic generalities. In particular, we recover the Curtis-Hedlund theo-
rem [10]—a characterization of global behaviors of cellular automata—in the version
of Ceccherini-Silberstein and Coornaert [4] (this applies to general discrete alpha-
bets rather than finite alphabets only). This theorem turns out to be an instance of
the basic category-theoretic fact that the coKleisli category of a comonad is isomor-
phic to the full subcategory of its co-Eilenberg-Moore category given by the cofree
coalgebras. We also show that the comonadic view allows one to see 2-dimensional
cellular automata as 1-dimensional and treat point-dependent cellular automata.

The paper is organized as follows. Section 2 is a quick introduction to comonads
while Section 3 reviews some preliminaries about topological and uniform spaces. In
Section 4, we show that cellular automata local behaviors are the same as coKleisli
maps of a certain comonad. In Section 5, we recover the Curtis-Hedlund theorem
(in the version of Ceccherini-Silberstein and Coornaert). In Section 6, we reprove
the reversibility principle. In Sections 7, 8, we discuss some further applications of
the comonadic view: 2-dimensional cellular automata as 1-dimensional and point-
dependent cellular automata.

The paper assumes knowledge of basic category theory (categories, functors,
natural transformations, Cartesian closed categories), but is self-contained in re-
gards to comonads. For background material on category theory and (co)monads in
particular, we refer the reader to Barr and Wells [1, Ch. 1, 3]. We also assume the
basics of ca as presented by Ceccherini-Silberstein and Coornaert [5, Ch. 1].

2. Comonads

Given two categories C, D and a functor L : D → C, a right adjoint to L is given
by a functor R : C → D and two natural transformations ε : LR→ IdC (the counit)
and η : IdD → RL (the unit) such that the diagrams

L
Lη //

FF
FF

FF
FF

F

FF
FF

FF
FF

F LRL

εL
��
L

R

ηR
�� GG

GG
GG

GG
G

GG
GG

GG
GG

G

RLR
Rε

// R

commute. Equivalently, a right adjoint may be given by an object mapping R :
|C| → |D|, for any object A ∈ |C|, a map εA : LRA → A, and, for any objects
A ∈ |D|, B ∈ |C| and map k : LA → B, a map k‡ : A → RB (the right transpose)
such that

90 S. CAPOBIANCO AND T. UUSTALU

• for any objects A ∈ |D|, B ∈ |C|, and map k : LA→ B, εB ◦ Lk‡ = k,
• for any object A ∈ |C|, (εA)‡ = idRA,
• for any objects A,B ∈ |D|, C ∈ |C| and maps f : A → B, k : LB → C,

(k ◦ Lf)‡ = k‡ ◦ f .

The morphism mapping part of R and unit η define the right transpose of k : LA→
B by k‡ =df Rk ◦ ηA. The right transpose (−)‡ determines the morphism mapping
part of R and unit η by Rf =df (f ◦ εA)‡, for f : A→ B, and ηA =df (idLA)‡.

A comonad on a category C is given by a functor D : C → C and natural
transformations ε : D → IdC (the counit) and δ : D → DD (the comultiplication)
making the diagrams

D
δ //

δ
�� HHHHHHHHH

HHHHHHHHH DD

εD
��

DD
Dε // D

D
δ //

δ
��

DD

δD
��

DD
Dδ // DDD

commute. Equivalently, a comonad can be given by an object mappingD : |C| → |C|,
for any object A ∈ |C|, a map εA : DA → A, and, for any objects A,B ∈ |C| and
map k : DA→ B, a map k† : DA→ DB (the coKleisli extension) such that

• for any objects A,B ∈ |C| and map k : DA→ B, εB ◦ k† = k,
• for any object A, (εA)† = idDA,
• for any objects A,B,C ∈ |C| and maps k : DA→ B, ` : DB → C, (`◦k†)† =
`† ◦ k†.

The morphism mapping part of D and comultiplication δ define the coKleisli ex-
tension (−)† by k† =df Dk ◦ δA. Conversely, the (−)† determines the morphism
mapping part of D and comultiplication δ by Df =df (f ◦ εA)†, δA =df (idDA)†.

A functor L : C → D with a right adjoint (R, ε, η), defines a comonad on C with
counit ε by D =df LR, δ =df LηR, alternatively by DA =df L(RA), k† =df Lk

‡.
In the converse direction, a comonad (D, ε, δ) on C induces a whole category of

adjunctions (D, L,R, η) that have ε as the counit and satisfy D = LR, δ = LηR,
called splittings of the comonad. This category has initial and final objects, which
are known as the coKleisli and coEilenberg-Moore splittings of the comonad.

The coKleisli category coKl(D) has as objects those of C and as maps from
A to B those from DA to B of C. The identity jdA on object A is defined by
jdA =df εA. The composition ` • k of maps k : DA → B and ` : DB → C is
` • k =df ` ◦Dk ◦ δA = ` ◦ k†. The functor L : coKl(D)→ C in the coKleisli splitting
is defined by LA =df DA, Lk =df k

†. The right adjoint, unit and right transpose
are defined by RA =df A, Rf =df f ◦ εA, ηA =df idDA, k‡ =df k.

The coEilenberg-Moore category coEM(D) has as objects coalgebras of D and
as maps coalgebra maps of D. A coalgebra of D is given by an object A ∈ |C| and
map u : A→ DA (the coalgebra structure) making the diagrams

A
u //

EE
EE

EE
EE

EE
EE

EE
EE

DA

εA
��
A

A
u //

u

��

DA

δA
��

DA
Du // D(DA)

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 91

commute. A coalgebra map between (A, u) and (B, v) is a map f : A → B making
the diagram

A
u //

f
��

DA

Df
��

B
v // DB

commute. The identity and composition are inherited from C. The functor L :
coEM(D) → C in the splitting of D through coEM(D) is the coalgebra-structure
forgetful functor: L(A, u) =df A, Lf =df f . The right adjoint R is defined by RA =df

(DA, δA), Rf =df Df . The unit and right transpose are defined by η(A,u) =df u and
k‡ =df Dk ◦ u (for k : L(A, u)→ B).

The functor R being the right adjoint of the forgetful functor implies that, for
any B, the coalgebra RB = (DB, δB) is the cofree coalgebra on B, i.e., for any
coalgebra (A, u), object B and map k : A→ B, there is a unique map f : A→ DB,
namely k‡, such that the diagrams

A
k

}}zz
zz

zz
zz

u //

f
��

DA

Df
��

B DB
εBoo δB // D(DB)

commute.
The unique splitting map between the coKleisli and coEilenberg-Moore splitting

is the functor E : coKl(D) → coEM(D) defined by EA =df (DA, δA), Ek =df

Dk◦δA = k†. This functor is a full embedding. The image of E is the full subcategory
of coEM(D) given by the cofree coalgebras that is therefore isomorphic to coKl(D).

A simple and instructive example of a comonad and its coKleisli and coEilenberg-
Moore splittings is given by the reader (or product) comonad. It is defined on any
category C with finite products, but let us choose C to be Set (or Top or Unif),
so we can write pointwise definitions for intuitiveness. Given some fixed object
C ∈ |C|, it is defined by DA =df A × C, Df(x, c) =df (f(x), c), εA(x, c) =df x,
δA(x, c) =df ((x, c), c), k†(x, c) =df (k(x, c), c).

The coKleisli category has as objects those of C and as maps from A to B those
from A × C to B. The identities and composition are defined by jd(x, c) =df x,
(` • k)(x, c) =df `(k(x, c), c).

A coalgebra of D is given by an object A and a map u : A→ A× C satisfying
the laws of a coalgebra. Let us define (u0(x), u1(x)) =df u(x). The laws impose that
u0(x) = x and ((u0(x), u1(x)), u1(x)) = (u(u0(x)), u1(x)). The first law defines u0
and the second becomes a tautology as soon as this definition is substituted into
it. Hence, a coalgebra is effectively the same as an object A with an unconstrained
map u1 : A→ C.

A map between D-coalgebras (A, u), (B, v) is a map f : A → B such that
(f(u0(x)), u1(x)) = (v0(f(x)), v1(f(x))), which boils down to u1(x) = v1(f(x)).

The coEilenberg-Moore category has thus as objects pairs of an object A and
map u1 : A → C and a map between (A, u1), (B, v1) is map f : A → B such
that u1(x) = v1(f(x)). The cofree coalgebra on A is the pair (A × C, δ1A) where
δ1A(x, c) =df c.

The isomorphism between coKl(D) and the category of cofree D-coalgebras
establishes a 1-1 correspondence between maps k : A × C → B and maps f :
A× C → B × C such that δ1B(f(x, c)) = c.

92 S. CAPOBIANCO AND T. UUSTALU

3. Exponentials, topologies, and uniformities

Given an object C in a category C with finite products, it is said to be expo-
nentiable if the functor (−)×C has a right adjoint. This amounts to the existence,
for any object A, of an object AC (the exponential) and map evA : AC × A → C
(the evaluation) as well as, for any objects A, B and map k : A × C → B, a map
cur(k) : A→ BC (the currying of k) satisfying appropriate conditions. If every ob-
ject of C is exponentiable, it is called Cartesian closed. Intuitively, exponentials are
internalized homsets. In Set, every object C is exponentiable and the exponential
AC is the set of all functions from C to A.

Things are somewhat more complicated in the category Top of topological
spaces, as the exponential AC is to be the set of continuous functions from C to A,
but it must also be given a topology. Moreover, the evaluation evA : AC × A → C
must be continuous and the currying cur(k) : A → BC of a continuous function
must be continuous.

Not every topological space is exponentiable. Hausdorff spaces are exponentiable
if and only if they are locally compact: in this case, the exponential topology on the
space of continuous functions from C to A is the compact-open topology generated
by the sets {f : C → A | f(K) ⊆ U} with K compact in C and U open in
A [7, 8]. In particular, discrete spaces are exponentiable (which also follows from
the discrete topology making every function from it continuous) and their compact-
open topology is in fact the product topology.

That not all objects can act as exponents is also true in the category Unif
of uniform spaces whose constituents we now define. A uniform space is a set A
endowed with a uniformity, i.e., a collection U of binary relations on A (called
entourages) satisfying the following properties:

(1) ∆ ⊆ U for every U ∈ U , where ∆ = {(x, x) | x ∈ A} is the diagonal.
(2) If U ⊆ V and U ∈ U then V ∈ U .
(3) If U, V ∈ U then U ∩ V ∈ U .
(4) If U ∈ U then U−1 ∈ U .
(5) If U ∈ U then V 2 = {(x, y) | ∃z | (x, z), (z, y) ∈ V } ⊆ U for some V ∈ U .

The simplest non-trivial uniformity on A is the discrete uniformity, made of all the
supersets of the diagonal. A uniformity induces a topology as follows: Ω ⊆ A is open
if and only if, for every x ∈ Ω, there exists U ∈ U such that {y ∈ A | (x, y) ∈ U} ⊆ Ω.
Such topology is Hausdorff if and only if

⋂
U∈U U = ∆. The discrete uniformity

induces the discrete topology, but is not the only one that does (cf. [11, I-5]), i.e.,
uniform spaces may be discrete without being uniformly discrete.

A map f : A→ B between uniform spaces is uniformly continuous (briefly, u.c.)
if, for every entourage V on B, there is an entourage U on A such that (f×f)(U) ⊆
V . Any u.c. function is continuous in the topology induced by the uniformities:
the converse is true if A is compact [11, II-24] but false in general even for metric
spaces. The product uniformity is the coarsest uniformity that makes the projections
uniformly continuous: the topology induced by the product uniformity is the product
topology. A product of discrete uniformities is called prodiscrete.

In Unif , uniformly discrete objects are exponentiable [11, III.19 and III.21].
Again, the reason is that every function from C is u.c. as soon as C is uniformly
discrete.

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 93

4. Cellular automata as coKleisli maps

Classically, a cellular automaton on a monoid (G, 1G, ·) (the universe)1 and set
A (the alphabet)2 is given by a finite subset N of G (the support neighborhood) and
function d : AN → A (the transition rule).

Any cellular automaton induces a local behavior k : AG → A via k(c) =df d(c|N).
One speaks of elements AN of finite subsets N ⊆ G as patterns and elements

of AG as configurations. Transition rules work on patterns, local behaviors on con-
figurations. Cellular automata that induce the same local behavior are considered
equivalent. In this paper, we will not distinguish between equivalent cellular au-
tomata, hence we can identify cellular automata with their local behaviors.

If the alphabet A is finite, a function k : AG → A is a local behavior (i.e., the
local behavior of some cellular automaton) if and only if it is continuous for the
discrete topology on A and the product topology on AG.

In the general case (where A may be infinite), the above equivalence does not
generally hold, but a refinement does. A function k : AG → A is then a local
behavior iff it is uniformly continuous for the discrete uniformity on A and product
uniformity on AG.3 The finite case becomes an instance: if A is finite, then AG is
compact and therefore any continuous function k : AG → A is uniformly continuous.

Based on these observations, we henceforth take it as a definition that a local
behavior on a set (the alphabet) A is a uniformly continuous function k : AG → A
wrt. the prodiscrete uniformity on AG and forget about the definition of cellular
automata in terms of a support neighborhood and a transition rule.

Any local behavior k induces a global behavior k† : AG → AG, a map between
configurations, via k†(c)(x) =df k(c B x) where B : AG × G → AG (the translation
of configurations) is defined by (c B x)(y) =df c(x · y) The translation is a uni-
formly continuous function. It follows that the global behavior k† is also uniformly
continuous.

Local behaviors on a fixed universe G and fixed alphabet A form a monoid with
unit jd given by jd(c) =df c(1G) and multiplication • given by `•k =df `◦k†. Indeed,
it is easy to see that jd is uniformly continuous and • preserves uniform continuity
(because (−)† does) and the monoid laws turn out to hold too.

We now make two small generalizations and make a richer category out of local
behaviors: after all, a monoid is a category with one object. First, we do not insist
that the alphabet be a discrete uniform space, it may be any uniform space. And
second, we give up the idea of a fixed alphabet: we let the local behavior change the
alphabet.

For a fixed monoid G (the universe), we redefine a local behavior between two
general uniform spaces (the source and target alphabets) A and B to be a uniformly
continuous function k : AG → B where AG is given the product uniformity.

Local behaviors now make a category that has as objects alphabets and as
maps local behaviors between them. The identity on A is jdA : AG → A given by
jdA(c) =df c(1G) and the composition ` • k : AG → C of two maps k : AG → B

1Instead of the monoid, one usually takes a group in the cellular automata literature. But we
do not need inverses in this paper.

2The alphabet is often required to be finite. We make this assumption only where we need it.
3(Cf. [5, Th. 1.9.1]) Every entourage of the prodiscrete uniformity contains an entourage of the

form VN = {(c, e) | c|N = e|N} with N ⊆ G finite. If k : AG → A is u.c. with A uniformly discrete,
then (k × k)(VN) ⊆ ∆ for some finite N ⊆ G: thus, k(c) only depends on c|N .

94 S. CAPOBIANCO AND T. UUSTALU

and ` : BG → C given by ` • k =df ` ◦ k† where k† : AG → BG is defined by
k†(c)(x) =df k(cBA x) from BA : AG ×G→ AG defined by (cBA x)(y) =df c(x · y).
Notice that these definitions coincide exactly with those we made for the monoid of
local behaviors above, except that local behaviors can now mediate between different
alphabets that need not be uniformly discrete. The function jdA is still uniformly
continuous for any A and the operation • preserves uniform continuity.

While the generalized definition of local behaviors is more liberal than the clas-
sical one, it is conservative over it in the following sense: The local behaviors from
any uniformly discrete space A back to itself are exactly the classical local behaviors
on A seen as a set.

We will now recover our category of local behaviors from a categorical generality,
by showing that it is a straightforward instance of the coKleisli construction for a
comonad.

Any fixed monoid (G, 1G, ·) determines a comonad (D, ε, δ) on Unif (in fact,
on any category where the carrier G is exponentiable, so also, e.g., on Set and
Top) (the cellular automata or exponent comonad) as follows. The object mapping
part of D is defined by DA =df A

G, where AG is the G-exponential of A, i.e., the
space of uniformly continuous functions from G to A equipped with the prodiscrete
uniformity. The morphism mapping part is defined by Df =df f

G, i.e., Df(c) =df

f ◦ c. The components of the counit εA : AG → A and comultiplication δA : AG →
(AG)G are defined by εA(c) =df c(1G) and δA(c)(x) =df cBAx (so that δA(c)(x)(y) =
c(x · y)); these functions are uniformly continuous. The general definition of the
coKleisli extension (−)† via the morphism mapping part of D and comultiplication
δ tells us that k†(c)(x) = Dk(δA(c))(x) = k(δA(c)(x)) = k(cBA x).

The laws of a comonad are proved from the monoid laws for G by the following
calculations (we omit the proofs of the naturality conditions of ε and δ).

εDA(δA(c))(x) = δA(c)(1G)(x) = c(1G · x) = c(x)

c(x) = c(x · 1G) = δA(c)(x)(1G) = εA(δA(c)(x)) = DεA(δA(c))(x)

δDA(δA(c))(x)(y)(z) = δA(c)(x · y)(z) = c((x · y) · z)
= c(x · (y · z)) = δA(c)(x)(y · z) = δA(δA(c)(x))(y)(z) = DδA(δA(c))(x)(y)(z)

As we have seen, a comonad on a category always defines two canonical splittings
of its underlying functor into two adjoint functors. The coKleisli splitting of our
comonad D on Unif goes via the coKleisli category which has as objects those of
Unif and as maps from A to B those from DA to B in Unif . The identity on A
is jdA =df εA and the composition of k and ` is ` • k =df ` ◦ k†. Note that these
are exactly the data of the category of local behaviors that we introduced above.
But this time we do not have to prove that the unital and associativity laws of the
category hold. Our proof obligations went into establishing that the comonad data
are well defined and the comonad laws hold.

5. Retrieving the Curtis-Hedlund theorem

Let (D, ε, δ) be theG-exponential comonad on Unif for a given monoid (G, 1G, ·),
with G endowed with the discrete uniformity, as introduced in the previous section.

As we know from Section 2, coKl(D) is equivalent to the category of cofree D-
coalgebras under a comparison functor E that sends a coKleisli map (local behavior)
k : DA → B to the cofree coalgebra map k† : (DA, δA) → (DB, δB), which, as a

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 95

map of Unif , we know to be the corresponding global behavior. Hence, a map
f : DA→ DB would be a global behavior if and only if f is a cofree coalgebra map.

Now, given an arbitrary comonad, it is usually of interest to study its general
coalgebras and not only the cofree ones. We too follow this thumb rule.

By definition, objects in coEM(D) are pairs of objects A and maps u : A→ DA
in Unif satisfying

A
u //

IIIIIII

IIIIIII AG

εA��
A

A
u //

u
��

AG

δA��

AG
uG // (AG)G

In our case, the first equation simply means u(a)(1G) = a while the second one
simplifies to u(a)(x · y) = u(u(a)(x))(y). This writing, however, is cumbersome and
unexplicative.

To see more, we uncurry u : A → AG to ⊗ : A × G → A, so that a ⊗ x =
u(a)(x). Then the two equations become a⊗ 1G = a, and a⊗ (x · y) = (a⊗ x)⊗ y.
Diagrammatically, this is to require commutation of

A
ρA //

VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV A× 1
A×1G // A×G

⊗
��
A

(A×G)×G αA,G,G//

⊗×G
��

A× (G×G)
A×(·)

// A×G
⊗

��
A×G ⊗ // A

where ρ and α are the right unital and associative laws of the product monoidal
structure. But these are precisely the laws of a (right) action of G on A (where A
is a uniform space, so we expect an action to also be uniformly continuous).

Let us now consider coalgebra maps. A map f : (A, u) → (B, v) in coEM(D)
is a map in Unif that commutes with u and v or (which is equivalent) with their
uncurried forms⊗ and� as shown on the left and right diagrams below, respectively:

A
u //

f
��

AG

fG��
B

v // BG

A×G ⊗ //

f×G ��

A
f

��
B ×G � // B

Clearly, coalgebra maps are just action maps.
We are now ready to consider maps of cofree D-coalgebras. The uncurried

form of δA : AG → (AG)G is BA : AG × G → AG. By what we have shown,
a map f : AG → BG in Unif is a map between (AG, δA) and (BG, δB) if and
only if f(c BA x) = (f(c) BB x). We see that maps between the cofree coalgebras
(AG, δA) and (BG, δB) are precisely those maps f : AG → BG that commute with
the translation!

With our reasoning, we have reproved the version of Curtis-Hedlund theorem
given by Ceccherini-Silberstein and Coornaert ([4, Th. 1.1], [5, Th. 1.9.1]): global
behaviors between uniform spaces A and B are those uniformly continuous functions
between the product uniformities on AG and BG that commute with the transla-
tion. Keep in mind that we are allowing arbitrary uniform spaces as alphabets, and
speaking of global behaviors in the sense of Section 4. It is, however, immediate to
specialize to the statement of C.-S. and C. by requiring A and B to be uniformly
discrete. Then local behaviors are precisely the finitary functions from AG to B.

The original Curtis-Hedlund theorem ([10], [5, Th. 1.8.1]) corresponds to the
special case where A is finite and discrete. In this case, AG is compact and any
continuous function between AG and BG is then uniformly continuous. We conclude,

96 S. CAPOBIANCO AND T. UUSTALU

in this case, that global behaviors between A to B are those continuous functions
between the product topologies on AG and BG that commute with the translation.

We have seen that the cofree coalgebra (BG, δB : BG → (BG)G) on B is the
currying of the translation action (BG,BB : BG × G → BG). Because of the
cofreeness on B of this coalgebra, the action must also be the cofree.

In basic terms, this means that for any action (A,⊗ : A × G → A) and map
p : A→ B, there is a unique action morphism f to the translation action such that
εB ◦ f = p, i.e., a map f : A→ BG such that the following diagrams commute:

A×G ⊗ //

f×G ��

A
p

$$HHHHHHH
f��

BG ×G BB // BG
εB // B

This fact can of course be proved from first principles, but we learned it for free!

6. Retrieving the reversibility principle

We will now recover the reversibility principle. Let again (G, 1G, ·) be a monoid
and (D, ε, δ) be the G-exponential comonad on Unif as introduced in Section 4.

Suppose we have a cofree coalgebra map f : (DA, δA)→ (DB, δB) so that f has
an inverse f−1 as a map of Unif .

A very simple diagram chase (not specific to our particular comonad; we only
use that D is a functor!) shows that f−1 is also a cofree coalgebra map, i.e., an
inverse of f in coEM(D):

DA
δA //

f
��

D(DA)

Df��

D(DA)

DB

f−1 ::ttttttt
DB

δB // D(DB)
Df−1

77nnnnnnn

We have thus reproved the reversibility principle [5, Th. 1.10.1]: A global behav-
ior f : AG → BG (a uniformly continuous function commuting with the translation)
between uniform spaces A, B is reversible if f has a uniformly continuous inverse.

If both A and B are finite and discrete, an inverse f−1 of f is necessarily uni-
formly continuous, because, in this case, AG and BG are compact Hausdorff and
f−1 is continuous. So we obtain a special case [5, Th. 1.10.2]: A global behavior
f : AG → BG (a continuous function commuting with the translation) between
uniform spaces A, B is reversible if f has an inverse.

In general, an inverse of a uniformly continuous function is not necessarily uni-
formly continuous. For a counterexample, see [5, Example 1.10.3].

For reversibility, it is useful, if the monoid G is actually a group. In particular,
for reversibility of δA : DA→ D(DA), G must be a group.

7. Distributive laws and 2-dimensional cellular automata

We will now proceed to two variations on the theme of cellular automata as co-
Kleisli maps—2-dimensional (classical) cellular automata and point-dependent cellu-
lar automata. In both cases we first introduce some further comonad theory relevant
for our cause.

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 97

Sometimes, but not always, the composition D1D0 of two comonads D0 and D1

on the same category C is a comonad. It is the case, if there is a distributive law of
D1 over D0. A distributive law of a comonad (D1, ε1, δ1) over a comonad (D0, ε0, δ0)
is a natural transformation κ : D1D0 → D0D1 making the diagrams

D1D0 κ //

D1ε0 ##GGGGG D0D1

ε0D1{{wwwww

D1

D1D0 κ //

D1δ0 ��

D0D1

δ0D1
��

D1D0D0 κD0
// D0D1D0 D0κ // D0D0D1

D1D0 κ //

ε1D0 ##GGGGG D0D1

D0ε1{{wwwww

D0

D1D0 κ //

δ1D0
��

D0D1

D0δ1��
D1D1D0 D1κ // D1D0D1 κD1

// D0D1D1

commute. A distributive law induces a comonad (D, ε, δ) defined by D =df D
1D0,

ε =df ε
1ε0, δ =df D

1κD0 ◦ δ1δ0.
A distributive law also induces comonad liftings. For the lack of space, we

concentrate on the coKleisli side of the picture. Given a distributive law κ of D1 over
D0, the comonad D0 on C lifts to coKl(D1), i.e., induces a comonad D̄0 on coKl(D1).
This comonad is defined by: D̄0A =df D

0A, D̄0k =df D
0k ◦ κA : D1D0A → D0B

(for k : D1A→ B), εA =df ε
0
A ◦ ε1D0A, δA =df δ

0
A ◦ ε1D0A.

Via this lifting, the coKleisli category of the composite comonad D and the
other ingredients of the coKleisli splitting of D can be obtained by a double coKleisli
construction: We have coKl(D) = coKl(D̄0) (equal strictly, not just isomorphic).

A simple example of a distributive law is obtained by taking D1 to be any
comonad and D0 the product comonad defined by D0A =df A×C for a fixed object
C ∈ |C|. The distributive law κ of D1 over D0 is given by κA =df 〈D1π0, ε

1 ◦D1π1〉 :
D1(A×C)→ D1A×C. It follows that the functor D defined by DA =df D

1(A×C)
is a comonad.

Given now two monoids G0, G1, we can think of a map k : (AG0)G1 → B in
Unif as a “2-dimensional” (2D) cellular automaton on the universes G0, G1 between
alphabets A and B (relying on the isomorphism AG0×G1 ∼= (AG0)G1).

Such a cellular automaton is by definition the same thing as a “1-dimensional”
(1D) cellular automaton on the universe G1 between alphabets AG0 and B. Note
that we can only see 2D cellular automata as 1D in this way, if we allow source and
target alphabets of a cellular automaton to differ and if we do not require them to
be uniformly discrete (notice that AG0 carries the prodiscrete uniformity). But this
view of 2D cellular automata as 1D, although nice, suffers from a serious drawback.
Since the 1D views do not have the same source alphabets as the 2D originals, they
do not compose the same way.

Distributive laws come to help. Let D0A =df A
G0 and D1A =df A

G1 . There
is a distributive law κ : D1D0 → D0D1 defined by κA(c)(x1)(x0) = c(x0)(x1) :
(AG0)G1 → (AG1)G0 . Hence, the functor DA =df (AG0)G1 is a comonad, which is
hardly a surprise. But there is more: We know that coKl(D) = coKl(D̄0). Hence,
a good view of k : (AG0)G1 → B as a 1D cellular automaton is not as a Unif -
cellular automaton on the universe G1 between the alphabets AG0 and B, but on as
a coKl(D1)-cellular automaton on the universe G0 between the alphabets A and B.
Then 1D views compose exactly as their 2D originals. We see that it makes sense
to consider maps of categories other than Unif !

1D views of 2D cellular automata were of interest to Dennuzio et al. [6]

98 S. CAPOBIANCO AND T. UUSTALU

8. Comonad maps and point-dependent cellular automata

To make a category out of comonads over a fixed category C one needs a suitable
notion of comonad maps. A comonad map between two comonads (D, ε, δ) and
(D′, ε′, δ′) on C is a natural transformation τ : D → D′ making the diagrams

D ε
((QQQQQQ

τ

��
IdC

D′ ε′

66nnnnnn

D
δ //

τ

��

DD

ττ

��
D′

δ′ // D′D′

commute. Comonads and comonad maps on C form a category. The identity and
composition of comonad maps is inherited from the category of natural transforma-
tions between endofunctors on C.

A comonad map τ between (D, ε, δ) and (D′, ε′, δ′) relates the coKleisli and
coEilenberg-Moore categories between the two comonads. It defines a functor from
coKl(D′) to coKl(D) and a functor from coEM(D) to coEM(D′).

We now introduce point-dependent cellular automata (studied under the name
of non-uniform cellular automata by Cattaneo et al. [3]). For a set G, the local
behavior of a point-dependent cellular automaton between uniform spaces A, B is
a uniformly continuous function k : AG×G→ B. Note the added second argument
compared to the definition of a classical local behavior.

It turns out that local and global behaviors of point-dependent cellular automata
can be analyzed in the same way as those of classical cellular automata. In particular,
their local behaviors are the same thing as coKleisli maps of a suitable comonad
(D, ε, δ) on Unif and global behaviors are the corresponding cofree coalgebra maps!

Let us review the data of the comonad. The object mapping of D is defined by
DA =df A

G × G and the morphism mapping by Df =df f
G × G, i.e., Df(c, x) =df

(λy.f(c(y)), x). The components of the counit and comultiplication εA : AG×G→ A
and δA : AG × G → (AG × G)G × G are defined by εA(c, x) =df c(x), δA(c, x) =
(λy.(c, y), x). Accordingly, the coKleisli extension k† : AG ×G→ BG ×G of a map
k : AG × G → B is forced to satisfy k†(c, x) = Dk(δ(c, x)) = Dk(λy.(c, y), x) =
(λy.k(c, y), x).

When is a map f : AG×G→ BG×G a global behavior? It is a global behavior
iff it is a cofree coalgebra map. Not surprisingly at all, the conditions for f being
a cofree coalgebra map reduce to the condition that f(c, x) = (g(c), x) for some
g : AG → BG.

Assume G is endowed with a monoid structure (1G, ·). Let (D′, ε′, δ′) be the
comonad of classical cellular automata. The translation B is a comonad map from
D to D′. Accordingly, any classical local behavior is also a point-dependent local
behavior that simply makes no use the point information that is available.

9. Conclusions

It was not the purpose of this paper to prove deep or difficult theorems. Rather,
we set out to experiment with definitions. We deem that this experiment succeeded.
We were pleased to learn that, from the category-theoretic point-of-view, cellular
automata are a “natural” construction with “natural” properties. Crucially, clas-
sical cellular automata are coKleisli maps of the exponential comonad on Unif ,
and it is harmless to accept alphabets with nondiscrete uniformities and variation

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 99

of alphabets, once it has been decided that local behaviors are uniformly contin-
uous functions. But other base categories can be useful too, as the example of
2-dimensional cellular automata as 1-dimensional shows.

We hope to be able to extend this work to cover more results of cellular automata
theory, in particular results toward the Garden of Eden theorem.

Acknowledgments. We are grateful to Jarkko Kari and Pierre Guillon for comments.

References

[1] Barr, M. and Wells, C. (1983) Toposes, Triples and Theories. Grundlehren der math. Wis-
senschaften 278. Springer. // Revised and corrected electronic version (2005). Reprints in
Theory and Appl. of Categ. 12, 1–287.

[2] Brookes, S. and Geva, S. (1992) Computational comonads and intensional semantics. In Four-
man, M. P., Johnstone, P. T., and Pitts, A. M., eds., Applications of Categories in Computer
Science, London Math. Society Lect. Note Series 177, 1-44. Cambridge Univ. Press.

[3] Cattaneo, G., Dennunzio, A. Formenti, E., and Provillard, J. (2009) Non-uniform cellular
automata. In Dediu, A. H., Ionescu, A.-M., and Mart́ın-Vide, C., eds., Proc. of 3rd Int. Conf.
on Languages and Automata Theory and Applications, LATA 2009 (Tarragona, Apr. 2009),
Lect. Notes in Comput. Sci. 5457, 302–313. Springer.

[4] Ceccherini-Silberstein, T. and Coornaert, M. (2008) A generalization of the Curtis-Hedlund
theorem. Theor. Comput. Sci. 400(1–3), 225–229.

[5] Ceccherini-Silberstein, T. and Coornaert, M. (2010) Cellular Automata and Groups, Springer
Monographs in Mathematics. Springer.

[6] Dennunzio, A. and Formenti, E. Decidable properties of 2D cellular automata. (2008) In Ito,
M. and Toyama, M., eds., Proc. of 12th Int. Conf. on Developments in Language Theory, DLT
2008 (Kyoto, Sept. 2008), Lect. Notes in Comput. Sci. 5257, 264–275. Springer.

[7] Escardó, M. and Heckmann, R. (2001) Topologies on spaces of continuous functions. Topol.
Proc. 26(2), 545–564.

[8] Geroch, R. (1985) Mathematical Physics. University of Chicago Press.
[9] Hasuo, I., Jacobs, B., and Uustalu, T. (2007) Categorical views on computations on trees.

In Arge, L., Cachin, C., Jurdzinski, T., and Tarlecki, A., eds., Proc. of 34th Int. Coll. on
Automata, Languages and Programming, ICALP 2007 (Wroc law, July 2007), Lect. Notes in
Comput. Sci. 4596, 619–630. Springer.

[10] Hedlund, G. A. (1969) Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theory 3(4), 320–375.

[11] Isbell, J.R. (1964) Uniform Spaces. Am. Math. Soc.
[12] Mac Lane, S. (1997) Categories for the Working Mathematician. Graduate Texts in Mathe-

matics 5. 2nd edition. Springer.
[13] Moggi, E. (1991) Notions of computation and monads. Inform. and Comput. 93(1), 55-92.
[14] Piponi, D. “sigfpe” (2006) Evaluation of cellular automata is comonadic. Entry

on the author’s blog, A Neighborhood of Infinity. http://blog.sigfpe.com/2006/12/

evaluating-cellular-automata-is.html

[15] Uustalu, T. and Vene, V. The essence of dataflow programming. (2006) In Horváth, Z., ed.,
Revised Selected Lectures from 1st Central European Functional Programming School, CEFP
2005 (Budapest, July 2005), Lect. Notes in Comput. Sci. 4164, 135–167. Springer.

[16] Uustalu, T. and Vene, V. Comonadic evaluation of attribute grammars. (2006) In van Eekelen,
M., ed., Trends in Functional Programming 6, 145–162. Intellect.

[17] Uustalu, T. and Vene, V. (2008) Comonadic notions of computation. Electron. Notes in Theor.
Comput. Sci. 203(5), 263–284.

[18] Wadler, P. (1992) The essence of functional programming. In Conf. Record of 19th Ann. ACM
SIGPLAN-SIGACT on Principles of Programming Languages, POPL ’92, 1–14. ACM Press.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 100-110

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS

THOMAS FERNIQUE AND NICOLAS OLLINGER

Laboratoire d’Informatique Fondamentale de Marseille (LIF), Aix-Marseille Université,
CNRS, 39 rue Joliot-Curie, 13013 Marseille, France
E-mail address: {Thomas.Fernique,Nicolas.Ollinger}@lif.univ-mrs.fr

Abstract. A combinatorial substitution is a map over tilings which allows to
define sets of tilings with a strong hierarchical structure. In this paper, we show
that such sets of tilings are sofic, that is, can be enforced by finitely many local
constraints. This extends some similar previous results (Mozes’90, Goodman-
Strauss’98) in a much shorter presentation.

1. Introduction

Tiling some space with geometrical shapes, or tiles, consists into covering this
space with copies of the tiles. When a set of tilings can be characterized by adding
finitely many local constraints on tiles so that the set of tilings corresponds exactly
to the set of tilings satisfying the constraints, such a set of tilings is called sofic.
Soficity corresponds to the interesting idea that the validity of a tiling can be locally
proved by decorating tiles with constraints. In this paper, we contribute to a general
question: what sets of tilings are sofic?

Substitutions provide a simple way to express how a set of tilings can be ob-
tained by iteratively constructing bigger and bigger aggregates of tiles. The strong
hierarchical structure of substitutions tilings permits to enforce global properties,
for example aperiodicity. To prove that the set of tilings generated by a substitution
is sofic, one has to encode the global hierarchical structure into local constraints on
tiles. Such technique is at the root of classical papers on the undecidability of the
Domino Problem [2, 9]. In the case of tilings on the square grid, Mozes [6] proved
in a seminal paper that the set of tilings generated by rectangular non-deterministic
substitutions satisfying a particular property is sofic. Goodman-Strauss [5] proved
that such a construction method can be extended to a wide variety of geometrical
substitutions. In this paper, based on ideas developed in [7], we further extend the
construction to a broader class of substitutions by replacing the geometrical condi-
tions by combinatorial conditions while decreasing the length of the presentation.

Let us sketch some definitions to state our main theorem. A sofic tiling is a
valid tiling by a finite set of tiles with decorations. Combinatorial substitutions,
introduced by Priebe-Frank in [8], map a tiling by tiles onto a tiling by so-called
macro-tiles (finite tilings, here assumed to be connected), so that the macro-tiles of

Partially supported by the ANR projects EMC (ANR-09-BLAN-0164) and SubTile.

c

100

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS 101

the latter are arranged as the tiles of the former. The limit set of a substitution is
the set of complete tilings that admits preimages of any depth by the substitution. A
good substitution is a substitution that is both connecting (a combinatorial condition
ensuring that there is enough room for all information to flow) and consistent (a
geometrical condition ensuring that the substitution can be correctly iterated). The
main result obtained in this paper is:

Theorem 1.1. The limit set of a good combinatorial substitution is sofic.

The paper is organized as follows. Sections 2 and 3 formally define main no-
tions, in particular sofic tilings and good combinatorial substitutions. Section 4
then presents self-simulation, which plays a central role in the constructive proof of
Theorem 1.1, which is given in section 5. Last, section 6 concludes the paper by
discussing an important parameter of this proof.

A single example illustrates definitions and results throughout the whole paper:
the “Rauzy” example. It relies on the theory of generalized substitutions introduced
in [1], a self-contained presentation of which is beyond the scope of this paper. Let
us just mention that Rauzy tilings are digitizations of the planes of the Euclidean
space with a specific given irrational normal vector. More details, as well as the
results we here implicitly rely on, can be found in [3, 4]. We chose this example, not
the simplest one, because it is not covered by results in [6, 5].

2. Sofic tilings

Polytopes are assumed to be homeomorphic to closed balls of Rd and to have
finitely many faces, with the (d− 1)-dimensional faces being called facets.

A tile T is a polytope of the Euclidean space Rd. A tiling Q of a domain D ⊂ Rd

is a covering of D by interior-disjoint tiles, with the additional condition that two
tiles can intersect (if they do) only along entire faces. A tiling is said to be finite if
its domain is bounded.

Two tiles are said to be adjacent if they intersect along at least one facet, and a
tiling is said to be connected if any two of its tiles can be connected by a sequence
of adjacent tiles.

A facet of a tiling is said to be external if it is on the boundary of the domain,
internal otherwise. We denote by ∂Q the set of external facets of a tiling Q. If this
set is empty, then the tiling is said to be complete: its domain is the whole Rd.

A decorated tile T is a tile with a real map defined on its boundaries, called
decoration. Two adjacent decorated tiles are said to match if their decorations are
equal in any point of their intersecting facets. A decorated tiling Q is a tiling by
decorated tiles which pairwise match (when adjacent). Decorations are thus local
constraints on the way tiles can be arranged in a tiling.

A tileset τ is a set of decorated tiles. It is said to be finite if it contains only a
finite number of tiles up to direct isometries. A decorated tiling whose tiles belong
to a tileset τ is called a τ -tiling; the set of τ -tilings is denoted by Λτ .

One says that a tiling can be seen as a decorated tiling if both are equal up to
decorations. One denotes by π the map which removes the decorations. One easily
checks that any tiling can be seen as a τ -tiling if τ can be infinite. The interesting
case is the one of finite tilesets:

102 TH. FERNIQUE AND N. OLLINGER

Definition 2.1. A set of tilings is said to be sofic if it can be seen as the set of
τ -tilings of some finite tileset τ .

For example, one can wonder whether the Rauzy tilings are sofic (Fig. 1).

Figure 1: A Rauzy tiling (partial view). Are Rauzy tilings sofic?

3. Combinatorial substitutions

Definition 3.1. A combinatorial substitution is a finite set of rules (P,Q, γ), where
P is a tile, Q is a finite connected tiling, and γ : ∂P → ∂Q maps distinct facets on
disjoint sets of facets. The tiling Q is called a macro-tile, and if f is the k-th facet
of P , then γ(f) is called the k-th macro-facet of Q.

Fig. 2 illustrates this definition.

c

d
b

a

c

d
b

a

b

b

b

b

b

d

d

d
d

d

a

a

a

ab

c d

b b b

d d d

c

c

a

a

b

b

b

b

b

d

d

d
d

d

c c c
aa a

c c c

c

d
b

a

b

b

b

b

b

aa a

d

d

d
d

d

c

c

c

a

b

c
d

d

d

d
d

d

c

c

b

b

b

b

b

a

a

Figure 2: These five rules define the so-called Rauzy combinatorial substitution (a
facet f and the corresponding macro-facet γ(f) are similarly marked).

We call tiling by macro-tiles a tiling whose tiles can be partitioned into macro-
tiles, with each macro-facet belonging to the intersection of exactly two macro-tiles.
We can associate with each combinatorial substitution a binary relation over tilings:

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS 103

Definition 3.2. Let σ be a combinatorial substitution. A tiling T by tiles of σ
and a tiling T ′ by macro-tiles of σ are said to be σ-related if there is a one-to-one
correspondence between the tiles of T and the macro-tiles of T ′ which preserves
the combinatorial structure, that is, such that the a-th facet of a first tile of T
matches the b-th facet of a second tile of T if and only if the a-th macro-facet of
the first corresponding macro-tile of T ′ matches the b-th macro-facet of the second
corresponding macro-tile of T ′. One calls T a preimage of T ′ and T ′ an image of T .

For example, a Rauzy tiling can be uniquely seen as a tiling by Rauzy macro-
tiles (Fig. 3) and has a unique preimage, which turns out to be itself a Rauzy tiling
(both facts are non-trivial; they follow from results proven in [3]).

Figure 3: A Rauzy tiling can be uniquely seen as a tiling by Rauzy macro-tiles.

In particular, the relations associated with combinatorial substitutions yield a
strong hierarchical structure on so-called limit-sets:

Definition 3.3. The limit set of a combinatorial substitution σ, denoted by Λσ, is
the set of complete tilings which admit an infinite sequence of preimages.

For example, the limit set of the Rauzy combinatorial substitution is exactly the
set of Rauzy tilings (again, this non-trivial fact follows from results proven in [3]).

Let us now turn to the good combinatorial substitutions to which Theorem 1.1
applies. First, a good combinatorial substitution must be connecting :

Definition 3.4. A combinatorial substitution σ is connecting if, for each rule
(P,Q, γ), the dual graph1 of Q has a subgraph N , called its network, such that

(1) N is a star with one branch for each macro-facet, and the leaf of the k-th
branch is a tile with a facet, called k-th port, in the k-th macro-facet of Q;

(2) Each macro-facet has non-port facets, and removing the edges of N and its
central vertex yields a connected graph which connects2 all these facets;

(3) the center of N corresponds to a tile in the interior of Q, called central tile;

1The dual graph of a tiling is the graph whose vertices correspond to tiles of the tiling and
whose edges connect vertices corresponding to adjacent tiles.

2One says that a subgraph connects a set of facets if these facets all belong to tiles which
correspond to vertices of this subgraph.

104 TH. FERNIQUE AND N. OLLINGER

(4) whenever two macro-tiles match along a port, they also match along the
corresponding macro-facet.

Informally, the two first conditions ensure that the macro-facets are big enough
to transfer via the network all the informations (encoded by decorations) that we
need to enforce the hierarchical structure of the limit set. In particular, one easily
sees that connectivity could not be achieved for combinatorial substitutions on the
real line: Theorem 1.1 can apply only in dimension two or more. The third condition
ensures that, by iteratively considering macro-tiles of macro-tiles (that is, when going
higher and higher in the hierarchy of the limit set), we get tilings covering arbitrarily
big balls. The last condition associate a port with its macro-facet (it is equivalent
to the “sibling-edge-to-edge” condition of [5]).

Second, a good combinatorial substitution must be consistent :

Definition 3.5. A combinatorial substitution σ is said to be consistent if any tiling
by macro-tiles of σ admits a preimage under σ.

Intuitively, consistency ensures that, if a tiling meets all the combinatorial con-
ditions to have a preimage, then there is no geometrical obstruction to the existence
of such a preimage.

Open Problem 3.6. Characterize consistent combinatorial substitutions.

For example, the Rauzy combinatorial substitution is connecting (one easily
finds a suitable network for each rule, see Fig. 4 and 5) and consistent (this non-
trivial fact follows from results in [4], where explicit maps defined over tilings are
shown to be equivalent to such combinatorial substitutions). Theorem 1.1 thus
yields that its limit set, i.e., the set of Rauzy tilings, is sofic.

c

d
b

a

c

d
b

a

b

b

b

b

b

d

d

d
d

d

a

a

a

ab

c d

b b b

d d d

c

c

a

a

b

b

b

b

b

d

d

d
d

d

c c c
aa a

c c c

c

d
b

a

b

b

b

b

b

aa a

d

d

d
d

d

c

c

c

a

b

c
d

d

d

d
d

d

c

c

b

b

b

b

b

a

a

Figure 4: The Rauzy combinatorial substitution is connecting.

4. Self-simulation

Definition 4.1. Let σ be a combinatorial substitution with the rules {(Pi, Qi, γi)}i.
A tileset τ is said to σ-self-simulates if there is a set of τ -tilings, called τ -macro-tiles,
and a map φ from these τ -macro-tiles into τ such that

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS 105

Figure 5: A Rauzy macro-tile (top-left) and an image of it under the Rauzy combina-
torial substitution, that one could call Rauzy “macro-macro-tile” (center).

(1) for any τ -macro-tile Q, there is i such that π(Q) = Qi and π(φ(Q)) = Pi;
(2) any complete τ -tiling can be seen as a tiling by τ -macro-tiles;
(3) the a-th macro-facet of a τ -macro-tile Q can match the b-th macro-facet of

a τ -macro-tile Q′ if and only if the a-th facet of the τ -tile φ(Q) can match
the b-th facet of the τ -tile φ(Q′).

106 TH. FERNIQUE AND N. OLLINGER

Proposition 4.2. If a tileset σ-self-simulates for a consistent combinatorial substi-
tution σ, then its complete tilings are, up to decorations, in the limit set of σ.

Proof. Consider a complete τ -tiling P . Conditions (1)–(2) ensure that removing
the decorations of P yields a tiling by macro-tiles of σ, say P . The consistency
of σ ensures that P admits a preimage under σ, say R. Let us show that R can
be endowed by decorations to get a τ -tiling. Consider a tile T of R. This tile
corresponds (via the one-to-one correspondence in Def. 3.2) to a macro-tile Q of P ,
which is itself the image under π of a τ -macro-tile Q of P . We associate with T the
τ -tile φ(Q). Condition (3) ensures that replacing tiles in R by their such associated
τ -tiles yields a complete τ -tiling, say R. We can repeat all this process, with R
instead of P . By induction, we get an infinite sequence of complete tilings, with
each one being the preimage under σ of the previous one. Thus, P ∈ Λσ.

5. Constructive proof of Theorem 1.1

Let σ be a good combinatorial substitution with rules (Pi, Qi, γi)i. We here rely
on the fact that σ is connecting to construct a finite tileset τ which σ-self-simulates.
The consistency of σ then ensures, via Prop. 4.2, that π(Λτ) ⊆ Λσ holds. We also
show that the converse inclusion holds. This thus constructively proves Theorem 1.1.

5.1. Settings

Let T1, . . . , Tn and f1, . . . , fm be numberings of, respectively, the tiles and the
internal facets of all the Qi’s. Given the k-th facet of the tile Ti, Nσ(i, k) stands
either for its index if it is an internal facet, or for a special value “port”, “macro-
facet” or “boundary” otherwise (depending whether it is a port, a non-port facet in
a macro-facet or another external facet).

Each tile of τ is a Ti endowed with a decoration which encodes on each facet
a triple (f, j, g), where f and g are either facet indices or special values “port”,
“macro-facet” or “boundary”, and j is either zero or a tile index. We call f the
macro-index, j the parent-index and g the neighbor-index. This clearly allows only
a finite number of different tiles.

We skip the technical details concerning the way these triples are encoded by
decorations3. We assume that two decorated tiles match along a facet if and only if
the same triple is encoded on both facets, and that the only direct isometry which
leaves invariant the decoration of a facet is the identity, so that a decorated tile
cannot trivially match with a translated or rotated copy of itself.

5.2. Decorations

The five following steps completely define a tileset τ .
1. The macro-index of the k-th facet of any decorated Tj is Nσ(j, k). This step

ensures that any complete τ -tiling can be uniquely seen as a tiling by τ -macro-tiles.
2. Consider a decorated non-central tile of Qi. Its facets which are internal and

not crossed by the network have all the same parent-index, also called parent-index
of the tile, which can be any j such that Tj = Pi. Its facets which are external, port

3Recall that the decoration of a tile is a real map defined on its boundary.

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS 107

excluded, have parent-index 0. This step ensure that the τ -tiles of a τ -macro-tile Q
share a common parent-index j; the tile Tj is called the parent-tile of Q.

3. Consider, in a non-central τ -tile with parent-index j, a facet which is neither
a port nor crossed by the network. Its neighbor-index is either Nσ(j, k) if it is in the
k-th macro-facet, or equal to its macro-index otherwise. This step ensures that the
macro-facets (ports excepted) of a τ -macro-tile are equivalent to the macro-indices
of its parent tile (once decorated).

4. Consider a non-central τ -tile with parent-index j. Its facets which are either
k-th port or crossed by the k-th branch of the network have all the same pair of
parent/neighbor indices. This pair is either one of the pairs allowed on the k-th facet
of Tj, if those are already defined in Steps 1–3 (i.e., if the k-th facet of Tj is not
crossed by a network), or any of the pairs defined in Steps 1–3 otherwise. This step
ensures that each port of a τ -macro-tile is equivalent to the pair of parent/neighbor
indices of a decorated parent-tile4.

5. Whenever a non-central τ -tile T has as many facets as a central tile Tj,
we define a central τ -tile T ′ by endowing each k-th facet of Tj with the pair of
parent/neighbor indices on the k-th facet of T (the macro-indices are defined as
usual, see Step 1). One says that T ′ derives from T .

5.3. First inclusion

Let us show that the above defined tileset σ-self-simulates. Given a τ -macro-tile
Q with parent-index j and central τ -tile T ′, let φ(Q) be the decorated tile obtained
by endowing the k-th facet of Tj with the parent/neighbor indices on the k-th facet
of T ′ (the macro-indices are defined as for any tile, see Step 1). One checks that φ is
a map satisfying conditions (1)–(3) of Def. 4.1. It remains to check that φ(Q) ∈ τ .

Let T be a non-central τ -tile from which derives T ′. If Tj is central, then φ(Q)
also derives from T , hence is in τ . Otherwise, Step 4 ensures, for each k, that
the parent/neighbor indices on the k-th facet of T ′ appear on the k-th facet of a
decorated Tj. In particular, this holds on facets of Tj which are not crossed by a
network. Since the neighbor-indices of these facets can only5 appear on a Tj (see
Steps 1 and 3), T is a decorated Tj. This yields φ(Q) = T , and thus φ(Q) is in τ .

Prop. 4.2 then applies and yields the first inclusion π(Λτ) ⊆ Λσ.

5.4. Second inclusion

Let us extend τ in a tileset τ ′ as follow. For each τ -tile T and each subset S of
its facets, we define a τ ′-tile TS by replacing the decorations of the facets in S by a
special decoration “undefined”.

Now, let P be a tiling in Λσ. Consider an infinite sequence (Pn)n≥0 of successive
preimages of P . Given n > 0, Pn can be seen as a τ ′-tiling: it suffices to endow any
facet with “undefined”. Then, Pn−1 can be seen as a tiling by τ ′-macro-tiles, with

4With the problem that a parent-tile can be decorated in different ways, and nothing yet prevents
the ports from mixing these decorations.

5Actually, a facet-index appears on the two tiles of a macro-tile which share the corresponding
facet. We thus need, in order to completely characterize Tj , either to assume that there is at least
two such facets (this is a rather mild assumption), or to endow facets with an orientation and to
allow two facets to match if and only if they have opposite orientations.

108 TH. FERNIQUE AND N. OLLINGER

“undefined” decorations appearing only on the network. Indeed, consider a macro-
tile of Tn−1 which corresponds (via the one-to-one correspondence in Def. 3.2) to
a tile Tj in Pn: it suffices to endow its tiles as in steps 1–3 of the definition of τ ,
with Tj being the parent-tile, and with the decoration “undefined” on the facets
crossed by the network. This can be iterated up to P = P0, and the third condition
of Def. 3.4 ensures that the decorations “undefined” appear only on sort of grids
whose cells have bigger and bigger size.

Thus, by making n tend to infinity, one can see T as a τ ′-tiling whose “undefined”
decorations, if any, form either a star with k infinite branches, or a single biinfinite
branch. In the first case, we can replace the central τ ′-tile by any τ -tile with k
facets, and then the tiles on branches by τ -tiles which carry decorations to infinity.
In the second case, we can replace the τ ′-tiles by τ -tiles which carry any decoration
on the whole branch. In any case, we can thus see P as a τ -tiling.

We thus have the second inclusion Λσ ⊆ π(Λτ). Both inclusions prove Theo-
rem 1.1.

6. On the number of tiles

Let us conclude this paper by discussing the size #τ of the tileset τ defined in
the previous section (although its finiteness suffices for Theorem 1.1).

Consider a good combinatorial substitution with r rules. Fix a network as in
Def. 3.4 for each of these rules. Let n and m denote the total number of, respectively,
tiles and internal facets of the macro-tiles of these r rules. Among these n tiles, let
p denote the number of those which lie on a network.

First, the n− p tiles not on the network can be decorated in at most n different
ways, according to the parent-index they carry. This yields at most N0 = (n− p)n
τ -tiles. Then, each of the p− r non-central tiles on the network can be decorated in
at most (n−p)n+pnm different ways: n−p parent-indices which correspond to tiles
not on the network, hence allow at most n pairs of parent/neighbor indices carried on
the network, and p parent-indices which correspond to tiles on the network, hence
allow at most nm pairs of parent/neighbor indices carried on the network. This
yields at most Np = (p− r)((n− p)n+ pmn) τ -tiles. Last, the r central tiles can be
decorated in at most as many different ways as there is non-central τ -tiles. Finally,
this yields

#τ ≤ (r + 1)(N0 +Np) ≤ (r + 2)p2mn.

This bound is, for example, about one billion in the Rauzy case.
In order to reduce this huge number of tiles, it is worth noting that, instead

of carrying a parent-index through all the tiles of a macro-tile, it suffices to carry
it along a second network connecting the macro-facets of this macro-tile and inter-
secting each of the branches of its (first) network (see, e.g., Fig. 6). The “control”
described in Step 4 is then performed only on tiles where both networks crosses,
while we simply allow any possible pairs of parent/neighbor indices to be carried
through the tiles which are only on the first network. If we denote by q the to-
tal number of tiles on these new second networks and by c be the total number of
crossings between second and first networks, a similar analysis yields

#τ ≤ (r + 1)(N ′0 +N ′q +N ′p +N ′c) ≤ (r + 2)cp(m+ qn),

COMBINATORIAL SUBSTITUTIONS AND SOFIC TILINGS 109

c

d
b

a

c

d
b

a

b

b

b

b

b

d

d

d
d

d

a

a

a

ab

c d

b b b

d d d

c

c

a

a

b

b

b

b

b

d

d

d
d

d

c c c
aa a

c c c

c

d
b

a

b

b

b

b

b

aa a

d

d

d
d

d

c

c

c

a

b

c
d

d

d

d
d

d

c

c

b

b

b

b

b

a

a

Figure 6: A second network for the Rauzy combinatorial substitution.

where:

N ′0 = n− p− q + c,

N ′q = (q − c)n,
N ′p = (p− c)(m+ qn),

N ′c = c(N ′0 +N ′q +N ′p).

This bound is, for example, about 70 millions tiles in the Rauzy case.
This last bound is huge but generic. One can hope to dramatically decrease

this bound in specific cases. Indeed, most of the τ -tiles correspond to tiles which
simply carry any possible information (the tiles on networks, crossings excepted).
Since these tiles all play the same role, it would be worth to replace all the tiles
on a network by a single tile (one can thus hope to gain a factor pq in the above
bound – this would yield about 25000 tiles in the Rauzy case). This shall however
be done carefully, so that tiles still necessarily form macro-tiles. Note that it should
be much easier in dimension d ≥ 3, since the cohesion of macro-tiles can be more
easily enforced without relying on tiles on networks.

Acknowledgments

We would like to thank the anonymous referees for their valuable comments.
The first author also would like to thank N. Pytheas Fogg and C. Goodman-Strauss
for their encouragements to write down this result, as well as for useful discussions.

References

[1] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon
Stevin 8 (2001), no. 2, 181–207.

[2] R. Berger, The undecidability of the domino problem, Ph.D. thesis, Harvard University, July
1964.

[3] V. Berthé and Th. Fernique, Brun expansions of stepped surfaces, to appear in Disc. Math.
[4] Th. Fernique, Local rule substitutions and stepped surfaces, Theor. Comput. Sci. 380 (2007),

no. 3, 317–329.
[5] C. Goodman-Strauss, Matching rules and substitution tilings, Ann. of Math. (2) 147 (1998),

no. 1, 181–223.

110 TH. FERNIQUE AND N. OLLINGER

[6] S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Analyse
Math. 53 (1989), 139–186.

[7] N. Ollinger, Two-by-two substitution systems and the undecidability of the domino problem,
Proceedings of CiE’2008, LNCS, vol. 5028, Springer, 2008, pp. 476–485.

[8] N. Priebe Frank, Detecting combinatorial hierarchy in tilings using derived voronoi tessellations,
Disc. Comput. Geom. 29 (2003), no. 3, 459–467.

[9] R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathe-
maticae 12 (1971), 177–209.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 111-120

INFINITE TIME CELLULAR AUTOMATA:
A REAL COMPUTATION MODEL

FABIEN GIVORS, GREGORY LAFITTE, AND NICOLAS OLLINGER

Laboratoire d’Informatique Fondamentale de Marseille (LIF), CNRS – Aix-Marseille Uni-
versité, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

Abstract. We define a new transfinite time model of computation, infinite time
cellular automata. The model is shown to be as powerful than infinite time Turing
machines, both on finite and infinite inputs; thus inheriting many of its proper-
ties. We then show how to simulate the canonical real computation model, BSS
machines, with infinite time cellular automata in exactly ω steps.

Introduction

When the second and third authors of this paper were in their PhD years, their
common advisor, Jacques Mazoyer, had encouraged them to define a computation
model on real numbers using cellular automata. The second author had defined at
the end of the Nineties a cellular automata generalization running into transfinite
time, but it was never published and was only clumsily defined in his PhD thesis.
They thought of using it as a real computation model in 2001 in Riga but never did
anything about it since. This paper is a description of these ideas which had stayed
for ten years in the state of scribbled notes.

Transfinite time computation models were first considered in 1989 by Hamkins
and Kidder. Hamkins and Lewis later developed the model of infinite time Turing
machines and its theory in [HL00]. Koepke [Koe06] defined another transfinite time
model based on register machines, that was later refined by Koepke and Miller
[KM08]. These models differ in their computation power, the infinite time Turing
machines model being the most powerful one.

In [BSS89], Blum, Shub and Smale introduced, also in 1989, a model of com-
putation, coined BSS machines, intended to describe computations over the real
numbers. It can be viewed as Turing machines with tapes whose cells (or Random
Access Machines with registers that) can store arbitrary real numbers and that can
compute rational functions overs reals at unit cost. Their model, which is more
general 1 than the presentation provided in this paper, is a canonical model of real
computation. The idea of real computation is to deal with hypothetical computing

The research presented in this paper has been made possible by the support of the French
ANR grants NAFIT (ANR-08-DEFIS-008-01) and EMC (ANR-09-BLAN-0164-01).

1. It really provides a setting for computing over rather arbitrary structures.

c

111

112 F. GIVORS, G. LAFITTE, AND N. OLLINGER

machines using infinite-precision real numbers and to be able to prove results of com-
putations operating on the set of real numbers. A typical example is studying the
computability of the Mandelbrot set. It can be viewed as an idealized analog com-
puter which operates on real numbers and is differential, whereas digital computers
are limited to integers and are algebraic. For a survey of analog computations, the
reader is referred to the survey [BC08].

In this paper, we introduce a transfinite time computation model, the infinite
time cellular automata. The model is arguably more natural and uniform than other
transfinite time models introduced, for the same reasons cellular automata are more
natural and uniform than Turing machines. There is no head wandering here and
there and there is no difference between states and data.

We show that the infinite time cellular automata have the same computing power
than infinite time Turing machines, both on finite and infinite inputs. They thus
inherit the nice properties of this latter model. We then show how to simulate the
BSS machines with infinite time cellular automata in exactly ω steps. We finish by
introducing another transfinite time model based on cellular automata.

1. Infinite time cellular automata

Definition 1.1. An infinite time cellular automaton (ITCA) A is defined by Σ,
the finite set of states of A, linearly ordered by ≺ and with a least element 0; and
δ : Σ3 → Σ, the local rule of A, satisfying δ(0,0,0) = 0, so that 0 is a quiescent
state.

A configuration is an element of ΣZ. The local rule δ induces a global rule
∆ : ΣZ → ΣZ on configurations such that ∆(C)i = δ(Ci−1, Ci, Ci+1) for i ∈ Z and
C ∈ ΣZ.

Starting from a configuration C ∈ ΣZ, the evolution of length θ ∈ Ord of A is
given by (∆α(C))α6θ:

∆β+1(C) = ∆(∆β(C))
∆λ(C)i = lim inf≺γ<λ ∆γ(C)i for all i ∈ Z and λ limit

Definition 1.2. Let h ∈ Σ a particular state we will refer to as the halting state.
An evolution of length θ is called a computation if the state h appears in the

last configuration, ∆θ(C), but not before this stage.

We settle a convention on the way we code integers or real numbers in our
model. For example, we could code integers and real numbers in binary (using 0
and another state as symbols for 0 and 1) on the right cells (cells whose indices
belong to N).

Definition 1.3. Let X be a space for which a coding has been settled. (For example,
N, R, 2N or 2Z.)

A (partial) function F on X, F : X → X, is said to be infinite time computable
if there is an infinite time cellular automaton such that for each x ∈ dom(F), there
is a computation starting with a configuration with a coding of x that halts on a
configuration with a similar coding of F (x).

A set A ⊆ X is infinite time decidable if its characteristic function is infinite
time computable, and is infinite time semi-decidable if it is the domain of an infinite
time computable function.

INFINITE TIME CELLULAR AUTOMATA 113

We use the term “semi-decidable” instead of “enumerable”, since contrarily to
the classical computability concepts, in the transfinite time context, being semi-
decidable is not equivalent to being the range of a computable function.

2. Properties of infinite time cellular automata

2.1. Comparisons with other infinite time models

Hamkins, Kidder and Lewis [HL00] have defined an infinite time Turing machines
model and Koepke [Koe06] has defined an infinite time register machines model, that
was later refined by Koepke and Miller [KM08].

The infinite time Turing machines (ITTM) work as a classical Turing machine
with a head reading and writing on a bi-infinite tape, moving left and right in ac-
cordance with the instructions of a finite program with finitely many states. At
successor stages of computation, the machine operates in exactly the classical man-
ner. At limit stages, the machine enters a special limit state, with the head on the
origin cell, and each cell of the tape taking the value of the lim inf of the values
appearing in that cell before that limit stage.

The infinite time register machines behave like standard register machines at
successor stages. At limit times, the register contents are defined using lim inf’s
of the previous register contents. The difficulty here is that the lim inf does not
necessarily exist in that case, since a register can contain arbitrary large integers.
The machines of [Koe06] crashed in such a case. Those of [KM08] continue beyond
such crashes by resetting a register to 0 whenever it overflows.

The infinite time Turing machines are strictly stronger than infinite time register
machines: the halting problem for infinite time register machines can be decided by
an ITTM.

Theorem 2.1. Infinite time cellular automata have the same computing power of
infinite time Turing machines.

Proof. The right to left implication goes as follows:
At successor stages, the simulation of ITTM by ITCA works the same way it

does in the non-infinite-time case.
At limit stages, we have to put the configuration of the ITCA in the limit

configuration simulation of the ITTM simulated. To do this, we need to be able to
know that we are at a limit stage. It suffices to have two adjacent cells of the ITCA
at the origin that, at successor stages, alternate between 0 and some other state
such that the adjacent states are different. At the next limit stage, they will be
both equal to 0. We also have to use the same trick on the cells visited by the head
to make sure that at limit stages, if the ITTM becomes stationary, we can wipe out
the stationary state from our simulation tape and enter in the special limit state.
The ITCA can then prepare the configuration to continue the ITTM simulation.

The left to right implication: it takes ω steps with an ITTM machine to simulate
an ITCA global step (on an infinite input). It is just then a matter of determining
whether the ITTM is at a limit stage or not. This is easily achieved by an ITTM
since it enters a special limit state at limit stages.

114 F. GIVORS, G. LAFITTE, AND N. OLLINGER

2.2. Features of those infinite time models

Hamkins, Kidder, Lewis and Welch [HL00, Wel99, Wel00b, Wel00a] have shown
many properties of infinite time Turing machines. By Theorem 2.1, infinite time
cellular automata have many of these same properties. We state in the following
the properties inherited by infinite time cellular automata.

Theorem 2.2. The set of reals coding well-orders is infinite time decidable.
The hyperarithmetic sets are those that are decidable in time less than some re-

cursive ordinal. Every Π1
1 set is decidable and the class of decidable sets is contained

in ∆1
2.

Definition 2.3. An ordinal α is clockable if there is an ITCA computation starting
from the all-but-one quiescent configuration C (C0 6= 0 and Ci = 0 ∀i ∈ Z \ {0})
and that halts after exactly α steps (meaning that the αth configuration, ∆α(C), is
the first configuration in which the halting state h appears).

A real r is writable if it is the output of an ITCA computation. An ordinal is
writable if it is coded by such a real.

There are of course only countably many clockable and writable ordinals, since
there are only countably many local rules.

Theorem 2.4. Every recursive ordinal is clockable. Even ωCK
1 + ω is clockable.

Beyond that, there are many intervals of non-clockable ordinals. The supremum
of clockable ordinals is recursively inaccessible 2. Moreover, the writable ordinals
however form an initial segment of the ordinals. The supremum of the writable
ordinals is the supremum of the clockable ordinals.

One of the beautiful theorems of ITTMs that carry through to ITCAs is the
Lost Melody Theorem. The real constructed in this theorem is like a lost melody
that you can recognize when someones hums it to you, but which you cannot sing
on your own.

Theorem 2.5 (Lost Melody Theorem). There is a real r which is recognizable ({r}
is decidable), but not writable.

There are different ways to construct such lost melody reals. One way is to
consider the supremum γ of the ordinal stages by which an ITTM computation, on
an empty input, either halts or repeats. Notice that by a simple cofinality argument,
we can show that all these ordinals are countable. There is a smallest ordinal δ > γ
such that Lδ+1 |= “δ is countable”. Lδ+1 has a canonical well-ordering, thus there
is some real r ∈ Lδ+1 which is least with respect to the canonical L order, such
that r codes δ. γ (and thus r) are somehow a generalization of the busy beaver
problem to transfinite time computations. It is then not surprising that r cannot be
computable, since that would render the infinite time halting problem decidable. It
is recognizable because it is possible to reconstruct the L hierarchy using an ITTM
and verify that r is really the least coding of an ordinal having the properties of δ.

2. A recursively inaccessible ordinal is an ordinal that is both admissible and a limit of admis-
sibles. An ordinal α is admissible if the construction of the Gödel universe, L, up to a stage α,
yields a model Lα of Kripke-Platek set theory. The Church-Kleene ordinal, ωCK

1 , is the smallest
non-recursive ordinal and is the smallest admissible ordinal. For more on admissibles, see the most
excellent book of Barwise [Bar75].

INFINITE TIME CELLULAR AUTOMATA 115

3. Computations on the reals

3.1. Blum-Shub-Smale model

Blum, Shub and Smale [BSS89] introduced the BSS model.
A simplified presentation of the BSS model goes through defining “Turing ma-

chines with real numbers”. We follow Hainry’s presentation in his PhD thesis
[Hai06].

Definition 3.1. A simplified BSS machine (or shortly, BSS machine) is composed
of an infinite tape and a program. The infinite tape is made of cells, each containing
a real number. We denote the tape by (xn)n∈Z ∈ RZ. The program is a numbered
(finite) sequence of instructions. The number of each instruction in the program
sequence is seen as a state (∈ Q). The instructions are

– go right: changes the tape to (xn+1)n∈Z;
– go left: changes the tape to (xn−1)n∈Z;
– branch if greater than 0: if the current cell (x0) is greater than 0, then it

branches to a specified location in the program;
– branch if equal to 0: if the current cell (x0) is equal to 0, then it branches to

a specified location in the program;
– make a computation: the current cell (x0) is changed to be equal to the result

of a computation from x0, x1 and possible constants (k ∈ R). A computation
is one of the following:

– x0 � −x0;
– x0 � k;
– x0 � x0 + x1;
– x0 � x0 × x1;
– x0 � k × x0.

The machine starts by executing the first instruction (with the least number) of the
program and continues by executing the next instruction and so on until it branches.
It halts when it has no more instructions to execute.

It is possible to give a definition for a more general BSS machine on rather
arbitrary structures. In this paper, we will stick with simplified BSS machines on
R.

For a lot more on the BSS model and computation on the real numbers, the
reader is referred to the book by Blum, Cucker, Shub and Smale [BCSS98].

3.2. BSS by ω-ITCA

We show how to simulate a simplified BSS machine with an ITCA.

Theorem 3.2. A simplified BSS machine can be simulated by an ITCA in ω steps.

Proof. Consider a BSS machine. At each time step t of a computation, only a finite
number of non-zero real numbers are defined: k constants inside the program and
l 6 t cells of the tape. For the sake of clarity, suppose that the BSS machine
works on reals in the interval [−1, 1] 3. Imagine that we encode these k + l reals as

3. The construction extends to R at the cost of non significant tricks, for example by adding
just after the bit of sign the encoding of the integer part of each real on a same number of bits
followed by a dot.

116 F. GIVORS, G. LAFITTE, AND N. OLLINGER

infinite words on the alphabet {0, 1} encoding a bit of sign followed by their binary
expansion.

Each computation instruction of the BSS machine has the nice property that
it can be computed, in time ω, by a Turing machine working synchronously on the
representation of its operands. For each finite initial portion of the tape, it is left
untouched by such a machine after some finite time. Moreover, at the cost of some
extra bookkeeping on the tape, such a computation can be achieved in a reversible
way 4.

Each branch instruction of the BSS machine can be achieved in a similar way:
one can choose a initial hypothesis on the branch 5 and start a computation by
a Turing machine working synchronously on the representation of the operands ;
either the machine eventually halts contradicting the hypothesis, or its head moves
infinitely towards the end of the infinite words. For each finite initial portion of
the tape, it is left untouched by such a machine after some finite time and the
computation can be achieved in a reversible way.

Packing it all together, we can simulate a BSS machine if we can launch as
many Turing computation threads as needed. Encode the k + l reals encodings as
a single infinite word and put some finite control at the beginning of it. The finite
control plays the role of the head of the BSS machine, keeping the current state
(instruction number). The control is responsible for launching the next instruction:
each time there is enough room on its right, it starts a new thread for the current
instruction. If the instruction is a move instruction, the thread simply selects the
next cell, adding a new 0 real to the tuple if necessary. If the instruction is a branch
instruction, the control takes the default hypothesis on the result and launches the
branch thread described before. If the instruction is a computation instruction,
the control launches the thread described above. At each time step, the control is
pointing to a current instruction and a finite number of threads are computing on its
right. Each thread works on a finite portion of tape where it should have exclusive
access. Somewhere on its right is the last point where he modified the reals. When
a thread wants to access a portion of the reals already modified by the next thread
on its left, it enforce this thread to undo its computation to restore the reals as
they were before. A cascade of undoing occurs in such a situation, each thread
undoing the next thread. At some point an undone thread reaches the control and
forces the control part to start again from the instruction where this thread was
started, removing the thread from the computing area. As each thread eventually
goes to infinity, such an inefficient compute/uncompute dance converges. The same
applies when a branch thread discovers that its hypothesis was wrong: it goes back
to control to take the other branch of computation, forcing threads newer than him
to undo. Notice that a key point of the construction is that there is always enough
room for bookkeeping: if a thread needs more space, it just can wait for more space
to be available before continuing its computation, either it will eventually happen,
or a backtrack will occur that can be handled.

The result of a computation is obtained easily: at time ω, if the control even-
tually converged to an accepting state, the control part encodes an accepting state
and the encoded reals contain the result of the computation ; if the BSS machine
did not converge, the control part does not encode an accepting state.

4. Just store the non injective choices on a stack that the head pushes in front of itself.
5. For branch if equal to zero the hypothesis is that x0 = 0.

INFINITE TIME CELLULAR AUTOMATA 117

1 0 1 1 0 # 0

1 1 1 1 0 # 0

1 0 1 1 0 # 0

1 0 0 1 0 # 0
∗ 1 1 0 1 ∗
∗ 1 1 0 1 ∗
∗ 1 1 0 1 ∗
∗ 1 1 0 1 ∗z1

z1
×
z2 ×

+
+

+
+

Heads layer

Stacks layer

Data layer

Figure 1. Layers encoding computation

Let us now explain how the described simulation can be carried on a ITCA.
Given a BSS machine, the ITCA is constructed as follows. Only a semi-infinite part
of the configuration is used. Cell #0 encodes control and the cells on its right encode
the reals, the computation area. The computation area is constructed in 3 layers,
as depicted on figure 1. The data layer encodes the bits of real numbers and the
current position of the head: it is divided into blocks of length k+ l, separated by #
border symbols, containing a bit for each real, the current position of the head being
circled. The stack layer encodes the working area for the threads, where each head
has its computing stack, and the boundaries of the threads: each thread delimits
monotonically the area it already modified by a ∗ symbol. The head layer encodes
the heads of the threads, the active parts of the ITCA.

Each instruction of the BSS machine is simulated as explained before. A move
thread simply moves the circle to the previous or next bit, adding a new real if
necessary, using its thread stack. A branch thread does not modify reals but checks
if the hypothesis was true or false, as depicted on figure 2. A computation thread
modifies the reals, making choices (for example the values of carries when adding
two reals), backtracking when the choice was a bad one, as depicted for addition on
figure 3a. Notice that multiplication can be significantly simplified by the fact that
we can create new threads, thus it can be decomposed into additions launched by a
master thread, as depicted on figure 3b.

It is important to notice that the monotonicity of the forward movement of
∗ symbols ensures that there is no concurrency problem due to neighbor threads
backtracking and coming back forward in a same area: when a thread wants to
access an area already explored by its follower, the follower is asked to undo its
computation. To ask a neighbor to undo, a thread simply modifies its neighbor ∗
symbol to inform him.

The details of the construction use rather classical but tedious CA encoding
tricks. The key argument of the proof is that an ITCA can simulate in time ω the
work of an unbounded number of Turing heads, thus achieving the same quantity
of work than a ITTM in time ω2.

By diagonalization, it is easy to see that there are functions on the real numbers,
computable by ITCAs in ω steps but that are not computable by BSS machines.

118 F. GIVORS, G. LAFITTE, AND N. OLLINGER

#010#000#· · ·#110#· · ·= 0?

z6
z6
z6
z6

...

→
z7

...

zn
z10
z10
←

U
n
d
o

Assumption
was wrong.

Restart from
the right if

branch.

(a) Case x0 6= 0

#010#000#· · ·#010#· · ·= 0?

z6
z6
z6
z6

...

→
z7

...

zn
X

(b) Case x0 = 0

Figure 2. Branch if equal to 0 thread

Concluding remarks

We finish this paper by pointing in a direction that we believe to be promising.
Koepke [Koe05] has defined a transfinite time computation model based on Tur-

ing machines that has transfinite space. It can thus compute on arbitrary ordinals
and sets of ordinals. Koepke and Siders [KS08] have also extended the infinite time
register machines model to machines with registers containing arbitrary ordinals.
These models make it possible to compute the bounded truth predicate of the con-
structible universe, {(α, ϕ, ~x) : α ∈ Ord, ϕ an ∈-formula, ~x ∈ Lα, Lα |= ϕ(~x)}, and

INFINITE TIME CELLULAR AUTOMATA 119

#0 1 0#0 0 0# · · · #1 1 0# · · ·+
zn
zn

...

Active

head Stack (choices)

Backtracking
(bad choice)

(a) Addition thread

#0 1 0#0 0 0# · · · #1 1 0# · · ·×
zn
zn

...
New head

created

Backtrack on

demand

(b) Multiplication thread

Figure 3. Computation threads

allows the following characterization of computable sets of ordinals: a set of ordi-
nals is ordinal computable from of a finite set of ordinal parameters if and only if it
an element of Gödel’s constructible universe L. Ordinal computability is moreover
interesting to be able to reprove some facts about L.

We propose the following definition for ordinal computations over cellular au-
tomata.

Definition 3.3. An ordinal cellular automaton A is defined by Σ, the finite set of
states of A, linearly ordered by ≺ and with a least element 0; and δ : Σ3 → Σ, the
local rule of A, satisfying δ(0,0,0) = 0, so that 0 is a quiescent state.

A configuration of length ξ is an element of Σξ. The local rule δ induces on
configurations of length ξ a global rule ∆ : Σξ → Σξ such that

∆(C)0 = δ(lim inf≺γ<ξ Cγ, C0, C1),
∆(C)β+1 = δ(Cβ, Cβ+1, Cβ+2),
∆(C)λ = δ(lim inf≺γ<λCγ, Cλ, Cλ+1) if λ limit and λ > 0.

Starting from a configuration C ∈ Σξ, the evolution of length θ of A is given by
(∆α(C))α6θ:

∆β+1(C) = ∆(∆β(C))
∆λ(C)ι = lim inf≺γ<λ ∆γ(C)ι for all ι < ξ and λ limit

We think that it would be interesting to try to carry the results of the other
ordinal machines models over to this ordinal cellular automata model. In this model,
there is the limitation due to the fixed length of configurations, which is imposed
by the cylindrical nature of our model. There are certainly other ways to allow
information to flow from the right to the left of the configurations (and not only left
to right).

120 F. GIVORS, G. LAFITTE, AND N. OLLINGER

References

[Bar75] Jon Barwise. Admissible Sets and Structures: An Approach to Definability Theory, vol-
ume 7 of Perspectives in Mathematical Logic. Springer Verlag, 1975.

[BC08] Olivier Bournez and Manuel L. Campagnolo. New Computational Paradigms. Changing
Conceptions of What is Computable, chapter A Survey on Continuous Time Computa-
tions, pages 383–423. Springer-Verlag, New York, 2008.

[BCSS98] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and real compu-
tation. Springer, 1998.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity
over the real numbers: Np-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society, 21(1):1–46, 1989.

[Hai06] Emmanuel Hainry. Modèles de calcul sur les réels: résultats de comparaisons. PhD thesis,
Institut National Polytechnique de Lorraine, 2006.

[HL00] Joel David Hamkins and Andy Lewis. Infinite time turing machines. Journal of Symbolic
Logic, 65(2):567–604, 2000.

[KM08] Peter Koepke and Russell Miller. An enhanced theory of infinite time register machines.
In Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, Logic and
Theory of Algorithms, 4th Conference on Computability in Europe, CiE 2008, Athens,
Greece, June 15-20, 2008, Proceedings, volume 5028 of Lecture Notes in Computer Sci-
ence, pages 306–315. Springer, 2008.

[Koe05] Peter Koepke. Turing computations on ordinals. Bulletin of Symbolic Logic, 11:377–397,
2005.

[Koe06] Peter Koepke. Infinite time register machines. In Arnold Beckmann, Ulrich Berger,
Benedikt Löwe, and John V. Tucker, editors, Logical Approaches to Computational Bar-
riers, Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June
30-July 5, 2006, Proceedings, volume 3988 of Lecture Notes in Computer Science, pages
257–266. Springer, 2006.

[KS08] Peter Koepke and Ryan Siders. Register computations on ordinals. Archive for Mathe-
matical Logic, 47:529–548, 2008.

[Wel99] Philip D. Welch. Minimality arguments in the infinite time turing degrees. In S. B.
Cooper and J. K. Truss, editors, Sets and Proofs, Proceedings of the ASL European
Meeting, Logic Colloquium 1997, volume 258 of London Mathematical Society Lecture
Notes in Mathematics, pages 425–436. Cambridge University Press, April 1999.

[Wel00a] Philip D. Welch. Eventually infinite time turing machine degrees: Infinite time decidable
reals. Journal of Symbolic Logic, 65:1193–1203, 2000.

[Wel00b] Philip D. Welch. The lengths of infinite time turing machine computations. Bulletin of
the London Mathematica Society, 32:129–136, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 121-132

COMPUTATIONAL COMPLEXITY OF AVALANCHES IN THE
KADANOFF TWO-DIMENSIONAL SANDPILE MODEL

ERIC GOLES 1 AND BRUNO MARTIN 2

1 Universidad Adolfo Ibañez, Av. Diagonal Las Torres 2640, Peñalolen, Santiago, Chile
E-mail address: eric.chacc@uai.cl

2 Université de Nice Sophia-Antipolis, I3S, UMR 6070 CNRS, 2000 route des Lucioles,
BP 121, F-06903 Sophia Antipolis Cedex, France
E-mail address: Bruno.Martin@unice.fr

Abstract. In this paper we prove that the avalanche problem for the Kadanoff
sandpile model (KSPM) is P-complete for two-dimensions. Our proof is based on
a reduction from the monotone circuit value problem by building logic gates and
wires which work with configurations in KSPM. The proof is also related to the
known prediction problem for sandpile which is in NC for one-dimensional sandpiles
and is P-complete for dimension 3 or greater. The computational complexity of
the prediction problem remains open for two-dimensional sandpiles.

1. Introduction

Predicting the behavior of discrete dynamical systems is, in general, both the
“most wanted” and the hardest task. Moreover, the difficulty is still hard when
considering finite phase spaces. Indeed, when the system is not solvable, numerical
simulation is the only possibility to compute future states of the system.

In this paper we consider the well-known discrete dynamical system of sandpiles
(SPM). Roughly speaking, its dynamics is as follows. Consider the toppling of grains
of sand on a (clean) flat surface, one by one. After a while, a sandpile has formed.
At this point, the simple addition of even a single grain may cause avalanches of
grains to fall down along the sides of the sandpile. Then, the growth process of
the sandpile starts again. Remark that this process can be naturally extended to
arbitrary dimensions although for d > 3, the physical meaning is not clear.

The first complexity results about SPM appeared in [6, 7] where the authors
proved the computation universality of SPM. For that, they modelled wires and
logic gates with sandpiles configurations. Inspired by these constructions, C. Moore
and M. Nilsson considered the prediction problem (PRED) for SPM i.e. the problem
of computing the stable configuration (fixed point) starting from a given initial
configuration of the sandpile. C. Moore and M. Nilsson proved that PRED is in
NC3 for dimension 1 and that it is P-complete for d ≥ 3 leaving d = 2 as an open

Work supported by the french ANR programme “Émergence dans les modèles de calcul” (B.M.);
by FONDECYT 1100003, BASAL-CMM-U. de Chile, Anillo ACT-88, SFI-Santa Fe, CNRS (E.G.).

c

121

122 E. GOLES AND B. MARTIN

problem [12]. (Recall that P-completeness plays for parallel computation a role
comparable to NP-completeness for non-deterministic computation. It corresponds
to problems which cannot be solved efficiently in parallel (see [9]) or, equivalently,
which are inherently sequential, unless P =NC). Later, P.B. Miltersen improved the
bound for d = 1 showing that PRED is in LOGDCFL (⊆ AC1) and that it is not
in AC1−ε for any ε > 0 [11]. Therefore, in any case, one-dimensional sandpiles are
capable of (very) elementary computations such as computing the max of n bits.

Both C. Moore and P.B. Miltersen underline that “having a better upper-bound
than P for PRED for two-dimensional sandpiles would be most interesting.”

In this paper, we address a slightly different problem: the avalanche problem
(AP). Here, we start with a monotone configuration of the sandpile. We add a grain
of sand to the initial pile. This eventually causes an avalanche (a sequence of topples)
and we address the question of the complexity of deciding whether a certain given
position –initially with no grain of sand– will receive some grains in the future. Like
for the (PRED) problem, (AP) can be formulated in higher dimensions. In order to
get acquainted with AP, we introduce its one-dimensional version first.

One-dimensional sandpiles can be conveniently represented by a finite sequence
of integers x1, x2, . . . , . . . , xn. The sandpiles are represented as a sequence of piles
and each xi represents the number of grains contained in pile i. In the classical SPM,
a grain falls from pile i to i + 1 if and only if the height difference xi − xi+1 ≥ 2.
Kadanoff’s sandpile model (KSPM) generalises SPM [10, 5] by adding a parameter
p. The setting is the same except for the local rule: one grain falls to the p − 1
adjacent piles if the difference between pile i and i+ 1 is greater than p.

Assume xk = 0, for a value of k “far away” from the sandpile. The avalanche
problem asks whether adding a grain at pile x1 will cause an avalanche such that at
some point in the future xk ≥ 1, that is to say that an avalanche is triggered and
reaches the “flat” surface at the bottom.

This problem can be generalized for two-dimensional sandpiles and is related to
the question addressed by C. Moore and P.B. Miltersen.

In this paper we prove that in the two-dimensional case, AP is P-complete. The
proof is obtained by reduction from the Circuit Value Problem where the circuit only
contains monotone gates — that is, AND’s and OR’s (see Section 3 for details).

We stress that our proof for the two-dimensional case needs some further hy-
pothesis/constraints for monotonicity and determinism (see Section 3). If both
properties are technical requirements for the proof’s sake, monotonicity also has a
physical justification. Indeed, if KSPM is used for modelling real physical sand-
piles, then the image of a monotone non-increasing configuration has to be monotone
non-increasing since gravity is the only force considered here. We have chosen to
design the Kadanoff dynamics for d = 2 by considering a certain definition of the
three-dimensional sandpile which does not correspond to the one of Bak’s et al.
in [1]. This hypothesis is not restrictive. It is just used for constructing the transi-
tion rules. Bak’s construction was done similarly. Nevertheless, our result depends
on the way the three dimensional sandpile is modelled. In our case, we have decided
to formalise the sandpile as a monotone decreasing pile in three dimensions where
xi,j ≥ max{xi+1,j, xi,j+1} (here xi,j denotes the sand grains initial distribution) to-
gether with Kadanoff’s avalanche dynamics ruled by parameter p. The pile (i, j)
can give a grain either to every pile (i + 1, j), . . . , (i + p − 1, j) or to every pile
(i, j + 1), . . . , (i, j + p − 1) if the monotonicity is not violated. With such a rule

COMPUT. COMPLEXITY OF AVALANCHES IN 2D KSPM 123

and if we use the height difference for defining the monotonicity, we can define the
transition rules of the dynamics for every value of the parameter p.

In the case where the value of the parameter p equals 2, we find in our definition
of monotonicity something similar with Bak’s SPM in two dimensions. Actually,
both models are different because the definitions of the three dimensional piles differ.
That is the reason why we succeed in proving the P-completeness result which
remains an open problem with Bak’s definition.

The paper is organized as follows. Section 2 introduces the definitions of the
Kadanoff sandpile model in one dimension and presents the avalanche problem.
Section 3 generalizes the Kadanoff sandpile model in two dimensions and presents
the avalanche problem in two dimension, which is proved P-complete for any value
of the Kadanoff parameter p. Finally, Section 4 concludes the paper and proposes
further research directions.

2. Sandpiles and Kadanoff model in one dimension

A sandpile configuration is a distribution of sand grains over a lattice (here
Z). Each pile of the lattice is associated with an integer which represents its sand
content. A finite configuration on Z can be identified with an ordered sequence of
integers ωx1, x2, . . . , x

ω
n in which x1 (resp. xn) is the first (resp. the last) pile such

that all the piles on the left of x1 equal x1 (resp. all the piles on the right of xn
equal xn). Given a configuration x, a ∈ N and j ∈ Z, we use the notation ωaxj
(resp. xja

ω) to say that ∀i ∈ Z, i < j ⇒ xi = a (resp. ∀i ∈ Z, i > j ⇒ xi = a).
Remark that any configuration x ≡ ωx1, x2, . . . , xn−1, xωn can be identified with

its heights differences sequence
ω0, h1 = (x1 − x2), . . . , hn−1 = (xn−1 − xn), 0ω ,

n will be referred to as the length of the configuration and it is denoted |x|. In
other words, we associate the initial (infinite) configuration with a finite sequence
of integers h1, h2, . . . , h|x|−1. This latter representation is more convenient and is
widely used in the sequel. A configuration is finite if only a finite number of its
heights differences sequence has non-zero sand content.

A configuration x is monotone if the sequence of its heights differences is mono-
tone i.e. ∀i ∈ {1, 2, . . . , |x| − 1}, hi ≥ 0. A monotone configuration x is stable if
the sequence of its heights differences is stable, i.e. ∀i ∈ {1, 2, . . . , |x| − 1}, hi < p
i.e. if the difference between any two adjacent piles is less than Kadanoff’s param-
eter p. Let SM(n) denote the set of stable monotone configurations of the form
ωx1, x2, . . . , xn−1, xωn and of length n, for xi ∈ N.

Consider a stable monotone configuration ωx1, x2, . . . , x
ω
n. Adding one more sand

grain, say at pile i, may cause that the pile i topples some grains to its adjacent
piles. In their turn the adjacent piles receive a new grain and may also topple, and
so on. This phenomenon is called an avalanche which ends when the system evolves
to a new stable configuration.

In this paper, topplings are controlled by the Kadanoff’s parameter p ∈ N, p ≥ 2
which completely determines the model and its dynamics. In KSPM(p), p−1 grains
will fall from pile i if hi = (xi − xi+1) ≥ p and the new configuration becomes

ωx1 · · · (xi−1)(xi − p+ 1)(xi+1 + 1) · · · (xi+p−2 + 1)(xi+p−1 + 1)(xi+p) · · ·xn0ω .

124 E. GOLES AND B. MARTIN

x1+1 x2 x3

x3

x3

x3

x3

x4 x5 x6 x7 x8 x9 0 0

x1-1 x2+1

x4+1

x6+1

x6+1

x6+1

x8+1

x4+1

x3+1 x4

x4

x5

x5

x6 x7 x8 x9 0 0

x1-1 x2+1 x3-1 x5+1

x7+1

x6 x7

x6 x7

x8 x9 0 0

x1-1 x2+1 x3-1 x5-1 x8

x8

x9

x9

0 0

x4+1 x7-1 x9+1x1-1 x2+1 x3-1 x5-1 0 0

x8+1x4+1 x7-1 x9-1x1-1 x2+1 x3-1 x5-1 1 1

1 1

1 1

1 1

x6+1 x8+1x4+2 x7-1 x9-1x1-1 x2-1 x5-1

x6+2 x8+1x7-1 x9-1x1-1 x2-1

x4 x5 x8+2 x9-1x1-1 x2-1

x6 x7 2 1x4 x5x1-1 x2-1

Figure 1: Avalanches for p = 3 with 9 piles. Here, xi+1 (resp. xi+2) indicates that
pile i has received some grains once (resp. twice), xi − 1 that pile i has
given some grains according to the dynamics; a dark shaded pile indicates
the toppling pile, a light shaded pile indicates a pile that could topple in
the future. Times goes top-down.

In other words, the pile i distributes one grain to each of its (p − 1) right adja-
cent piles. Equivalently, if we measure the heights differences after applying the
dynamics, we get (hi−1 + p− 1)(hi − p)(hi+1)(hi+2) · · · (hi+p−2)(hi+p−1 + 1), and all
remaining heights do not change. In other words, the height difference hi gives raise
to an increase of (p−1) grains of sand to height hi−1, a decrease of p grains to height
hi and an increase of one grain to height hi+p−1.

We consider the problem of deciding whether some pile on the right of pile xn
(more precisely for xk for n < k ≤ n + p− 1) will receive some grains according to
the Kadanoff’s dynamics. Since the initial configuration is stable, it is not difficult
to prove that avalanches will reach at most the pile n+p−1 (see Fig. 1 for example).

Remark that given a configuration, several piles could topple at the same time.
Therefore, at each time step, one might have to decide which pile or piles are allowed
to topple. According to the update policy chosen, there might be different images of
the same configuration. However, it is known [8] that for any given initial number
of sand grains n, the orbit graph is a lattice and hence, for our purposes, we may
only consider one decision problem to formalize AP:

Problem AP
Instance: A configuration x ∈ SM(n) and k ∈ N s.t. n< k≤ n+ p− 1.
Question: Does there exist an avalanche such that xk ≥ 1?

Let us consider some examples. Let p = 3 and consider a stable configuration
whose height differences are as follows ω0022022120000ω. We add a single grain
at x1 (underlined in the configuration). Then, the next step should probably be
ω02021222120000ω. In one step we see that no avalanche can be triggered, hence
the answer to AP is negative. As a second example, consider the following sequence
of height differences (always with p = 3): ω03122122221201200ω. There are several
possibilities for avalanches from the left to the right but none of them arrives to the
rightmost 0’s region. So the answer to the decision problem is still negative. To get
an idea of what happens for a positive instance of the problem, consider the initial
configuration: ω0312222100ω with p = 3.

COMPUT. COMPLEXITY OF AVALANCHES IN 2D KSPM 125

The full proof of Theorem 2.1 is a bit technical and will only be sketched here.

Theorem 2.1. AP is in NC1 for KSPM in dimension 1 and p > 1.

Sketch of the proof. The first step is to prove that, in this situation, the Kadanoff’s
rule can only be applied once at each pile for any initial monotone stable configu-
ration. Using this result one can see that a pile k such that hk = 0 in the initial
configuration and hk > 1 in the final one, must have received grains from pile k− p.
This pile, in its turn, must have received grains from k − 2p and so on until a “fir-
ing” pile i with i ∈ [[1, p − 1]]. The height difference for all of these piles must be
p− 1. The existence of this sequence and the values of the height differences can be
checked by a parallel iterative algorithm on a PRAM in time O (log n).

3. Sandpiles and Kadanoff model in two dimensions

There are several possibilities to extend the Kadanoff dynamics to two-dimen-
sional sandpiles. We first generalise the definitions introduced in Section 2.

A two-dimensional sandpile configuration is a distribution of sand grains over
the N×N lattice. Therefore, a configuration on N×N will be identified by a mapping
from N×N into N, giving a number of grains of sand to every position in the lattice.
Thus, a configuration will be denoted by xi,j as (i, j) 7→ N. A configuration x is
monotone if ∀i, j ∈ N × N, xi,j is such that xi,j ≥ 0 and xi,j ≥ max{xi+1,j, xi,j+1}.
So we get a monotone sandpile, in the same sense as in [2]. Example 3.1 illustrates
the case which violates the condition of monotonicity of the Kadanoff dynamics.

Example 3.1. Consider the initial configuration given in the bottom left matrix

0 1 0 0�� ��2 3 0 0

8 4 2 2

8 4 3 2

↑ v

0 0 0 0

2 2 0 0

8 6 2 2

8 4 3 2

h→

0 0 0 0

2 2 0 0

8 4 3
�� ��3

8 4 3 2

Values count for the number of grains of a pile. We see that we cannot apply the
Kadanoff’s dynamics for a value of parameter p = 3 from the square boxed pile.
Indeed, the resulting configurations do not remain monotone neither by applying

the dynamics horizontally nor vertically (resp. ↑ v and
h→). A pile which violates

the condition has been highlighted by an oval box in the resulting configurations (it
might be not unique).

Any configuration can be identified by the mapping of its horizontal heights
differences (resp. vertical): h→ : (i, j) 7→ xi,j−xi+1,j (resp. h↑ : (i, j) 7→ xi,j−xi,j+1).
A configuration is finite if only a finite number of its heights differences matrices
has non-zero sand content. A monotone configuration x is horizontally stable (resp.
vertically) if ∀i, j ∈ N×N, h→(i, j) = xi,j−xi+1,j < p (resp. ∀i, j ∈ N×N, h↑(i, j) =
xi,j − xi,j+1 < p) and is stable if both horizontally and vertically stable.

In other words, it is a generalisation of the Kadanoff model in one dimension,
which requires the configuration to be stable if the difference between any two ad-
jacent piles is less than the Kadanoff parameter p. To this configuration, we apply

126 E. GOLES AND B. MARTIN

the Kadanoff dynamics for a given integer p ≥ 1. This can be done if and only if
the new configuration remains monotone. Said differently, prior its application the
dynamics requires to test if the local application gives a non-negative configuration.

The Kadanoff dynamics applied to pile (i, j) for a given p consists in giving a
grain of sand to any pile in the horizontal or vertical line, i.e. {(i, j + 1),(i, j +
p − 1)} or {(i + 1, j), ...(i + p − 1, j)}. Notice that when considering the dynamics
defined over height differences, we work with a different lattice though isomorphic
to the initial one. Fig. 2 explains how the dark pile with coordinates (i, j) with
a height difference of p gives grains either horizontally (Fig. 2 left) or vertically
(Fig. 2 right). Fig. 2 also depicts the relationship between the sandpiles lattice and
the heights differences lattice. The local dynamics depicted by Fig. 2 will be called
Chenilles (horizontal and vertical, respectively).

For a better understanding of the dynamics, recall that in one dimension an
avalanche at pile i changes the heights of piles i−1, i and i+p−1. In two dimensions,
there are height changes on the line but also to both sides of it. The dynamics
is simpler to depict than to write down formally. An example of the Kadanoff’s
dynamics applied horizontally (resp. vertically) is given in Fig. 3. More precisely,
the Kadanoff’s dynamics for a value of parameter p = 4 is depicted in Fig. 4. Observe
that we do not need to take into account the number of grains of sand in the piles.
It suffices to take the graph of the edges adjacent to each pile (depicted by thick
lines) and to store the height differences. So, from now on, we will restrict ourselves
to the lattice and to the dynamics defined over the height differences. In Fig. 4, we
only keep the information required for applying the dynamics in the simplified view.

Example 3.2 (Obtaining Bak’s). In the case p = 2 and if we assume the real
sandpile is defined as in [2] (i.e. xi,j ≥ max{xi+1,j, xi,j+1}), we get the templates
from Fig. 5.

3.1. P-completeness

Changing from dimension 1 to 2 (or greater), the statement of ap has to be
adapted. Consider a finite configuration x which is non-zero for piles (i, j) with
i, j ≥ 0, stable and monotone and let Q be the sum of the height differences. Let
us denote by n the maximum index of non-zero height differences along both axes.
Then, SM(n) denotes the set of monotone stable configurations of the form given
by a lower-triangular matrix of size n × n (a matrix where the entries above the
main diagonal are zero). To generalise the avalanche problem in two dimensions, we
have to find a generic position which is far enough from the initial sandpile but close
enough to be attained. To get rough bounds, the following approach was followed.
For the upper bound, the worst case occurs when all the grains are arranged on
a single pile (with Q as a height difference) which is at an end of one of the axes
-at distance n from the origin- and they fall down. For the lower bound, the pile
containing the grains is at the origin and the grains fall along the main diagonal.
Thus, our decision problem can be restated:

COMPUT. COMPLEXITY OF AVALANCHES IN 2D KSPM 127

Problem AP (dimension 2)
Instance: A configuration x ∈ SM(n), (k, `) ∈ N × N such that xk,` = 0 and√

2
2
n ≤ ‖(k, `)‖ ≤ n + Q (with Q the sum of the height differences and ‖.‖

the standard Euclidean norm).
Question: Does there exist an avalanche (obtained by using the vertical and

horizontal chenilles) such that xk,` ≥ 1?

To prove the P-completeness of ap we proceed by reduction from the monotone
circuit value problem mcvp, proved P-complete under many-one NC1 reduction [9,
Theorem 6.2.2]. Observe that the original proof [4] uses a logspace reduction but
it should be noted that any logspace reduction is also a NC many-one reduction [9,
page 54]. mcvp statement is: given the standard encoding of a Boolean circuit
(which ensures a topological numbering of the gates) with n inputs {α1, ..., αn}, a
designated output β and logic gates AND, OR we want to decide the truth of the
output value β on binary input {α1, ..., αn} [9, page 122]. Wlog., we also assume
that each gate of the circuit has a fan in of two and fan out of at most two and
that the gates are laid out in levels with connections only going to adjacent levels.
The problem remains P-complete with these restrictions [4]. For the reduction, we
have to construct, by using sandpile configurations, wires and turning the signal on
the grid (Fig. 7), logic AND gates (Fig. 8 (Right)), logic OR gates (Fig. 9 (Left)),
cross-overs (Fig. 8 (Left)) and signal multipliers for starting the process (Fig. 9
(Right)) and eventually doubling the output of a gate. We also need to define a
way to deterministically update the network; to do this, we can apply the chenille’s
templates in any way such that it is spatially periodic, for instance from the left to
the right and from the top to the bottom. Our main result is thus:

Theorem 3.3. ap is P-complete for KSPM in dimension two and any p ≥ 2.

Proof. The fact that ap is in P is already known since C. Moore and M. Nilsson
paper [12]. Their proof is done by proving that the total number of avalanches
required to relax a sandpile is polynomial in the system’s size.

For the reduction, one has to take an arbitrary instance of the mcvp variant pre-
viously defined and to build an initial configuration of a sandpile for the Kadanoff’s
dynamics for p = 2 (or greater). Thus, we have to design the following gadgets:

• a wire and how to turn the signal (Fig. 7);
• the crossing of information (Fig. 8 (Left));
• a AND gate (Fig. 8 (Right));
• a OR gate (Fig. 9 (Left));
• a signal multiplier (Fig. 9 (Right)).

Simulated gates can be made up like classical gates (up to an additive constant
depending upon their size) with a fan in of two parallel wires and a fan out upper-
bounded by two. The sandpile circuit is built directly from the standard encoding
of the instance of the mcvp variant. This construction can be done by a NC algo-
rithm [4, 9].

The construction of each gadget is shown graphically for p = 2 but can be done
for greater values. As an example, we give the construction for the AND gate for
p = 3 in Fig. 6. Generalising for greater values of p is not hard though tedious and
would have exceeded the number of pages. For p = 2, the horizontal and vertical

128 E. GOLES AND B. MARTIN

chenilles are given in Fig. 5. Recall that the decision problem only adds a sand grain
to one pile, say (0, 0). To construct the entry vector to an arbitrary circuit we have
to construct from the starting pile wires to simulate any variable αi = 1. (If αi = 0
nothing is done: we do not construct a wire from the initial pile. Else, there will be
a wire to simulate the value 1). Also remark that the signal propagation does not
require a global synchronising clock. Actually, this helps for designing the circuit
since one signal arriving at a logical gate can “wait” for the second signal to arrive.

Then, by construction, positive instances of the mcvp variant are in 1:1 corre-
spondence with positive instances of ap.

Remark 3.4. In the case p = 2, KSPM corresponds to Bak’s model [1] in two
dimensions with a sandpile such that xi,j ≥ max{xi+1,j, xi,j+1}.

4. Conclusion and future work

We have proved that the avalanche problem for the KSPM model in two di-
mensions is P-complete with a sandpile defined as in [2] and for every value of the
parameter p. Let us also point out that in the case where p = 2, this model cor-
responds to the two-dimensional Bak’s model with a pile such that xi,j ≥ 0 and
xi,j ≥ max{xi+1,j, xi,j+1}. In this context, we also proved that this physical ver-
sion (with a two dimension sandpile interpretation) is P-complete. It is important
to notice that, by directly taking the two-dimensional Bak’s tokens game (given a
graph such that a vertex has a number of token greater or equal than its degree, it
gives one token to each of its neighbors), its computation universality was proved
in [7] by designing logical gates in non-planar graphs. Furthermore, by using the
previous construction, C. Moore et al. proved the P-completeness of this problem
for lattices of dimensions d with d ≥ 3. But the problem remained open for two-
dimensional lattices. Furthermore, it was proved in [3] that, in the latter case, it
is not possible to build circuits because the information is impossible to cross. The
two-dimensional Bak’s operator corresponds, in our framework, to the application
of the four rotations of the template (see Fig. 10). But this model is not anymore
the representation of a two-dimensional sandpile as presented in [2], that is with
xi,j ≥ 0 and xi,j ≥ max{xi+1,j, xi,j+1}.

To define a reasonable two-dimensional model, consider a monotone sandpile de-
creasing for i ≥ 0 and j ≥ 0. Over this pile we define the extended Kadanoff’s model
as a local avalanche in the growing direction of the i−j axis such that monotonicity is
allowed. Certainly, one may define other local applications of Kadanoff’s rule which
also match with the physical sense of monotonicity. For instance, by considering
the set (i+ 1, j), (i+ 1, j + 1), (i, j + 1) as the piles to be able to receive grains from
pile (i, j). In this sense it is interesting to remark that the two-dimensional sandpile
defined by Bak (i.e for nearest neighbors, also called the von Neumann neihborhood,
a pile gives a token to each of its four neighbors if and only if it has enough tokens)
can be seen as the application of the Kadanoff rule for p = 2 by applying to a pile,
if there are at least four tokens, the horizontal (→) and the vertical (↓) chenille
simultaneously (see Fig. 10). Similarily, for an arbitrary p, one may simultaneously
apply other conbinations of chenilles which, in general, allows us to get P-complete
problems. For instance, when there are enough tokens, the applications of the four
chenilles (i.e. ←,→,↑ and ↓) give raise to a new family of local templates called
butterflies (because of their four wings). It is not so difficult to construct wires

COMPUT. COMPLEXITY OF AVALANCHES IN 2D KSPM 129

and circuits for butterflies. Hence, for this model, the decison problem will remain
P-complete. One thing to analyze from an algebraic and complexity point of view is
to classify every local rule derivated from the chenille application. Further, one may
define a more general sandpile dynamics which contains both Bak’s and Kadanoff’s
ones: i.e given an integer p ≥ 2, we allow the application of every Kadanoff’s update
for q ≤ p. That means that an active pile with more than p grains can distribute
up to q grains to the adjacent piles. We are studying this dynamics and, as a first
result, we observe yet that in one dimension there are several fixed points and also,
given a monotone circuit with depth m and with n gates, we may simulate it on a
line with this generalized rule for a given p ≥ m+ n.

For the one-dimensional avalanche problem as defined in Section 2, it can be
proved that it belongs tho the class NC for p = 2 and that it remains in the same
class when the first p piles contain more than one grain (i.e. that there is no hole in
the pile). We are in the way to prove the same in the general case.

Acknowledgements

We thank Pr. Enrico Formenti for helpful discussions and comments while
Pr. Eric Goles was visiting Nice and writing this paper.

References

[1] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38(1):364–374,
1988.

[2] E. Duchi, R. Mantaci, H. Duong Phan, and D. Rossin. Bidimensional sand pile and ice pile
models. Pure Math. Appl. (PU.M.A.), 17(1-2):71–96, 2006.

[3] A. Gajardo and E. Goles. Crossing information in two dimensional sand piles. Theoretical
Computer Science, 369(1-3):463–469, 2006.

[4] L.M. Goldschlager. The monotone and planar circuit value problems are log space complete
for P. ACM sigact news, 9(2):25–29, 1977.

[5] E. Goles and M. Kiwi. Sand pile dynamics in one dimensional bounded lattice. In N. Boccara
et al, editor, Cellular Automata and Cooperative Systems, volume 396 of NATO-ASI, pages
203–210. Ecole d’Hiver, Les Houches, Kluwer, 1993.

[6] E. Goles and M. Margerstern. Sand piles as a universal computer. Journal of Modern Physics-
C, 7(2):113–122, 1996.

[7] E. Goles and M. Margerstern. Universality of the chip firing game on graphs. Theoretical
Computer Science, 172:121–134, 1997.

[8] E. Goles Ch., M. Morvan, and Ha Duong Phan. The structure of a linear chip firing game and
related models. Theor. Comput. Sci., 270(1-2):827–841, 2002.

[9] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation. Oxford University
Press, 1995.

[10] L.P. Kadanoff, S.R. Nagel, L. Wu, and S. Zhou. Scaling and universality in avalanches. Phys.
Rev. A, 39(12):6524–6537, 1989.

[11] P. B. Miltersen. The computational complexity of one-dimensional sandpiles. Theory of Com-
puting Systems, 41:119–125, 2007.

[12] C. Moore and M. Nilsson. The computational complexity of sandpiles. Journal of statistical
physics, 96(1-2):205–224, 1999.

130 E. GOLES AND B. MARTIN

p - 1

-1 +1

-1 +1

-1 +1

+p-1

+p-1 -p+1

-p

+1

horizontal

vertical

...... ...

p-1

-p+1

-1

+1

-1

+1

-1

+1

+p-1

p - 1

-p +1...
...

...

p-1

-p+1

+p-1 -p ...
...

...
+1

+1

-1

+1

-1

Figure 2: Horizontal resp. vertical (on the left resp. on the right) chenilles in the N×
N lattice for arbitrary parameter p ≥ 2. The pile (i, j) –denoted by a black
bullet– gives one grain of sand to the pile (i+ p− 1, j) horizontally resp.
one grain of sand to the pile (i, j + p− 1) vertically. The figure gives the
height differences of this dynamics and the change of the lattice structure
between the dynamics on the grains and the corresponding dynamics on
the height difference. In the sequel, we will adopt the representation on
the left and on the bottom for defining the templates.

ba

f

g

k

l

c d e

ba-3

f+1

g+1

k+1

l

c d e

b+1a-3

f

g

k

l

c+1 d+1 e

+3

+3

+3 -3

-4

-1 +1

0

-1 +1

0

-1 +1

1

+3

-3

-4

-1

+1

0

-1

+1

0

-1

+1

1

H (horizontal)

V (vertical)

Figure 3: Horizontal and vertical chenilles for p = 4. Shaded squares count the
number of grains on each pile and the hexagons between the squares the
height difference between the corresponding two adjacent piles. The initial
configuration is on the bottom-left. The Kadanoff’s dynamics is applied
from the shaded pile labelled a horizontally or vertically (resp. ↑ V and
H→) to get the resulting configurations.

COMPUT. COMPLEXITY OF AVALANCHES IN 2D KSPM 131

+3

-3

-1

+1

-1

+1

-1

+1

+3 -4 +1

+3 -3

-1 +1

-1 +1

-1 +1

+3

-4

+1

+3

-3

-1

+1

-1

+1

-1

+1

+3 -4 +1

horizontal (simplified)

horizontal

+3 -3

-1 +1

-1 +1

-1 +1

+3

-4

+1

vertical
(simplified)

vertical

Figure 4: Horizontal and vertical chenilles for p = 4. The dynamics is applied to the
dark-shaded pile (the leftmost one on the left part of the figure and the
lowest one on the right part of the figure). The numbers express the height
differences after the application of the dynamics. The two simplified views
remove the number of sand grains information and only keeps the height
difference information. It corresponds to a change in the lattice structure
if the grains are considered or the height difference.

-1

+1

-2+1

+1

-1

+1

-1

-2

+1

+1

-1

+1

+1

Figure 5: Templates for Bak’s dynamics with p = 2.

2

2

2

2

1

1

1

3

3

1 1

1

1

1 1

2

1

1

2

1

1

1

1

1

input 1

input 2

output

Figure 6: The logic AND gate for two inputs for p = 3. The circled “2” is put in
order to get enough tokens for the horizontal and vertical inputs.

1

0

2

0

1

0 1

0

1

1

0

1

1

0

1

1t = 0

0

1

0

1

0

1 2

0

1

1

0

1

1

0

1

1t = 1

-1

+1

-2+1

+1

-1

+1

2

1

1 1

1

1

1 1

1

1

input
output

Figure 7: Information propagation in a wire for p = 2 at times t = 0 and t = 1 using
the templates for Baks dynamics (recalled on the left of the figure) and
wire for turning the information to the right.

132 E. GOLES AND B. MARTIN

1

1

0 1

0

0

2

2

t = 0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

0

2

2

1 1

1

1

1 1 1

1

1

1 1

1

1

1

1

1

1

1

input 1

input 2

output

Figure 8: (Left) Crossing over two wires for p = 2; arrows show the directions of
propagation. (Right) A logic AND gate with two inputs for p = 2. The
upcoming “2” has to reach the horizontal “2” to change the value of the
boxed “0” to “1”. Then, the upcoming “2” can apply the vertical chenille
template and changes the circled “1” into “2”. In other words, the AND
is computed by applying 3 horizontal chenilles and 4 vertical ones.

1

0 1

0

0

2

2

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

input 1

input 2

output

2

1
1

1

1

1

11

1

1

1

1

1

1

1

1 1 1 1

0

0

1 1 1 1

Figure 9: (Left) A logic OR gate with two inputs for p = 2. The boxed cell indicates
the OR gate point of computation. (Right) A signal multiplier for p = 2.
The signal starts on boxed pile with value 2 (the input) and applying
the first vertical chenille ruled by the Kadanoff’s dynamics multiplies the
signal on both horizontal wires. Then, we use horizontal chenilles to move
both signals according to the arrows.

-1

+1

-2

+1

-1

+1 +1

+1

+1

-2

+1

-1

+1

-1

+1

+1

-2

+1

-1

+1

-1

+2 +2-8

+2

+2

+1 +1-4

+1

+1

-1

+1

-2

+1

-1

+1 +1()
(a) (b)

Figure 10: From Bak’s to Kadanoff’s operators. All the Kadanoff’s operators be-
tween the brackets have been applied to get the pattern (a). The Bak’s
pattern (b) is obtained by eliminating the holes in (a) and by dividing
the number of tokens by two.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 133-144

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA

PIERRE GUILLON 1, PIERRE-ÉTIENNE MEUNIER 2, AND GUILLAUME THEYSSIER 2

1 Department of Mathematics, University of Turku, 20014 Turku, Finland
E-mail address: piegui@utu.fi

2 LAMA (CNRS, Université de Savoie), Campus Scientifique, 73376 Le Bourget-du-Lac
Cedex, France
E-mail address, P.-E. Meunier: pierreetienne.meunier@univ-savoie.fr
E-mail address, G. Theyssier: guillaume.theyssier@univ-savoie.fr

Abstract. This paper studies two kinds of simulation between cellular automata:
simulations based on factor and simulations based on sub-automaton. We show
that these two kinds of simulation behave in two opposite ways with respect to
the complexity of attractors and factor subshifts. On the one hand, the factor
simulation preserves the complexity of limits sets or column factors (the simulator
CA must have a higher complexity than the simulated CA). On the other hand,
we show that any CA is the sub-automaton of some CA with a simple limit set
(NL-recognizable) and the sub-automaton of some CA with a simple column factor
(finite type). As a corollary, we get intrinsically universal CA with simple limit
sets or simple column factors. Hence we are able to ’hide’ the simulation power
of any CA under simple dynamical indicators.

Introduction

Since the introduction of the model in the 40s, cellular automata have been
studied both as dynamical systems and as a computational model. In both aspects,
they can show very complex behaviors, be it through their topological dynamics
[Kůr03] or through their ability to compute [vN66, Oll03]. As such, they constitute
a good model to tackle one of the major question of natural computing: what kind
of dynamical behavior allows to support computation, and reciprocally, what does
the ability to compute imply on the dynamical behavior of a system?

In this paper, we focus on asymptotic dynamics of cellular automata (notion
of limit set [ČPY89]), and on their unprecise observation (notion of column fac-
tors [Kůr97]). Intuitively, the limit set is the set of configuration that can appear
arbitrarily far in the evolution of the system, and the column factor is the set of
sequences of states that a cell (or group of cells) can take in a valid orbit of the
system. These notions have been intensively studied in the literature as indicators
of the dynamical complexity of cellular automata [Hur90, Kar94, BM97, CFG10].

Research partially supported by projects CONICYT-ANILLO ACT88 (Chile), FONDECYT
1090156 (Chile), ANR EMC NT09 555297 (France) and Academy of Finland project 131558.

c

133

134 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

Concerning limit sets of cellular automata, the initial (wrong) intuition was that
a universal CA should necessarily have a non-recursive limit set (such a statement
appears in [ČPY89]). Later, a Turing-complete CA with a simple limit set was
constructed in [GMM93]. This result gives a first hint concerning the absence of
correlation between the complexity of the limit set and the ability to handle com-
putations. However, the construction goes through a slow simulation of two-register
machines where registers are encoded in unary. Therefore, this results is extrinsic
to the model of cellular automata and shows only that any behavior of register
machines can be embedded into a cellular automaton with a simple limit set.

Here, we aim at exploring intrinsic versions of the same question: what can be
the limit set complexity of a CA able to simulate any other CA? More precisely,
we consider two flavors of simulations: one using factor (continuous projection) of
a simulator CA onto the simulated CA, and the other using the local uniform in-
jection (sub-automaton) of a simulated CA into a simulator CA. Such simulation
relations were extensively studied in [DMOT10b], and the second flavor is the one
giving rise to the notion of intrinsic universality [Oll02, DMOT10b]. The main point
of the present paper is that factor simulations preserve limit set complexity whereas
sub-automaton simulations do not. We also show that the same phenomenon ap-
pears for the complexity of column factors. Our main results are two embedding
theorems showing that there exist an intrinsically universal CA with column factors
of finite type and an intrinsically universal CA with an NL-recognizable limit set
(that is, its limit language can be recognized by a non-deterministic Turing machine
in logarithmic space). The second result solves an open problem of [The05].

1. Definitions

Let us note N+ = N \ {0}. If i, j ∈ Z, we note Ji, jK the interval of integers k
such that i ≤ k ≤ j, Ji, jJ = Ji, j − 1K, Ki, jJ = Ji+ 1, j − 1K and so on. Consider
a fixed finite alphabet A. If x ∈ AZ and Ji, jK ⊂ Z, then we note xJi,jK ∈ Aj−i+1

the pattern corresponding to the sequence of letters xi . . . xj (and similarly for other
kinds of intervals).

If U ⊂ Ak for some k ∈ N and i ∈ Z, the cylinder [U]i will denote the set of
configurations x ∈ AZ such that xJi,i+kJ ∈ U . We also note [U] = [U]0. If a ∈ A, let
∞a∞ be the configuration x ∈ AZ such that xi = a for any i ∈ Z.

A dynamical system is a pair (X,F) where X is a compact space and F is a
continuous self-map of X. We can then study iterations F t for any time step t ∈ N.

Let M stand either for N or for Z. The shift map σ is defined for any z ∈ AM and
any i ∈M by σ(x)i = xi+1. A subshift is a dynamical system (Σ, σ), or simply Σ, that
is a subset of AM which is closed under the usual Tychonoff topology and invariant
by the shift map. Equivalently, it is the set

{
z ∈ AM

∣∣∀ Ji, jK ⊂M, zJi,jK /∈ F
}

of
infinite words that avoid the finite patterns from some given family F . If this family
can be taken finite, then Σ is called a subshift of finite type (SFT). If it can be taken
among words of length k ∈ N+, it has order k. The language L(Σ) of a subshift Σ
is the set

{
zJi,jK

∣∣ z ∈ Σ and Ji, jK ⊂M
}

of patterns appearing in the infinite words
of Σ. If this language is regular, then we say that Σ is a sofic subshift. Equivalently
thanks to the Weiss theorem [Wei73], it is obtained from an SFT by a letter-to-letter
projection.

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA 135

A cellular automaton (CA) is a dynamical system (AZ, F) which commutes
with the shift, i.e. σF = Fσ. Equivalently, thanks to the Curtis-Hedlund-Lyndon
theorem, it is obtained by some local map f : A2r+1 → A for some radius r ∈ N, i.e.
for any x ∈ AZ and i ∈ Z, F (x)i = f(xJi−r,i+rK). F admits a spreading state 0 ∈ A if
it admits a local rule f : A2r+1 → A with r ∈ N and f(u) = 0 whenever there exists
i ∈ J0, 2rK such that ui = 0.

An SFT Σ is irreducible if for any two words u, v ∈ L(Σ), there exists a word w
such that uwv ∈ L(Σ). CA can actually be applied in a very natural way to these
subshifts: a partial CA will be a dynamical system over some irreducible SFT that
commutes with the shift. It is known from [Fio00] that any injective partial CA is
bijective and reversible (the inverse is also a partial CA).

1.1. Simulations

The central notion studied in this paper is that of simulation between dynamical
systems and more specifically cellular automata. We will distinguish two families of
simulation relations based on the following notions.

Definition 1.1 (Factors and sub-systems).

• A factor map between two dynamical systems (X,F) and (Y,G) is a contin-
uous onto map Φ : X → Y such that ΦF = GΦ. In that case, we say that
G is a factor of F .
• A sub-system of a dynamical system (X,F) is a dynamical system of the

form (Y,G) where Y ⊆ X (Y is closed) and F (Y) ⊆ Y .

Note that a factor map Φ between two subshifts Σ and Γ respect the Curtis-
Hedlund-Lyndon theorem: there exist a radius r ∈ N and a local rule φ : L2r+1(Σ)
such that Φ(x)i = φ(xJi−r,i+rK) for any x ∈ Σ and any i ∈ Z. We say that the factor
map between two subshifts is a coloring if the radius can be taken r = 0.

If (X,F) and (Y,G) are cellular automata, we say that (X,F) simulates (Y,G)
by factor if there is a factor map Φ from (X,F) onto (Y,G) which is also a factor
map from (X, σX) onto (Y, σY). Besides, when (X,F) is a cellular automaton and
Y is a full-shift included in X, then (Y, F) is a sub-automaton of (X,F).

These two relations (factor and sub-system) are restrictive since they don’t allow
entropy to increase: a factor or a sub-system of a given system has always a lower
entropy. As a consequence, they don’t support universality (existence of a system
able to simulate any other) since it is not difficult to build systems of arbitrarily large
entropy. Hence, in the literature, other ingredients were introduced to obtain richer
notions of simulation: for instance, in cellular automata, operations of space and
time rescaling added to the notion of sub-automaton lead to a notion of simulation
supporting universality [DMOT10a, DMOT10b].

In this paper, such kind of spatio-temporal transformations are not considered
explicitly for two reasons:

• our results about factor simulation (Section 2) involve properties (complexity
of the subshifts) which are invariant by space and time rescaling, hence the
results still hold when considering rescaling as part of the simulation relation;

136 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

• our results about sub-system simulation (Section 3) are of the form ”any
CA is the sub-automaton of a CA with some given property”, which is ac-
tually the most general we can get, and remain true when replacing ”sub-
automaton” by more general notions of sub-system (such as sub-system, or
simulated system in the sense of [DMOT10b]).

1.2. Complexity of limit sets and column factors

Many different points of view have been adopted to study the complexity of CA.
We here use symbolic dynamics, and consider the complexity, as subshifts, of the
limit set on the one hand, or the column factors on the other hand, as representing
the actual complexity of the CA.

The limit set of the dynamical system is the nonempty closed subset ΩF =⋂
t∈N F

t(X). Its limit system is the maximal surjective subsystem, (ΩF , F). It
basically represent the asymptotic dynamics of the system.

With respect to CA limit sets, it is not difficult to see that the corresponding
language is always corecursively enumerable (it is an effective subshift). However,
there are known examples of non-recursive ones [Hur90]. Moreover, simple additional
remarks [Taa07, Kůr03, Nas95] give the following hierarchy:
F injective ⇒ F|ΩF

injective ⇒ ΩF is an SFT ⇒ F is stable ⇒ ΩF is sofic ⇒ . . .
The column factor of a dynamical system (AZ, F) upon interval Ji, jK ⊂ Z is the

set τ
Ji,jK
F = T

Ji,jK
F (AZ), where

T
Ji,jK
F : AZ → (AJi,jK)N

x 7→ (F t(x)Ji,jK)t∈N
. It is a factor subshift

since σT
Ji,jK
F = T

Ji,jK
F F . It can represent an observation of the system made by a

measuring device with a finite precision (that cannot see cells which are far away).
It can be seen that any factor subshift is essentially a factor of some column factor
[Kůr97].

In the case of CA, shift-invariance allows to consider only the central column

factors τ
J−k,kK
F for radius k ∈ N+. It is known [Gil88] that these CA column factors

always have a context-sensitive language; they may actually be strictly context-
sensitive. In [Kůr97], strong links with topological notions are stated: finite column
factors is equivalent to equicontinuity, SFT column factors imply the shadowing
property which in turn imply sofic column factors.

2. Factor simulations

The two hierarchies that we have just defined, based on subshift classifications,
are then very robust to factor simulations, as we can see in this section. Taking the
vocabulary of order theory, we say that a class C of systems is an ideal for factor sim-
ulation if, whenever (X,F) is a factor of (Y,G), we have: (Y,G) ∈ C ⇒ (X,F) ∈ C.
Proposition 2.1. If Φ is a factor map from (X,F) onto (Y,G), then ΩG = Φ(ΩF).

Proof. For any t ∈ N, ΦF t(X) = Gt(Y). First note that Φ(
⋂
t∈N F

t(X)) is included
in
⋂
t∈N ΦF t(X) =

⋂
t∈NG

t(Y). Conversely, let y ∈ ⋂t∈NG
t(Y) and, for t ∈ N,

Xt = Φ−1(y) ∩ F t(X). Note that Xt is closed (since Φ and F are continuous, and
X is compact) and nonempty (since Φ is onto). By compactness, the intersection⋂
t∈NXt = Φ−1(y)∩ΩF is not empty, i.e. y ∈ Φ(ΩF). We have proven that Φ(ΩF) =

ΩG.

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA 137

Moreover, we can note that ΩFn = ΩF , since if n ∈ N+, then F nt(X) =⋂
(n−1)t<j≤nt F

j(X). In the following we will no longer mention time and space
rescaling, which does not essentially alter the results.

Corollary 2.2. The class of stable systems is an ideal for factor simulation.

Proof. If Φ is a factor map from (X,F) onto (Y,G), and ΩF = F t(X) for some
t ∈ N, then ΩG = Φ(ΩF) = ΦF t(X) = Gt(X).

We can also derive the two following results.

Proposition 2.3. The class of CA whose limit set (resp. factor subshifts) is sofic
(resp. context-free, context-sensitive, recursive) is an ideal for factor simulation.

Proof. It is known that each of the corresponding classes of subshifts is preserved
by factor maps. Proposition 2.1 states that the limit set of the simulated CA is a
factor of the limit set of the simulating CA.
Moreover, note, thanks to the transitivity of the notion of factor, that a factor
subshift of the simulated CA is also a factor subshift of the simulating CA.

The following slightly generalizes a result in [The05].

Proposition 2.4. The class of reversible partial CA is an ideal for coloring.

Proof. Let Φ be a factor map based on some radius-0 local rule φ : A→ B, from a
partial CA (Σ, F) onto another one (Γ, G), where Σ ⊂ AZ and Γ ⊂ BZ and there
exists some partial CA F−1 : Σ→ Σ such that FF−1 is the identity. By surjectivity
of Φ, for any letter b ∈ B, there exists a letter, denoted abusively φ−1(b) ∈ A such
that φ(φ−1(b)) = b. If Φ−1 represents the parallel application of φ−1 to BZ, we
obtain that ΦΦ−1 is the identity of Γ. We can define the map G−1 = ΦF−1Φ−1, in
such a way that GG−1 is the identity of Γ. G−1 is an injective partial CA, hence it
is reversible, and it is the actual inverse map of G.

As far as we know though, it is unknown whether the class of injective CA is
still an ideal for factor simulation.

Corollary 2.5. The class of CA which are reversible over the limit set is an ideal
for coloring.

Proof. Consider such a CA. From [Taa07], it is stable and its limit set is an ir-
reducible SFT. Now if it is linked to some other CA by some coloring, then by
Proposition 2.1, so are the two limit systems (that are partial CA), which then re-
spect the hypotheses of Proposition 2.4.

From the previous, we can see that any universal CA for factor simulation (up
to rescaling) must have a non-recursive limit set and strictly context-sensitive factor
subshifts (and of course must not be injective), but the existence of such a CA is
still open.

3. Sub-system simulations

We will see in this section that, contrary to factor simulations, sub-system sim-
ulations allow to hide the complexity of the simulated CA into the simulator CA.

138 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

3.1. Hiding the column factors

If G is a CA over alphabet C of radius r > 0, local rule g, then let us define the
CA G̃ over alphabet D = {−1, 0, 1}×C with the same radius r as G and local rule:

g̃ : D2r+1 → D

(ε−r, c−r) . . . (εr, cr) 7→
∣∣∣∣

(ε0, cε0) if ε0 6= 0 ;
(0, g(c−r . . . cr)) otherwise.

Clearly, G is a sub-automaton of G̃ (up to state renaming) corresponding to the
sub-alphabet {0} × C.

Theorem 3.1. Any cellular automaton G is a sub-automaton of some CA whose
column factors are SFT of order 2.

Proof. Let us take a CA G over alphabet C, of radius 1. Let G̃ be defined as above
over alphabet C̃ = {−1, 0, 1} × C, k ∈ N+ and Σ its column factor of width k. Of
course, Σ is included in its 2-approximation

A2(Σ) =
{
z = (zt)t∈N ∈ (C̃k)N

∣∣∣ ∀t ∈ N,∃xt ∈ [zt] ∩ G̃−1([zt+1])
}
.

Let us show that they are actually equal. Let z = (zt)t∈N ∈ (C̃k)N be such that
for any t ∈ N there exists some configuration xt ∈ [zt] with G̃(xt) ∈ [zt+1], and x
defined by:

xi =

∣∣∣∣∣∣

x0
i if 0 ≤ i < k

(−1, c) if i < 0 and x−i−1
−1 = (ε, c)

(1, c) if i ≥ k and xi−kk = (ε, c) .

An inductive application of the local rule gives that for any t ∈ N, we have:

G̃t(x)i =

∣∣∣∣∣∣

xti if 0 ≤ i < k
(−1, c) if i < 0 and xt−i−1

−1 = (ε, c)
(1, c) if i ≥ k and xt+i−kk = (ε, c) .

In particular, z = T k
G̃

(x) ∈ Σ. We have proven that Σ is an SFT of order 2. If G

does not have radius 1, then it is easy to widen the radius of G̃ (and increase the
speed of the shifts) to get the same result.

3.2. Hiding the limit set

The main result of this section is based on the existence of a firing-squad CA
with specific properties expressed by Lemma 3.2. We actually refer to the firing-
squad CA defined in [Kar94], that we denote by S, and prove additional properties
in Section 4. This CA admits a so-called firing state γ and a spreading state κ. Let
rS the radius of S, s its local rule, Q its state set, and Q′ = Q \ {κ, γ}. Consider
the set XS of configurations having an infinite history avoiding κ and γ:

XS =
{
y ∈ QZ∣∣ ∃(yt)t∈N ∈ (QZ)N, y0 = y and ∀t ∈ N+, y

t ∈ Q′ and S(yt) = yt−1
}
.

Lemma 3.2. S satisfies the following:

(1) ∞γ∞ ∈ XS;
(2) ΩS ∩ [γ] ⊂ {κ, γ}Z;
(3) XS is NL-recognizable.

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA 139

Proof. Properties (1) and (2) are proven in [Kar94]. Property (3) is given by Propo-
sition 4.10 below.

This construction allows to state the following theorem, proven at the end of
the subsection.

Theorem 3.3. Any CA is a sub-automaton of some CA whose limit set is NL-
recognizable.

By the existence of intrinsically universal CA for a simulation containing the
sub-automaton relation (see for instance [Oll03]) and the transitivity of simulations,
we can directly derive the following.

Corollary 3.4. There exists an intrinsically universal CA whose limit set is NL-
recognizable.

The idea of the construction is the following: given some CA F over alphabet A,
we add an extra (firing-squad) component which is able to generate any configuration
of AZ arbitrarily far in the future. The complexity of the limit set of F is thus
completely flooded into the full-shift AZ. All the technical difficulty is to control the
contribution of the additional component to the final limit set.

Let F be a CA of radius rF , local rule f over alphabet A with a spreading state
0 ∈ A. We define a CA ∆F,S of local rule δF,S defined on alphabet C = At (A×Q)
with radius r = max(rF , rS) by:

δF,S : c 7→

f(a−rF . . . arF) if c = a−r . . . ar ∈ A2r+1 ; (1)

a0 if c = (a−r, γ) . . . (ar, γ) ∈ (A× {γ})2r+1 ; (2)

(a0, s(b−rS . . . brS)) if c = (a−r, b−r) . . . (ar, br) ∈ (A×Q′)2r+1 ; (3)

0 otherwise. (4)

Basically, this CA freezes the first component while applying the firing squad on
the second component until some firing state appears, which then frees this second
component and starts the application of F . When the configuration is not coherent,
or when κ appears, 0 begins to spread. Clearly, F is a sub-automaton of ∆F,S.

The structure of the corresponding limit set will be given by the following lem-
mas.

Lemma 3.5. AZ ⊂ Ω∆F,S
.

Proof. Let x ∈ AZ. From Point 1 of Lemma 3.2, there is a sequence (yt)t∈N with
y0 = ∞γ∞ and for any t ∈ N+, yt /∈ {γ, κ} and S(yt) = yt−1. Consider now the
configurations xt = (xi, y

t+1
i)i∈Z for t ∈ N+. By a quick induction on t ∈ N+, we can

see that for any cell i ∈ Z, only case (3) of the local rule is used, and x0 = ∆t
F,S(xt).

At time −1, since the second component of x−1 is ∞γ∞, case (2) of the rule is applied
in every cell, which gives x = ∆F,S(x−1) = ∆t

F,S(x−t) for any t ∈ N+.

Lemma 3.6. Let x ∈ Ω∆F,S
and i, j ∈ Z such that i 6= j and xi = (ai, γ), xj =

(aj, bj) ∈ A×Q. Then bj ∈ {γ, κ}.
Proof. We can assume, by symmetry, that i < j, and for the sake of contradic-
tion that bj /∈ {γ, κ}. Let (xt)t∈Z be a biorbit of x = x0, i.e. a bisequence of
configurations such that ∀t ∈ Z,∆F,S(xt) = xt+1. By an easy recurrence and the
fact that xi ∈ A × Q can only be obtained through case (3) of the rule, we can
see that for any t ∈ N, x−tJi−rt,i+rtK can be written (a−ti−rt, b

−t
i−rt) . . . (a

−t
i+rt, b

−t
i+rt) ∈

140 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

(A×Q)1+2rt and st(b−ti−rSt . . . b
−t
i+rSt

) = bi; in the same way, x−tJj−rt,j+rtK can be written

(a−tj−rt, b
−t
j−rt) . . . (aj+rt, bj+rt) ∈ (A × Q)1+2rt, and st(b−tj−rSt . . . b

−t
j+rSt

) = bj. Then for

any t > j−i−1
2r

, x−tJi−2rt,j+2rtK is in (A × Q)j−i−1+4rt and the image st(x−tJi−rSt,j+rStK)
contains bi and bj. In other words, the cylinder [biQ

j−i−1bj]i intersects St(QZ) for
any t, and by compactness intersects ΩS, which contradicts Point 2 of Lemma 3.2.

If Σ ⊂ AZ is a subshift and 0 ∈ A, then we consider the subshift 0 • Σ • 0 =⋃
−∞≤l≤m≤+∞

{
x ∈ AZ

∣∣ ∀i /∈ Kl,mJ , xi = 0 and ∃y ∈ Σ, xKl,mJ = yKl,mJ
}

of configura-
tions or pieces of configurations of Σ surrounded by 0.

Lemma 3.7. Ω∆F,S
\ AZ ⊂ 0 • (A×Q)Z • 0.

Proof. By shift-invariance, it is sufficient to prove that Ω∆F,S
∩ [A×Q]0 ⊂ 0 • (A×

Q)Z•0. Let us prove by induction on n ∈ N that the patterns of (A×Q)(A2rn\{02rn})
are forbidden in Ω∆F,S

. The base case is trivial (there are no such patterns). Now
suppose it is true for n ∈ N, and suppose there exists a configuration x ∈ [(A ×
Q)02rn+k(A\{0})]0∩Ω∆F,S

with 1 ≤ k ≤ 2r. Consider a preimage y ∈ Ω∆F,S
of x. On

the one hand, in cell 0 of y, we must have applied case (3), so yJ−r,+rK ∈ (A×Q)2r+1,
and this word does not involve γ. On the other hand, if we have applied case
(1) in cell 2nr + k + 1 of y, then yJ(2n−1)r+k+1,(2n+1)r+k+1K ∈ (A \ {0})2r+1, but
the space between these two neighborhoods is (2n − 1)r + k + 1 − r − 1 ≤ 2nr −
1, which contradicts the induction hypothesis. The other possibility was that we
have applied case (2) in cell 2nr + k + 1, which involves a state γ among cells of
yJ(2n−1)r+k+1,(2n+1)r+k+1K, which contradicts Lemma 3.6. In the limit, and with a
symmetric argument on the left, we obtain that all the configurations of Ω∆F,S

\AZ

are in 0 • Σ • 0.

We shall abusively denote AZ ×XS =
{

(ai, si)i∈Z ∈ (A×Q)Z
∣∣ (si)i∈Z ∈ XS

}
.

Lemma 3.8. Ω∆F,S
= AZ ∪ 0 • (AZ ×XS) • 0.

Proof. Thanks to Lemmas 3.7 and 3.5, it is enough to prove two inclusions for the
configurations x ∈ CZ with l,m ∈ J−∞,+∞K such that xKl,mJ ∈ (A×Q)m−l−1 and
for any i /∈ Kl,mJ, xi = 0.

First, suppose that x ∈ Ω∆F,S
, i.e. for any t ∈ Z, there exists xt ∈ ∆t

F,S({x}). By

recurrence, we can see that x−ti ∈ A×Q′ for all i ∈ Kl − rt,m+ rtJ and t ≥ 1 since
states from A×Q are only produced by case (3) of the rule. Let w−t ∈ Q′m−l+2rt+1

be the projection of (x−t)Kl−rt,m+rtJ on its second component. Clearly, w0 is in the
language of XS. We deduce that x = x0 ∈ 0 • (AZ ×XS) • 0.

Conversely, suppose that x ∈ 0 • (AZ × XS) • 0, i.e. there is a sequence (yt)
with, for t ≥ 1, yt ∈ Q′Z and yt = S(yt+1) and, for any t ∈ N and any i ∈ Kl,mJ,
x = (ai, S

t(yt)i) for some ai ∈ A. Now take the configuration ỹt ∈ CZ such that
for any i /∈ Kl − rt,m+ rtJ, ỹti = 0, and for any i ∈ Kl − rt,m+ rtJ, ỹti = (bi, y

t
i)

with bi ∈ A, and bi = ai if i ∈ Kl,mJ. By a direct recurrence, for any j < t
and any i /∈ Kl − rt+ rj,m+ rt− rjJ, we have ∆j

F,S(ỹj)i = 0 and for any i ∈
Kl − rt+ rj,m+ rt− rjJ, we have ∆j

F,S(ỹj)i = (bi, S
j(yj)i) (since yj ∈ Q′ ∈ Z case

3 of the definition of ∆F,S applies at position i of ỹj). This gives that ∆t
F,S(y) = x.

We have proven that Ω∆F,S
∩ 0 • (A×Q)Z • 0 = 0 • (AZ ×XS) • 0.

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA 141

L1

r1

l2

l2

R1

r2

r2

l1

R1

r2
Z

#’

γ

L1

r1

l2

l2

R1

r2

r2
l1

X

#
#’

γ

L1

l2

Y

R1

l1

r2

r2

L1

l2

Y

#’

γ

L1

l2

l2

r1

X

#
#’
#’
#’
#
#’

γ

L1

l2

l2

r1

L1

r1
l2

l2

R1

r2
Z

#’

γ

L1

l2

l2

r1

L1

l2

l2

r1

X

#
#’

γ

L1

l2

l2

r1

L1

l2

l2

r1

L1

l2

Y

#’

γ

#
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#
#’

γ

R1

r2

r2

l1

R1

r2

r2

l1

R1

r2
Z

#’

γ

R1

r2

r2

l1

R1

r2

r2
l1

X

#
#’

γ

R1

r2

r2

l1

R1

l1

r2

r2

L1

l2

Y

#’

γ

R1

r2

r2

l1

X

#
#’
#’
#’
#
#’

γ

R1

r2
Z

L1

r1
l2

l2

R1

r2
Z

#’

γ

R1

l1

r2

r2

L1

l2

l2

r1

X

#
#’

γ

R1

l1

r2

r2

L1

l2

l2

r1

L1

l2

Y

#’

γ

X

#
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#
#’

γ

L1

r1

l2

l2

R1

r2

r2

l1

R1

r2
Z

#’

γ

L1

r1

l2

l2

R1

r2

r2
l1

X

#
#’

γ

L1

l2

Y

R1

l1

r2

r2

L1

l2

Y

#’

γ

L1

l2

l2

r1

X

#
#’
#’
#’
#
#’

γ

L1

l2

l2

r1

L1

r1
l2

l2

R1

r2
Z

#’

γ

L1

l2

l2

r1

L1

l2

l2

r1

X

#
#’

γ

L1

l2

l2

r1

L1

l2

l2

r1

L1

l2

Y

#’

γ

#
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#
#’

γ

R1

r2

r2

l1

R1

r2

r2

l1

R1

r2
Z

#’

γ

R1

r2

r2

l1

R1

r2

r2
l1

X

#
#’

γ

R1

r2

r2

l1

R1

l1

r2

r2

L1

l2

Y

#’

γ

R1

r2

r2

l1

X

#
#’
#’
#’
#
#’

γ

R1

r2
Z

L1

r1
l2

l2

R1

r2
Z

#’

γ

R1

l1

r2

r2

L1

l2

l2

r1

X

#
#’

γ

R1

l1

r2

r2

L1

l2

l2

r1

L1

l2

Y

#’

γ

X

#
#’
#’
#’
#’
#’
#’
#’
#
#’
#’
#’
#
#’

γ

Figure 1: The 16-state firing squad of [Kar94]. Empty spaces represent the blank
state.

Corollary 3.9. Ω∆F,S
has an NL-recognizable language.

Proof. From Lemma 3.8 and Point 3 of Lemma 3.2, the language of the limit set is
the finite boolean combination of finite concatenation of NL-recognizable languages.

Proof of Theorem 3.3. Let F be a CA on some alphabet A. We can artificially add
some spreading state 0 /∈ A to build a CA F̃ on alphabet A t {0} which admits F
as a sub-automaton. Now we have seen that F̃ is a sub-automaton of ∆F̃ ,S. From
Corollary 3.9, the corresponding limit set has an NL-recognizable language.

4. Analysis of a firing-squad CA

More precise proofs can be found in [GMT10].
Let S be the firing-squad CA defined in [Kar94]. It has a state set Q of size

16, including a killer state κ, radius 1 and is defined by the transitions appearing
in Figure 1: precisely, any transition which is not in the space-time diagram of the
figure produces the killer state κ. The complete list of transitions is given in [Kar94].

We are interested in history diagrams in XS, i.e. mapping from Z× N to Q of
the form: (z, t) 7→ xt(z) where (xt) is a sequence of configuration in XS such that
S(xt+1) = xt. We call them valid history diagrams.

When restricted to XS, the behavior of S is easier to understand via a sig-
nal/collision evolving in a quiescent background. More precisely, the background is
uniform and made of blank states (denoted B in the sequel) and the signals involved
are:

142 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

signal L1 l1 l2 #’ r2 r1 R1

speed -1 -1 -1/2 0 1/2 1 1

The valid collisions are:

L1 +R1 → l1 + r1

l1 + r2 → l1 + r2

r1 + l2 → r1 + l2

l2 + r2 → #

l1 + #′ + r1 → #

#→ L1 + l2 + #′ + r2 +R1

Any other intersection of signal is invalid (it raises a κ state). Moreover, the last
collision rule (starting from a single #) is valid only if the # is distant from any
other # by at least 3 cells: if they are 1 cell away, 3 adjacent #′ are generated; if
they are 2 cells away, a κ is generated 2 steps later.

To simplify proofs, we will often make reasonings over (portions of) “Euclidean”
versions of history diagrams. A Euclidean history diagram is a set of labelled points
and labelled (half-)lines or segments in R2 satisfying the following rules:

• points are only at integer coordinates (Z2) and labelled by #;
• (half-)lines and segments correspond to signals listed above (label and slope

correspond);
• any intersection between lines or segments follow the collision rules above.

Lemma 4.1. To each history diagram D, we can associate a valid Euclidean history
diagram E such that, at any integer coordinate of E containing a point (#) or a
single signal, the label gives the state of the corresponding position in D.

This lemma allows the following proof scheme (used several times below): sup-
posing by sake of contradiction that some word w occurs in a history diagram, we
make a reasoning on the corresponding Euclidean diagram, we get a contradiction
and finally deduce that no history diagram exists which contain the word w, and
therefore that w is not in the language of XS.

S satisfies points (1) and (2) of Lemma 3.2 as shown in [Kar94, Prop. 4.3]. We
give below a complete characterization of the language of XS which shows that it is
NL-recognizable.

Lemma 4.2. Consider a history diagram containing a word w ∈ #Q∗#′ at time t0.
Let z1 (resp. z2) be the cell where the first (resp. the last) letter of w occurs. We
suppose in addition that the left # of w was created by a l1 signal. Let t1 be the first
time step in the past when the cell z1 is in state #, and t2 be the first time step in
the past when the cell z2 is in state #. Then, both t1 and t2 exist.

We denote by Σ the set Q′ \ {#,#′}.
Lemma 4.3. There is no history diagram containing a word w of the form #Σ∗#′,
where the left # is created by r1/l1 signals.

Lemma 4.4. There is no history diagram containing a word w of the form #Σ∗#′,
where the left # was created by a l2/r2 pair of signals.

Lemma 4.5. Any configuration from XS with at least two # is of the following
form, for some value of n: ω(#Bn)ω

Lemma 4.6. Let L be the language of configurations from XS admitting an history
diagram where two # occur at some time t in the past. Then L ∈ nl – recognizable
in logarithmic space.

CLANDESTINE SIMULATIONS IN CELLULAR AUTOMATA 143

Lemma 4.7. The language of configurations from XS which contain only one state
in {#,#′} is also in nl.

Lemma 4.8. Let L be the language of configurations from XS with two or more #′

and having a history diagram with no #. Then L is regular.

Lemma 4.9. The language of the configurations from XS without any # or #′ is
regular.

Proposition 4.10. The language of XS is in nl.

Proof. There are several cases, and the disjunction on configurations allows to ex-
press the language of XS as a union of ’simple’ nl languages.

(1) Configurations with #s or #s. We can descibe the set of these configurations
by :

ω{L1, l1, B}{l2, B}∗A{r2, B}∗{R1, r1, B}ω
where A is one of the following (possibly infinite) configurations:
(a) A has exactly one state in {#,#′}. We conclude in this case with

Lemma 4.7.
(b) A has one #, and at least one other # or #′. Lemmas 4.3, 4.4 and 4.5

show that the configuration satisfy the hypothesis of Lemma 4.6, which
allows to conclude.

(c) A has at least two #′ but do not contain any signal. Then Lemma 4.8
conclude.

(d) A has at least two #′, along with some signal(s) between two #′. Denote
by c the global configuration in this case. We can simply go back a few
steps in the past to find out a configuration c′ of case 1b. Then we can
apply Lemma 4.6 to c.

(2) Configurations without #s nor #′s. This case is treated in Lemma 4.9.

Thus, since we have described above why each of the possible languages could be
recognized in nl, we can just build a non-deterministic machine beginning by making
a non-deterministic choice between all of these machines, then doing the computation
of the chosen one.

Conclusion

We have thus achieved results implying that both limit set and column factors
complexities are strongly linked to the factor simulation hierarchy; on the other
hand, they are rather orthogonal to the sub-automaton simulation hierarchy.

Many open questions remain.

• We have obtained that universality was not forbidden by some rather strong
constraints either on the limit set, or “orthogonally”, on the column factors.
A natural question is whether we can constrain both at the same time. The
two constructions may possibly be composed together, at the price of a (yet)
more difficult proof of the NL-recognizability of the limit set.
• Similarly, we believe that our results still hold when alphabets are restricted

to {0, 1} but at the price of a more technical proof.
• Is there an intrinsically universal CA with an SFT limit set? Following

our construction, this raises immediately the following question: is there a
firing-squad CA with an SFT limit set?

144 P. GUILLON, P.-E. MEUNIER, AND G. THEYSSIER

• What kind of limit system can an intrinsically universal CA have? Can it
be injective?
• Is injectivity, expansivity of CA preserved by factor maps?
• Is it enough, for a CA to be a factor of another CA, that the corresponding

column factors with some given width be linked by a factor map?
• Is there, for some complexity level λ, an equivalence class for the sub-

automaton simulation (with space-time rescalings) of which all the elements
have limit sets of complexity λ?

References

[BM97] François Blanchard and Alejandro Maass. Dynamical properties of expansive one-
sided cellular automata. Israel Journal of Mathematics, 99:149–174, 1997.

[CFG10] Julien Cervelle, Enrico Formenti, and Pierre Guillon. Ultimate traces cellular au-
tomata. In Jean-Yves Marion, editor, 27th International Symposium on Theoretical
Aspects of Computer Science (STACS’10), Nancy, March 2010.

[ČPY89] Karel Čulik II, Jan K. Pachl, and Sheng Yu. On the limit sets of cellular automata.
SIAM Journal on Computing, 18(4):831–842, 1989.

[DMOT10a] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier.
Bulking I: an abstract theory of bulking. HAL:hal-00451732, January 2010.

[DMOT10b] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier.
Bulking II: Classifications of cellular automata. HAL:hal-00451729, January 2010.

[Fio00] Francesca Fiorenzi. The Garden of Eden theorem for sofic shifts. Pure Mathematics
and Applications, 11(3):471–484, 2000.

[Gil88] Robert H. Gilman. Notes on cellular automata. manuscript, 1988.
[GMM93] Eric Goles, Alejandro Maass, and Servet Mart́ınez. On the limit set of some universal

cellular automata. Theoretical Computer Science, 110:53–78, 1993.
[GMT10] Pierre Guillon, Pierre-Étienne Meunier, and Guillaume Theyssier. Clandestine simu-

lations in cellular automata. HAL:hal-00521624, September 2010.
[Hur90] Lyman P. Hurd. Nonrecursive cellular automata invariant sets. Complex Systems,

4:131–138, 1990.
[Kar94] Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical Com-

puter Science, 127(2):229–254, 1994.
[Kůr97] Petr Kůrka. Languages, equicontinuity and attractors in cellular automata. Ergodic

Theory & Dynamical Systems, 17:417–433, 1997.
[Kůr03] Petr Kůrka. Topological and symbolic dynamics. Société Mathématique de France,

2003.
[Nas95] Masakazu Nasu. Textile Systems for Endomorphisms and Automorphisms of the Shift,

volume 114 of Memoirs of the American Mathematical Society. American Mathemat-
ical Society, Providence, Rhode Island, March 1995.

[Oll02] Nicolas Ollinger. Automates cellulaires: structures. PhD thesis, École Normale
Supérieure de Lyon, December 2002.

[Oll03] Nicolas Ollinger. The intrinsic universality problem of one-dimensional cellular au-
tomata. In Helmut Alt and Michel Habib, editors, 20th Annual Symposium on The-
oretical Aspects of Computer Science (STACS’03), volume 2607 of Lecture Notes in
Computer Science, pages 632–641, Berlin, Germany, February 2003. Springer-Verlag.

[Taa07] Siamak Taati. Cellular automata reversible over limit set. Journal of Cellular Au-
tomata, 2(2):167–177, 2007.

[The05] Guillaume Theyssier. Automates cellulaires: un modèle de complexités. PhD thesis,

École Normale Supérieure de Lyon, December 2005.
[vN66] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, Champaign, IL, USA, 1966.
[Wei73] Benjamin Weiss. Subshifts of finite type and sofic systems. Monatshefte für Mathe-

matik, 77(5):462–474, 1973.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 145-155

SLOPES OF TILINGS

EMMANUEL JEANDEL AND PASCAL VANIER

Laboratoire d’Informatique Fondamentale de Marseille, CMI - 39 rue Joliot-Curie, F-
13453 Marseille Cedex 13, France
E-mail address, E. Jeandel: emmanuel.jeandel@lif.univ-mrs.fr
E-mail address, P. Vanier: pascal.vanier@lif.univ-mrs.fr

Abstract. We study here slopes of periodicity of tilings. A tiling is of slope θ if
it is periodic along direction θ but has no other direction of periodicity.

We characterize in this paper the set of slopes we can achieve with tilings, and
prove they coincide with recursively enumerable sets of rationals.

1. Introduction

The model of tilings was introduced by Wang [14] to study fragments of the
first order theory. This model is described by geometrical local properties, deciding
whether a given tile can be placed on a given cell based only on its surrounding
neighbours.

While the definition of tilings is deceptively simple, they exhibit complex be-
haviours. As an example, the most basic problem (decide if a given tiling system can
tile the plane) is undecidable [2]. This is due to both a straigthforward encoding of
Turing machines in tilings [3, 4,13] and to the existence of so-called aperiodic tiling
systems [8, 12], that can tile the plane but in no periodic way.

In this paper we explore the periodic behaviour of tiling systems. Periodic
tilings have nice closure properties, in the sense that the image of a periodic point
by a shift-preserving morphism (i.e. a block map) is again a periodic point. As a
consequence, understanding the structure of the periodic points of a tiling system
is a first step to decide when some tiling system embeds in another, or when two
tilings systems are “isomorphic” (more accurately conjugate [9])

In dimension one, the question boils down to determine for a tiling system τ the
set of integers n so that there is a valid tiling by τ of period (exactly) n. This question
was answered succesfully: Using automata theory, a complete characterization of the
set of integers we can obtain this way was obtained [9].

The question is more delicate in two dimensions. We might break it down in
two parts: Given a tiling system τ ,

• For which n is there a tiling of horizontal and vertical period n ?
• For which direction θ is there a tiling which is periodic only along direction θ ?

Key words and phrases: tilings, formal languages, foundations of computing.
Both authors are party supported by ANR-09-BLAN-0164.

c

145

146 E. JEANDEL AND P. VANIER

The authors gave an answer to the first question in [6]: Sets of integers we can
obtain correspond to the complexity class NE. We deal in this paper with the
second question, characterizing the set of slopes we can obtain by tiling systems.

While the answer in dimension one involves finite automata theory, it turns
out that the good tool to solve the problem in higher dimensions is computability
theory. The undecidability of the domino problem (deciding if a tiling system tiles
the plane) is indeed not an anomaly: many combinatorial aspects of tilings can only
be fully comprehended by means of recursivity theory arguments [1, 5, 10].

Along these lines, we will prove here the following theorem:

Theorem 1.1. The sets of slopes of tilings are exactly the recursively enumerable
sets of rationals.

As a consequence, one might for example build a tiling system which admits
slopes arbitrary close to 0, but does not admit 0 as a slope.

This paper is organized as follows. We first give the definition of tiling systems,
and an encoding of Turing machines that will be used later. Then we proceed to
the proof of the theorem. The main part of this paper is a construction, for any
recursively enumerable set R, of a tiling system with R as a set of slopes.

2. Definitions

2.1. Tilings

Usually when considering tiling systems, Wang rules are used. We use here a
generalization that is equivalent in terms of expressivity but makes the constructions
easier.

While Wang rules consider only adjacent tiles only, our rules may consider an
arbitrary large (but finite) neighborhood of tiles.

A tiling of Z2 with a finite set of tiles T is a mapping c : Z2 → T . A pattern
of neighborhood N ⊆ Z2 is a mapping from N to T . A pattern is finite if N is
finite. A tiling system is a pair (T, F), where F is a finite set of finite patterns. A
tiling c is said to be valid if and only if none of the patterns of F ever appear in
c. Since the number of forbidden patterns is finite, we could specify the rules by
allowed patterns as well. We give an example of such a tiling system with the tiles
of figure 1a and the forbidden patterns of figure 1b. The allowed tilings are shown
in figure 2.

(a) (b)

Figure 1: The set of tiles (a) and the forbidden patterns (b).

SLOPES OF TILINGS 147

Figure 2: The only valid tilings of the system.

2.2. (a)periodicity

A tiling c is periodic of period v = (vx, vy) ∈ Z2 if for all points x, y ∈ Z,
c(x, y) = c(x+vx, y+vy). The direction of a vector v 6= (0, 0) is θ = vy/vx ∈ Q∪{∞}
with the convention θ =∞ if vx = 0.

A tiling is periodic along a direction θ if it is periodic of period v 6= (0, 0) and v
is of direction θ.

For a given tiling c, there are three cases:

• Either c is periodic of period v, w and v, w are of different directions. In this
case, the tiling c is biperiodic: there exists an integer n ∈ N (the period)
so that c(x, y) = c(x+ n, y) = c(x, y + n), and as a consequence c is periodic
along all directions θ ∈ Q ∪ {∞}
• c is periodic along one direction θ only. In this case, we will call θ the slope

of c.
• c has no nonzero vector of periodicity. c is then called aperiodic.

The set of slopes of a tiling system τ , noted Sτ , is the set of the slopes of all valid
tilings by τ . As an example, the first tiling in fig.2 is periodic of vector (1, 0) (hence
of slope 0) and the two other tilings are biperiodic (hence have no slope). As a
consequence, Sτ = {0} for this example. Using rotated versions of this elementary
tiling system, we can produce for each θ ∈ Q ∪ {∞} a tiling system τ so that
Sτ = {θ}.

A tiling system is aperiodic if and only if it tiles the plane but all valid tilings are
aperiodic. Such tiling systems have been shown to exist [2] and are at the core of the
undecidability of the domino problem (decide whether a given tiling system admits
a valid tiling). J. Kari [7] gave such a tiling system with an interesting property:
determinism. A tiling system is NW-deterministic (for North-West) if it is given
by forbidden patterns of shape and given two tiles respectively at the north and
west of a given cell, there is at most one tile that can be put in this cell so that the
finite pattern is valid. The mechanism is shown below:

If we modify the forbidden patterns of this tiling system in the following way :

a tile will be forced by the one on its west and on its northwest, we will call this
East-determinism :

East-determinism has the interesting property that if we set a whole column of
the plane then the whole half plane on its east will be determined by it. Moreover,
this tiling system is also aperiodic (the tilings are skewed versions of the original
one; diagonal lines are transformed into columns).

148 E. JEANDEL AND P. VANIER

s

s

a
s′

a′

a

s

s

a

s′ a′

a

s

s

a
s′

a′

a

a
s

s a

a

a
s

s a

a

a

a

a

s0 as0
s′

a′

s0 a

s′ a′

s0

a

s

s

a

a

a

s0

h

h

a

a

a

a

h

h

a

h a

a

Figure 3: A tiling system, given by Wang tiles, simulating a Turing machine : the
states are in the circles and the tape is in the rectangles.

2.3. Computability

The undecidability of the domino problem [2] hinted earlier also comes from a
straightforward encoding of Turing machines into tilings. We provide here such an
encoding for future reference.

For a given Turing machine M , consider the tiling system τM presented in fig-
ure 3. The tiling system is given by Wang tiles, i.e., we can only glue two tiles
together if they coincide on their common edge. We now give some details on the
picture:

• s0 in the tiles is the initial state of the Turing machine.
• The first tile corresponds to the case where the Turing machine, given the

state s and the letter a chose to go to the left and to change from s to s′,
writing a′. The two other tiles are similar.
• h represents a halting state. Note that the only states that can appear in

the last step of a computation (before a border appears) are halting states.

This tiling system τM has the following property: there is an accepting path for the
word u in time (less than) t using space (less than) w if and only if we can tile a
rectangle of size (w + 2)× t with white borders, the first row containing the input.

SLOPES OF TILINGS 149

3. The sets of slopes are recursively enumerable

We say that a subset S of Q ∪ {∞} is recursively enumerable if there exists a
Turing machine M that on input (p, q) ∈ Z2 6= (0, 0) halts if and only if q/p ∈ S.

θ ∈ S =⇒ ∀(p, q), q/p = θ,M halts on (p, q)
θ 6∈ S =⇒ ∀(p, q), q/p = θ,M does not halt on (p, q)

The exact definition is irrelevant as all reasonable definitions will give rise to the
same class. An alternative interesting definition is as follows: A set S is recursively
enumerable if there exists a Turing machine M so that

θ ∈ S ⇐⇒ ∃(p, q), q/p = θ ∧M halts on (p, q)

Using a known projection technique to go down to dimension 1, we prove here:

Lemma 3.1. For any tiling system τ , Sτ is recursively enumerable.

Proof. We first give a procedure to decide if there is a tiling which is (n, 0)-periodic.
Let k be an integer bigger than the size of any forbidden pattern in τ .

If w is a pattern of support [0, n − 1] × [0, l] for some l, we write wZ for the
pattern of support Z× [0, l] defined by wZ

i,j = w(i mod n),j, that is for the horizontal
repetition of w.

Let V be the set of all patterns w of size n × k so that wZ is correctly tiled.
Consider this a directed graph G, where there is an edge from v to w if and only if
(v ⊗w)Z is correctly tiled, where v ⊗w denotes the pattern of size n× 2k obtained
by putting w above v.

It is then clear that tilings of period (n, 0) correspond to biinfinite walks on
this graph, so that there exists a tiling of period (n, 0) if and only if there exists a
cycle in the graph G. Furthermore, there exist a tiling of period (n, 0) which is not
biperiodic if and only if we can find two distinct cycles C1, C2 in the graph so that
C2 is accessible from C1. All the construction is clearly algorithmic.

Now for a given (p, q) we use the same procedure, where w is a pattern of size
|p| × k|q| and wZ is of support {(i + np, j + nq), i ≤ |p|, j ≤ k|q|} and defined by
wZ
i+np,j+nq = wi,j.

The following algorithm gives then the expected result: Starting from a given
(p, q), test all (p′, q′) so that q′/p′ = q/p to see if there exists a tiling which is (p′, q′)-
periodic but not biperiodic.

150 E. JEANDEL AND P. VANIER

4. The recursively enumerable sets are sets of slopes

Lemma 4.1. For any recursively enumerable set R ⊆ Q∪{∞}, there exists a tiling
system τ , such that Sτ = R.

Proof. We use for this proof techniques similar to [6]. We will construct for each
Turing machine M , corresponding to a recursively enumerable set R, a tiling system
τ whose slopes are exactly the rationals θ accepted by M . We assume that M takes
θ as an input under the form (p, q) in binary and that its input depends only on
q/p.

We will first build a tiling system τ that has as slopes {θ ∈ R|0 < θ < 1}. The
other cases are treated in the same way and the final tiling system is the disjoint
union of the tiling systems treating each case. The special cases θ = 0, θ =∞, and
θ = ±1 will be shortly discussed later on.

For the particular case where p > q > 0 we want to enforce the fact that
when a tiling of the plane has exactly one direction of periodicity, this direction of
periodicity has to be accepted by the Turing machine M . The tiling τM will enforce
the skeleton described in figure 4, where each square encodes the computation by
M proving that the slope θ is accepted. For this, we need the size of the square to
be arbitrarily large independently of θ, so that the computation of M has enough
time to accept. This skeleton in itself could be biperiodic, we will then color the
background of each square to ensure the existence of tilings with only one direction
of periodicity.

Figure 4: Skeleton of the tiling : when the tiling is periodic, the squares appear and
each of them is the shifted version of its lower left neighbor. Inside the
squares we will encode the Turing machine.

In order to enforce this skeleton, we will use several layers (or components), each
of them having their own aim, and impose some contraints on how the layers may
combine. We give here τM = C ×R×W × S × P × TM × A where :

• C will allow us to make the rows and columns,
• R to make the squares,
• W to force the periodicity vector and to write the input for the Turing

machine,
• S to force the aperiodic background of the squares to be the same,
• P will reduce the size of the input,
• TM will code the Turing machine M ,
• A will allow slopes of unique periodicity to appear.

SLOPES OF TILINGS 151

(a) (b)

Figure 5: Valid periodic tilings are formed of columns of vertical breaking tiles (a)
or of rows of horizontal breaking tiles (b). Between two columns of vertical
breaking tiles there can be rows of horizontal breaking tiles.

We will now proceed to the details of the proof, by giving each component and
explaining what it enforces.

Component C: The first component is made of an East-deterministic ape-
riodic set of tiles that we will call white tiles (the white background of fig-
ure 4), and we add two sets of tiles the horizontal breaking tiles { } and
the vertical breaking tiles { , , , } (the horizontal and vertical lines of
figure 4). The rules are simple :
• on the left of a there can only be a or a ,
• on the right of a there can only be a or a ,
• above and below a , there can only be a white,
• above a can only be a ,
• above a can only be a or a ,
• above a can only be a ,
• above a can only be a or a .
To put it in a nutshell, it means that horizontal breaking tiles forms rows

that can only be broken by vertical breaking tiles, and vertical breaking tiles
can only form columns that cannot be broken.

In a periodic tiling, we cannot have a quarter of plane filled with white
(aperiodic tiles). As a consequence, periodic tilings at this stage are necessar-
ily formed by a white background broken infinitely many times by horizontal
or vertical breaking tiles.

One more rule we add is that the rules on white tiles ”jump” over the
black tiles. That is to say if we remove a black row, then the white tiles
have to glue themselves together correctly. The valid tilings at this stage are
represented on figure 5.

Component R: . The next component will force the apparition of squares
between two columns of vertical breaking tiles and prevent several infinite
rows of horizontal breaking tiles to appear. This layer is made of the set of
tiles { , , , , , , }, the rules applied on this layer are given by Wang
tiles. We superimpose the rules as follows :
• can only be superimposed to , ,
• can only be superimposed to ,
• goes on , and goes on ,
• , , are superimposed to the white tiles.
Figure 6 shows how this component R forces rows of black tiles to appear

between two gray columns. The distance between these black rows is exactly

152 E. JEANDEL AND P. VANIER

Figure 6: Component R forces squares.

(a) (b)

Figure 7: The dotted row (resp. dashed) corresponds to the prolongation on the
right (resp. left) of the black cells. In (a) the signals sent from the extrem-
ities of the rows forming the square forces the offset between rectangles of
three neighboring columns to be exactly the same for any of them. In (b)
the signals sent from the extremities force the distance between columns
to be identical.

the distance between the gray columns thus black rows and gray columns
form squares. At this stage the valid periodic tilings cannot be formed of
only rows of black tiles anymore.

Component W : What this component does is that it synchronises the offsets
between squares of two neighboring columns, and forces all columns to be at
equal distance of their two neighboring columns, for all of them. As a side
effect, it also writes the offset between two squares (which we call q) in each
square. In order to do that, what we do is that we prolongate the black rows
of each column into their direct neighbors with two new layers, one for the
left and one for the right. The end of the black row then sends a diagonal
signal which changes its direction when it collides with the projected lines
of the neighbors and its colision with the column has to coincide with the
projection of the other column. Figure 7.a shows how this mechanism works.
The collision of the signal sent on the right extremity of the black lines marks
the end of the input q on each square. We add two other sublayers to make
the white rows of same width. The first one sends a signal from the left
extremity of a black line which has to meet the next column at the exact
point of the extension of the square. The second one does the same for the
right extremity. Figure 7.b shows these signals.

Component S: This component is meant to synchronize the aperiodic back-
grounds of all the squares. In order to do that, we only need to transmit the

SLOPES OF TILINGS 153

Figure 8: Tiles allowing to transmit the aperiodic background.

q1q0

1|0

0|1

1|1, 0|0

Figure 9: A transducer tranforming n in binary into n+ 1.

first column after a vertical breaking column since our initial aperiodic tiling
system is East-deterministic.

In order to do that, we take these tiles { , , , }, with the following
rules :
• on the right,above and below a there can only be a or a .
• on the left of a we necessarily have a and the south western neighbor

of a , if the tile is a white, is a or a ,
• the lower left white tile of a square is necessarily a . The rules on is

that there can only be a or a on a white tile to its right,
• the vertical/horizontal breaking tiles have necessarily a on them.

The tiling obtained inside a square is shown on figure 8. We add a sublayer
that is a copy of the white tiles with the rules that the tiles of this component
on the right of this column are identical to the white ones on component C
and that this copy is transmitted to the tile pointed by the arrow. Then with
the property that the black tiles continue the rules on the whites, the whole
aperiodic background between two vertical breaking columns is exactly the
same but shifted by the offset.

Component P : Now each square contains two data: its size (p) and the offset
to the next square q, both in unary. We will pass them as input to the Turing
machine after some transformation.

The idea is to transform the unary input (p, q) into a smaller binary one
(p′, q′) where gcd(p′, q′) is not a multiple of two. Doing that is fairly easy :
we first need to convert the input in binary; this can be done by the iteration
of the transducer of figure 9: starting from 000 . . . 00 we obtain the binary
representation of p (least significant bit on the rightmost part) in p iterations
of the transducer. Then we strip the binary representation of p and q of their
common last zeroes.

Component TM : This layer implements the Turing machine M , the input has
been computed by layer P . Note that the Turing machine has to halt for the
tiling to be valid.

154 E. JEANDEL AND P. VANIER

Component A: This layer is made of only two tiles, a yellow and a blue
one. It will be superimposed to white tiles and to the of the vertical
breaking tiles of component C only. The rules are that two neighboring
tiles (horizontally and vertically) have the same color. It is easy to see that
the color is uniform inside a square and that it spreads to the upper right
and lower left neighboring squares. Thus the squares along the direction of
periodicity have the same color.

We now prove that the preceding construction works.

(1) Any slope is an accepted input of M : Let θ = q/p ∈ Sτ be a slope of
periodicity of τ , with p > q > 0 relatively prime.

By construction, the tiling has to be formed of squares of identical size
with constant offset (components C, R, W). Their aperiodic background
has to be the same on each column (component S), so that in fact the
tiling is periodic along direction (m,n) where m and n denote respectively
the width and offset of the tiling. As a consequence, the tiling is of slope
θ = m/n = q/p ∈]0; 1[and we have (n,m) = 2kk′(p, q) for some k, k′ with k′

odd.
Now the Turing Machine on each square has (k′q, k′p) as an input and

halts. Hence the slope k′q/k′p is accepted by the machine, so q/p ∈ R,
which proves Sτ ⊆ R ∩]0; 1[.

(2) Any accepted input of M is a slope of some tiling: Let θ ∈ R be
an accepted input of M with θ = q/p, p > q > 0 and p, q relatively prime.

There exists a time t and a space s such that M accepts (p, q) in time t
and space s and s ≤ t. Take (m,n) = 2dlog te(p, q) ≥ (t, s) Now the m ×m
square is big enough for the computation on input (p, q) to succeed. Hence
there is a tiling of period (m,n) and component A allows us to make the
direction of periodicity unique by dividing the plane into two colors, half a
plane yellow and half a plane blue. Hence R ∩]0; 1[⊆ Sτ .

This finishes the proof for the case 0 < θ < 1, i.e. p > q > 0.
The cases where q > p > 0, −p > q > 0, or q > −p > 0 are treated in a very

similar way: rotating the tiling system we just constructed and changing the way
the input is written on the tape (to invert the inputs, or add a minus sign) is enough.
However the remaining cases (p = ±q, p = 0, q = 0) need special treatment1.

For these cases, the construction above does not work, by that we mean that just
rotating it and modifying slightly the Turing machine of component TM won’t do
the trick. However it is actually simpler. We now make squares facing one another,
obtaining a regular grid. This requires less tiles for component C and no component
W . Then according to the case, components C,S and A are modified as follows:

• for p = q (θ = 1), S just transmits diagonally the tiles. In component A,
the color is synchronized from the top right corner to the next square at the
north east. The case p = −q is similar.
• for q = 0 (θ = 0), S transmits horizontally, and the colors of component
A are synchronized with the square on the right. The tiling can only be
horizontally periodic if the Turing machine accepts it, this is the only way it
can be periodic.

1As this corresponds to four specific different θs, note that we could treat them nonconstructively,
adding if necessary four new tiling systems having predescribed slopes.

SLOPES OF TILINGS 155

• for p = 0 (θ = ∞), C has, instead of an east deterministic tileset, a north
deterministic one. Components S and A are modified accordingly. The tiling
can only be vertically periodic if the Turing machine accepts it and this is
the only way it can be periodic.

5. Concluding remarks

We have shown that the sets of slopes of periodicity of tilings correspond exactly
to the recursively enumerable (Σ0

1) sets of rationals for tilings in dimension 2. Our
intuition for analogous results in higher dimensions would be that the slopes of
periodicity would then be characterized by Σ0

2 sets [11], since knowing whether a
tiling is periodic of vector v in dimension 3 is not decidable anymore but only Π0

1.
Hence the following conjecture:

Conjecture 5.1. The sets of slopes of tilings in dimension d ≥ 3 are exactly the
Σ0

2 subsets of (Q ∪ {∞})d−1.
An analogous construction to the one detailed here should work at least for

dimension 3, it would however be tedious.

References

[1] Nathalie Aubrun and Mathieu Sablik. An order on sets of tilings corresponding to an order
on languages. In STACS, pages 99–110, 2009.

[2] Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society, 1966.

[3] J. Richard Buchi. Turing-Machines and the Entscheidungsproblem. Math. Annalen, 148:201–
213, 1962.

[4] Gregory Chaitin. The Halting Probability via Wang Tiles. Fundamenta Informaticae,
86(4):429–433, 2008.

[5] Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multidimen-
sional shifts of finite type. Annals of Mathematics, 2008.

[6] Emmanuel Jeandel and Pascal Vanier. Periodicity in Tilings. In Developments in Language
Theory (DLT), 2010.

[7] Jarkko Kari. The Nilpotency Problem of One-Dimensional Cellular Automata. SIAM Journal
on Computing, 21(3):571–586, 1992.

[8] Jarkko Kari. Recent results on aperiodic Wang tilings. In M. Gromov P. Prusinkiewicz A. Car-
bone, editor, Pattern formation in biology, vision and dynamics, pages 83–96. World Scientific,
Singapore, 2000.

[9] Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York, NY, USA, 1995.

[10] Tom Meyerovitch. Growth-type invariants for Zd subshifts of finite type and classes arithmeti-
cal of real numbers. arXiv:0902.0223v1.

[11] P.G. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the Founda-
tions of Mathematics. Elsevier, 1992.

[12] Raphael M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones
Math., 12, 1971.

[13] Peter van Emde Boas. The convenience of Tilings. In Complexity, Logic, and Recursion Theory,
volume 187 of Lecture Notes in Pure and Applied Mathematics. CRC, 1997.

[14] Hao Wang. Proving theorems by Pattern Recognition II. Bell Systems technical journal, 40:1–
41, 1961.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 156-167

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS

MARTIN KUTRIB AND ANDREAS MALCHER

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
E-mail address : {kutrib,malcher}@informatik.uni-giessen.de

Abstract. Iterative arrays are one-dimensional arrays of interconnected inter-
acting finite automata. The cell at the origin is equipped with a one-way read-only
input tape. We consider iterative arrays as transducers. To this end, the cell at
the origin is additionally equipped with a one-way write-only output tape. The
families of transductions computed are classified with regard to the time allowed
to compute the input and the output, respectively. In detail, the time complexities
of real-time and linear-time are of particular interest, for which a proper hierarchy
is shown. In the second part of the paper, iterative array transducers are com-
pared with the conventional transducer models, namely, finite state transducers
and pushdown transducers. It turns out that all deterministic variants can be
simulated by iterative array transducers. Moreover, nondeterministic but unam-
biguous finite state transducers can be simulated as well. When considering time
constraints, incomparability results to almost all families are derived.

1. Introduction

Parallel processes and cooperating systems appear almost everywhere in to-
day’s world. However, the behavior of such systems, the interaction of different
components, or the predictability of the behavior in the future is far from being
completely understood. Iterative arrays (IA) are a model which allows to describe
massive parallel systems, since they are arrays of identical copies of deterministic
finite automata. Furthermore, the single nodes, except the node at the origin, are
homogeneously connected to both their immediate neighbors, and they work syn-
chronously at discrete time steps. The distinguished cell at the origin, which is
called the communication cell, is equipped with a one-way read-only input tape.

In connection with formal language recognition IA have been introduced in [5].
To recognize a formal language, every word is read symbolwise from the input tape
by the communication cell. An input is accepted if the communication cell enters an
accepting state during the course of its computation. The computational capacity
of IA has been widely studied in the literature and a recent survey may be found
in [12].

Computational models are not only interesting from the viewpoint of recognizing
some input, but also from the viewpoint of transforming some input into some

2000 ACM Subject Classification: F.1.1, F.1.2, F.4.3.
Key words and phrases: iterative arrays, transductions, finite state transducers, pushdown

transducers.

156

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 157

output. For example, a parser for a formal language should not only return the
information whether or not the input word can be parsed, but also the parse tree in
the positive case. The simplest model in this context is the finite state transducer
which is a finite automaton with an output alphabet that assigns to each input
accepted at least one output word. Transductions computed by different variants
of such transducers are studied in detail in [2]. Similarly, pushdown transducers
are conventional pushdown automata where each input accepted is assigned to at
least one output. Deterministic and nondeterministic variants are investigated in [1].
Furthermore, characterizations of pushdown transductions as well as applications to
the parsing of context-free languages are given. In [9] the model of “one-way linear
iterative arrays” is introduced. In this model an input is read at one end of the array
and an output is written at the other end of the array. Additionally, the number of
cells is a priori defined as the length of the input, the information flow is only from
left to right, and the output does not depend on the fact whether or not the input
is accepted.

In this paper, we will consider IA not only as a language recognizing device but as
a language transforming device. Moreover, we are interested in the comparison with
the conventional transducer models. To this end, we enhance the definition slightly
by adding an output alphabet to an IA and, additionally, its communication cell is
equipped with a one-way write-only output tape. Since IA are deterministic devices
every input accepted corresponds to exactly one output. It is known that conven-
tional IA can accept rather complicated languages such as { ap | p is prime } [7] or
{ a2n | n ≥ 1 } [4] in real time. Thus, we are interested in fast transductions of IAs as
well and consider the time complexities of real-time and linear-time. Additionally,
we consider the time complexities of accepting the input and computing the output
separately.

The paper is organized as follows. In Section 2 we define iterative array trans-
ducers and their computed transductions with respect to the time complexities of
real-time and linear-time. The relations of the families of transductions with cer-
tain time constraints are investigated in Section 3. It turns out that there exists a
proper inclusion between the transductions where input and output are computed
in real time and those where input and output are computed in linear time. More-
over, the transductions where the input is computed in real time and the output is
computed in linear time are located properly in between both families. Section 4
is devoted to comparing iterative array transducers with finite state transducers. If
the given finite state transducer is deterministic, it can be simulated by an itera-
tive array transducer where input and output are computed in real time. This is
no longer true, if the given finite state transducer is nondeterministic, but unam-
biguous. However, such finite state transducers can be simulated by iterative array
transducers where the output is computed in linear time. Finally, we compare iter-
ative array transducers with pushdown transducers in Section 5. The main result is
that an iterative array transducer may need linear time to simulate a deterministic
pushdown transduction. On the other hand, there are iterative array transductions
where input and output are computed in real time which cannot be realized by any
nondeterministic pushdown transducer. Thus, several incomparability results can
be derived.

158 M. KUTRIB AND A. MALCHER

2. Preliminaries and Definitions

We denote the rational numbers by Q, and the non-negative integers by N. For
the empty word we write λ, the reversal of a word w is denoted by wR, and for the
length of w we write |w|. The cardinality of a set M is denoted by |M |. We write ⊆
for set inclusion, and ⊂ for strict set inclusion.

A (one-dimensional) iterative array transducer is a linear array of finite au-
tomata, sometimes called cells, where each cell except the leftmost one is connected
to its both nearest neighbors. The distinguished leftmost cell is the so-called com-
munication cell that is connected to its neighbor to the right and to the input/output
supply. For convenience we identify the cells by non-negative integers.

Initially, all cells are in the so-called quiescent state. At each time step the
communication cell reads an input symbol and writes a possibly empty string of
output symbols. To this end, we have different local transition functions. All cells
but the communication cell change their state depending on their current state
and the current states of their neighbors. The state transition and output of the
communication cell depends on its current state, the current state of its neighbor,
and on the current input symbol (or if the whole input has been consumed on a
special end-of-input symbol). The cells work synchronously at discrete time steps.

· · ·s0 s0 s0 s0 · · ·
a1a2a3 · · · an⊳

b1b2b3 · · · bm

Figure 1: An iterative array transducer.

Definition 2.1. A deterministic iterative array transducer (IAT) is a system
〈S,A,B, F,⊳, s0, δ, δ0〉, where

(1) S is the finite, nonempty set of cell states,
(2) A is the finite, nonempty set of input symbols,
(3) B is the finite set of output symbols,
(4) F ⊆ S is the set of accepting states,
(5) ⊳ /∈ A is the end-of-input symbol,
(6) s0 ∈ S is the quiescent state,
(7) δ : S3 → S is the total local transition function for non-communication cells

satisfying δ(s0, s0, s0) = s0,
(8) δ0 : (A ∪ {⊳})× S2 → B∗ × S is the partial local transition function for the

communication cell.

Let M be an IAT. A configuration of M at some time t ≥ 0 is a description
of its global state which is a triple (wt, vt, ct), where wt ∈ A∗ is the remaining input
sequence, vt ∈ B∗ is the output emitted so far, and ct : N → S is a mapping
that maps the single cells to their current states. The configuration (w0, λ, c0) at
time 0 is defined by the input word w0, an empty output string, and the mapping
c0(i) = s0, 0 ≤ i, while subsequent configurations are chosen according to the global
transition function ∆. Let (wt, vt, ct), t ≥ 0, be a configuration. Then its successor
configuration (wt+1, vt+1, ct+1) = ∆(wt, vt, ct) is as follows.

ct+1(i) = δ(ct(i− 1), ct(i), ct(i+ 1)),

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 159

for all i ≥ 1. Furthermore, let a = ⊳, wt+1 = λ if wt = λ, and a = a1, wt+1 =
a2 · · · an if wt = a1 · · · an. Then, for δ0(a, ct(0), ct(1)) = (v′, s) we have

ct+1(0) = s and vt+1 = vtv
′.

Thus, the global transition function ∆ is induced by δ and δ0. The IAT halts when
it enters a halting configuration, i.e., the transition function δ0 is not defined for
the current configuration. As usual we extend ∆ to sequences of configurations
and denote it by ∆∗. That is, ∆0 is the identity, ∆t = ∆(∆t−1), 1 ≤ t, and
∆∗ =

⋃
0≤t ∆

t. Thus, (wt, vt, ct) ∈ ∆∗(w, v, c) indicates that it is possible for M to
go from the configuration (w, v, c) to the configuration (wt, vt, ct) in a sequence of
zero or more steps.

An input w is accepted by an IAT M if at some time t during the course of
its computation the communication cell enters an accepting state. In most cases t
will be greater than |w|, but it is no restriction to accept earlier. An iterative array
transducer M transforms input words w ∈ A∗ into output words v ∈ B∗. For a
successful transformation M has to accept the input, otherwise the output is not
recorded:

M(w) = v,

if w is accepted by M and (λ, v, c′) ∈ ∆∗(w, λ, c0), and (λ, v, c′) is a halting con-
figuration. The transduction realized by M, denoted by T (M), is the set of pairs
(w, v) ∈ A∗ ×B∗ such that M(w) = v.

Let ti, to : N → N, n + 1 ≤ ti(n) ≤ to(n), be two mappings. If for all (w, v) ∈
T (M), the input w is accepted after at most ti(|w|) time steps and M halts after at
most to(|w|) time steps, then M is said to be of time complexity (ti, to) and we write
IATti,to . The family of transductions realized by IATti,to is denoted by T (IATti,to).
If ti, to are the function n+ 1, we call it real time and write rt. Since for nontrivial
computations an IAT has to read at least one end-of-input symbol, real time has to
be defined as (n+1)-time. If ti(n), to(n) are of the form r ·n, for some r ∈ Q, r ≥ 1,
we call it linear time and write lt.

If we build the projection on the first components of T (M), then the iterative
array transducer degenerates to an iterative acceptor (IA). The projection on the
first components is denoted by L(T (M)). In order to clarify the notation we give
an example.

Example 2.2. The transduction

Texpo = { (a2n , a1ba1ba2ba4b · · · a2n−1

b) | n ≥ 1 }
belongs to T (IATrt,rt).

In [4], an iterative array has been presented that uses signals in order to construct
the mapping n 7→ 2n in real time, that is, the communication cell recognizes the time
steps 2n, n ≥ 1. At initial time the communication cell emits a signal which moves
with speed 1

3
to the right. In addition, another signal is emitted which moves with

maximal speed (speed 1). It bounces between the slow signal and the communication
cell. One can verify that the signal passes through the communication cell exactly
at the time steps 2n, n ≥ 1 (see Figure 2).

An IATrt,rt M which realizes Texpo basically simulates the time constructor
for 2n. It reads an input symbol a at every time step and writes the output ab
when it is in a distinguished state at times 2n, and outputs a otherwise. Finally, M
accepts and halts if and only if the end-of-input symbol appears while it is in a
distinguished state.

160 M. KUTRIB AND A. MALCHER

n

0 1 2 3 4 · · · 9

t 0
1
2
3
4
...

8

...

16
...

20

Figure 2: Space-time diagram showing signals of a time-constructor for the function
n 7→ 2n.

One part of the computation of an IAT is the acceptance of the input. The pre-
vious example shows that iterative arrays can accept rather complicated languages
even in real time. The language { a2n | n ≥ 1 } is neither context free nor semilin-
ear. Here, we consider iterative arrays from the computational point of view, that is,
they are seen as massively parallel computing devices. So, we are mainly interested
in fast computations, that is, small time complexities. In the sequel we focus on
IATrt,rt, IATrt,lt, and IATlt,lt. For further reading on iterative language acceptors
we refer to [10, 12].

3. Computational Capacity of Iterative Array Transducers

Roughly speaking, any transduction computed by an iterative array can be di-
vided into two tasks. One is the acceptance of the input, the other one the transfor-
mation of the input into the output. Both tasks have to end successfully in order to
obtain a valid computation. In particular, this observation implies that a language,
which is not accepted by any iterative array in time ti, cannot be the projection on
the first components of any transduction belonging to any class T (IATti,to).

Lemma 3.1. The family T (IATrt,lt) is strictly included in T (IATlt,lt).

Proof. The language {a, b}∗{w | w ∈ {a, b}∗∧|w| ≥ 3∧w = wR } is not accepted by
any real-time IA [5], but can easily be accepted by some linear-time IA. Therefore,
the transduction { (vw, a|vw|) | v, w ∈ {a, b}∗ ∧ |w| ≥ 3 ∧ w = wR } is a witness for
the assertion.

Since the complexity of the projections on the first components of an iterative
array transduction is characterized by the power of iterative arrays when used as
language acceptors, the question for the possible complexity of the projections on
the second components follows immediately. It turns out that they can be arbitrarily
complex within the limits of being computable.

Theorem 3.2. Let L be an arbitrary recursively enumerable set. Then there is a
transduction T belonging to T (IATrt,rt) such that L is the projection on the second
elements of T .

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 161

Proof. Since L is recursively enumerable we may assume that it is represented by
some deterministic one-tape one-head Turing machine M such that any accepting
computation has at least three and, in general, an odd number of steps. There-
fore, it is represented by an even number of configurations. Moreover, we may
assume that M cannot print blanks, and that a configuration is halting if and only
if it is accepting. A configuration of M can be written as a string of the form
Z∗SZ∗ where z1 · · · ziszi+1 · · · zn is used to express that M is in state s ∈ S, scan-
ning tape symbol zi+1, and z1 to zn is the support of the tape inscription. The
set of valid computations VALC(M) is now defined to be the set of words of the
form w1$w3$ · · · $w2k−1¢wR

2k$ · · · $wR
4 $w

R
2 , where wi are configurations, $ and ¢ are

symbols not appearing in wi, w1 is an initial configuration, w2k is an accepting
configuration, and wi+1 is the successor configuration of wi, for 1 ≤ i ≤ 2k.

For some u = w1$w3$ · · · $w2k−1¢wR
2k$ · · · $wR

4 $w
R
2 ∈ VALC(M) we define I(u)

to be the support of the tape inscription of w1, that is, the input word from L which
is accepted by M with the computation represented by u. In [12, 13] it is shown
that the set of valid computations is a real-time IA language.

Now, the transduction { (u, v) | u ∈ VALC(M), v = I(u) } can be realized by
some IATrt,rt that writes I(u) while reading the input prefix w1, and then continues
to simulate an acceptor for VALC(M) whereby the empty word is written in every
step.

Next we turn to separate the families T (IATrt,rt) and T (IATrt,lt). To this end,
we recall the capability of iterative arrays to simulate data structures as pushdown
stores, rings and queues without any loss of time. First we consider pushdown stores
(stacks). The top of the stack is simulated by the communication cell. Assume
without loss of generality that at most one symbol is pushed onto or popped from
the stack at each time step. Then it suffices to use three additional tracks for the
simulation. Let the three pushdown registers of each cell be numbered one, two, and
three from top to bottom, and suppose that the third register is connected to the
first register of the right neighbor. The content of the pushdown store is identified
by scanning the registers in their natural ordering beginning in the communication
cell, whereby empty registers are ignored. The pushdown store dynamics of the
transition function is defined such that each cell prefers to have only the first two
registers filled. The third register is used as a buffer (see Figure 3). Details of the
construction can be found in [3, 6, 11].

Lemma 3.3. The family T (IATrt,rt) is strictly included in T (IATrt,lt).

Proof. The transduction { (u, uR) | u ∈ {a, b}∗ } belongs to T (IATrt,lt). An IATrt,lt

realizing the transduction simulates a pushdown store. It first reads and pushes u
while the empty word is written. When the end-of-input symbol appears it accepts
in real time, pops uR from the stack and writes it with λ moves. Finally, it halts in
linear time when the stack is emptied.

In contrast to the assertion assume that some IATrt,rt M realizes the trans-
duction. On input u = u1u2 · · · un long enough M cannot write the first symbol
of uR before it reads the last symbol of u. Otherwise on input u = u1u2 · · · un−1u

′
n,

where un 6= u′
n, the same output prefix is written but (u1u2 · · · un−1u

′
n, unvn−1 · · · v1)

does not belong to the transduction, for any v1, v2, . . . , vn−1 ∈ {a, b}∗. This implies,
that uR has to be written after reading the last input symbol in the single remaining
step. If u has been chosen long enough, this is impossible. The contradiction shows
that the transduction does not belong to T (IATrt,rt).

162 M. KUTRIB AND A. MALCHER

e
d

g
f

i
h

push c
e
d

c
g
f

i
h

push b

d

c
b

g
f

e

i
h

c
b

f

e
d

i
h

g

push a
c
b

a
e
d

h

g
f i

pop
b

e
d

c
g
f

i
h

c
b d

g
f

e

i
h

pop
c

e
d f

i
h

g

pop
d e

g
f h i

e
d f g

i
h

e
d

g
f h i

e
d

g
f

i
h

Figure 3: Principle of a pushdown store simulation. Subfigures are in row-major
order.

We conclude this section with an example that utilizes the capability of an IA to
simulate queues and rings without any loss of time (see [11]). The main difference
between pushdown stores and rings or queues is the way how to access the data.
A ring obeys the principle first in first out, that is, the first symbol of the stored
string is read and possibly erased while, in addition, a new symbol may be added
at the end of the string. So, a ring can write and erase at the same time. A queue
is a special case of a ring. It can either write or erase a symbol, but not both at the
same time.

Example 3.4. For any k ≥ 1, the transduction { (u, uk) | u ∈ {a, b}∗ } belongs to
T (IATrt,lt).

An IATrt,lt realizing the transduction simulates a ring. It first reads and stores u
where the first symbol of u in the ring is marked. When the end-of-input symbol
appears the transducer accepts in real time. Then it starts to read u successively
from the ring, where each symbol read is written and stored again into the ring. By
the marked symbol the transducer recognizes when u has completely been processed.
After the last process has been repeated k times it halts in linear time.

4. Comparison with and Simulation of Unambiguous Finite
State Transducers

A nondeterministic finite state (rational) transducer is basically a nondetermin-
istic finite automaton with output. At each time step the transducer reads a symbol

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 163

or the empty word from the input tape in some internal state, goes nondeterministi-
cally into another state, and writes a symbol or the empty word to the output tape.
So, the partial transition function δ maps from S × (A ∪ {λ}) into the subsets of
S × (B ∪ {λ}). Alternatively, one could allow that longer input words may be read
and longer output words may be emitted at every time step. This generalization
yields the same family of transductions. Here, we use the single symbol mode which
is called standard form in [15]. A nondeterministic finite state transducer M is said
to be single valued (SFST) if for all (u1, v1), (u2, v2) ∈ T (M) either (u1, v1) = (u2, v2)
or u1 6= u2. An SFST is said to be unambiguous (UFST) if for all (u, v) ∈ T (M)
there is a unique computation transforming u into v. It has been shown in [14] that
every single-valued finite state transducer can be simulated by an unambiguous one.
A UFST is deterministic (DFST) if any computation is deterministic.

Since, in general, nondeterministic transducers can transform an input into dif-
ferent outputs, which is impossible for a deterministic device such as an IAT, we
consider single-valued transducers only. While deterministic and nondeterministic
finite automata accept the same family of languages, deterministic and nondeter-
ministic finite state transducers have different power.

Lemma 4.1. The family T (DFST) is strictly included in T (IATrt,rt).

Proof. The transduction of Example 2.2 does not belong to T (DFST) since the
language { a2n | n ≥ 1 } is not regular. On the other hand, any DFST can effectively
be converted into an equivalent DFST without λ-moves [14], which in turn can be
simulated in the communication cell of an IATrt,rt.

The next result shows that even the computational power of a massively parallel
iterative array cannot compensate the presence of a little bit of nondeterminism.

Lemma 4.2. The families T (SFST) and T (IATrt,rt) are incomparable.

Proof. As in the previous lemma the transduction of Example 2.2 does not belong
to T (SFST) since { a2n | n ≥ 1 } is not regular. So, it remains to be shown that
there is a transduction belonging to T (SFST) but not to T (IATrt,rt). To this end,
we use T = { (anc, an) | n ≥ 1 } ∪ { (and, bn) | n ≥ 1 } as witness. Transduction T
is realized by an SFST that guesses initially whether the last input symbol is a c or
a d. Accordingly it reads the input and emits a’s or b’s. If the guess was correct, the
input is accepted and the transduction is recorded, otherwise the input is rejected
and the transduction is not recorded.

Assume that some IATrt,rt M realizes T . On input anc, M cannot write the
first symbol a before it reads the last input symbol. Otherwise on input and always
a symbol a would be emitted. So, an has to be written after reading the last input
symbol in the sole remaining step. Since n can be arbitrary long, this is impossible.
The contradiction shows that the transduction does not belong to T (IATrt,rt).

Interestingly, if the iterative array is allowed to emit its output in linear time,
the presence of a little bit of nondeterminism can be compensated.

Theorem 4.3. The family T (SFST) is strictly included in T (IATrt,lt).

Proof. Let M = 〈S,A,B, F, s0, δ〉 be an unambiguous finite state transducer. By
the construction given in [14], we may assume that M works in real time.

The idea of the construction of an equivalent IATrt,lt M′ is as follows. In order to
find out whether an input w is accepted byM, we first consider the nondeterministic

164 M. KUTRIB AND A. MALCHER

finite automaton (without output) MNFA = 〈S,A, F, s0, δ′〉 accepting L(T (M)). It
is converted into an equivalent deterministic finite automaton MDFA.

Automaton MDFA is simulated in the communication cell of M′ while reading
the input w. Additionally, w is stored in a stack-like manner with the help of two
tracks (see Figure 4). The IAT M′ accepts if and only if the simulation of MDFA

accepts.
In order to compute the output of M we have to determine the accepting com-

putation path of MNFA on input w. As a first step, MNFA is converted into an
equivalent right linear grammar GNFA with axiom X. The productions of GNFA have
three forms, namely,

(1) X → a[q′] for all transitions q′ ∈ δ′(s0, a) such that a ∈ A,
(2) [q] → a[q′] for all transitions q′ ∈ δ′(q, a) such that q ∈ S, a ∈ A,
(3) [q] → a for all transitions q′ ∈ δ′(q, a) such that q ∈ S, q′ ∈ F , and a ∈ A.

So, each production in GNFA corresponds to a transition rule of MNFA and, thus,
of M. For each transition rule there is a unique output z ∈ B∗ emitted when the
rule is applied.

a6
V1

a5
V2

a4
V3

a3
V4

a2
V5

a1
V6

a6
V1

a5
V2

a4
V3

a3
V4

a2
V5

a1

a6
V1

a5
V2

a4
V3

a3
V4

a2
a1

a6
V1

a5
V2

a4
V3

a3
a2

a1

a6
V1

a5
V2

a4
a3

a2
a1

a6
V1

a5
a4

a3
a2

a1

a6
a5

a4
a3

a2
a1

a5
a4

a3
a2

a1

a4
a3

a2
a1

a3
a2

a1

a2
a1

a1

p6
e

p5
e

p4
e

p3
e

p2
e

p1
e

p6
z6

p5
e

p4
e

p3
e

p2
e

p1
e

p6
z5

p5
e

p4
e

p3
e

p2
e

p1
e

p6
z4

p5
z5

p4
e

p3
e

p2
e

p1
e

p6
z3

p5
z4

p4
e

p3
e

p2
e

p1
e

p6
z2

p5
z3

p4
z4

p3
e

p2
e

p1
e

p6
z1

p5
z2

p4
z3

p3
e

p2
e

p1
e

a6
V1

p5
z1

p4
z2

p3
z3

p2
e

p1
e

a6
V1

a5
V2

p4
z1

p3
z2

p2
e

p1
e

a6
V1

a5
V2

a4
V3

p3
z1

p2
z2

p1
e

a6
V1

a5
V2

a4
V3

a3
V4

p2
z1

p1
e

a6
V1

a5
V2

a4
V3

a3
V4

a2
V5

p1
z1

Figure 4: Schematic simulation of a single-valued finite state transducer on input
a1a2a3a4a5a6. The first six cells of a simulating IATrt,lt are depicted. In
the first six time steps the input a1a2a3a4a5a6 is read, and in the last
seven time steps the string z1z2z3z4z5z6 is emitted. The simulation of the
deterministic finite automaton MDFA in the communication cell is not
depicted.

When reading the end-of-input symbol, M′ starts to compute on an additional
track all nonterminals of GNFA from which suffixes of the input can be derived. More

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 165

precisely, let w = a1a2 · · · an and, thus, in the first n cells of some track, say the first
one, anan−1 · · · a1 is stored. Now, the first cell computes the set V1 which includes
all nonterminals Y for which the production Y → an belongs to GNFA, and stores
it on a second track. Next, the second cell computes the set V2 which includes
all nonterminals Y for which the production Y → an−1[q

′] belongs to GNFA and [q′]
belongs to V1. In general, the ith cell (2 ≤ i ≤ n) computes the set Vi which includes
all nonterminals Y for which the production Y → an−i+1[q

′] belongs to GNFA and [q′]
belongs to Vi−1. Since each Vi with 1 < i ≤ n can be computed from Vi−1, an−i+1,
and GNFA, the sets V1, V2, . . . , Vn can be computed in the first n cells in n time
steps. It can be shown by induction that Y ∈ Vi if and only if there is a derivation
Y ⇒∗ anan−1 · · · an−i+1 of GNFA. Therefore, we obtain that w ∈ L(GNFA) if and only
if X ∈ Vn.

Now, we can extract the accepting computation path from the sets Vi moving
from right to left and starting in the nth cell as follows. First, some production
p1 : X → a1Y1 is chosen, where Y1 ∈ Vn−1. The next productions p2, p3, . . . , pn−1

are chosen as pi : Yi−1 → aiYi such that Yi ∈ Vn−i. Finally, pn is chosen as some
production pn : Yn−1 → an. The productions are stored on a third track of M′ and
their computation takes n time steps.

Finally, the information on the output zi of M which is associated with each
production pi has to be sent to the communication cell where it is emitted. To this
end, after having determined p1, the nth cell sends the information z1 to the left.
In the following time step, a signal e is sent to the left as well. The other cells i
send their information zi followed by e to the left when they receive the e from
their neighbor to the right. The computation halts when the signal e arrives in the
communication cell.

The overall simulation takes n time steps for reading the input, another n time
steps to compute the sets Vi, and further 2n time steps to transmit signal e from
the nth cell to the communication cell, that is, it takes linear time.

5. Iterative Arrays versus Pushdown Transducers

Similar as for finite state transducers, a nondeterministic pushdown transducer
can be seen as nondeterministic pushdown automaton with output. So, the partial
transition function δ maps from S× (A∪{λ})×G into the finite subsets of S×B∗×
G∗, where G denotes the stack alphabet. A nondeterministic pushdown transducer
M is said to be single valued (SPDT) if for all (u1, v1), (u2, v2) ∈ T (M) either
(u1, v1) = (u2, v2) or u1 6= u2. An SPDT is said to be unambiguous (UPDT) if
for all (u, v) ∈ T (M) there is a unique computation transforming u into v. As
opposed to finite state transducers, single-valued pushdown transducers have more
computational power than unambiguous pushdown transducers. For example, the
transduction T = { (anbnambm, a2m+2n) | m,n ≥ 1 } ∪ { (anbmambn, a2m+2n) | m,n ≥
1 } belongs to T (SPDT) but not to T (UPDT) because the projection on the first
components is known to be an inherently ambiguous context-free language [8]. A
UPDT is deterministic (DPDT) if any computation is deterministic, and it is real-
time deterministic (DPDTλ) if it is not allowed to move on empty input. Due to
known results on the recognizability of context-free languages by different types of
pushdown automata we have the proper hierarchy T (DPDTλ) ⊂ T (DPDT) ⊂
T (UPDT) ⊂ T (SPDT).

166 M. KUTRIB AND A. MALCHER

We have already seen that the computational power of a massively parallel
iterative array cannot compensate the presence of a little bit of nondeterminism.
The same is true for the resource pushdown store equipped to a deterministic finite
state device.

Lemma 5.1. The family T (SFST) is incomparable with both families T (DPDTλ)
and T (DPDT).

Proof. Since there are deterministic real-time context-free languages that are not
regular there are transductions realized by some DPDTλ and DPDT but not by any
SFST.

Conversely, we define the homomorphism h : {a, b} → {a′, b′}∗ by h(a) = a′,
h(b) = b′, and consider the transduction T = { (uc, h(u)) | u ∈ {a, b}∗ } ∪ { (ud, u) |
u ∈ {a, b}∗ }. An SFST realizing T initially guesses whether the input ends with a c
or with a d. Dependent on the guess it then computes the transduction as expected
and records the transduction (accepts the input) when reading the last input symbol
if and only if the guess was correct.

Now assume in contrast to the assertion that T is realized by some DPDT M.
On input ud, M cannot write the first output symbol a or b before it reads the
last input symbol. Otherwise on input uc always a symbol a or b would be emitted.
So, u has to be written after reading the last input symbol in a sequence of λ-moves.
Next, a DPDT M′ is constructed as follows. It starts to simulate M until a d
appears in the input. Then it continues the simulation but, in addition, tries to
read the symbols it emits from the input. On input c, M′ rejects. So, M′ realizes
the transduction { (udu, u) | u ∈ {a, b}∗ }. This is a contradiction since L(T (M′))
is not context free.

In order to draw an almost complete picture we next show the incomparability of
transductions realizable by DPDT, UPDT or SPDT, and IATrt,rt or IATrt,lt, that is,
the computational power of a massively parallel iterative array cannot compensate
the presence of a pushdown store and vice versa.

Lemma 5.2. Each of the families T (DPDT), T (UPDT), and T (SPDT) is in-
comparable with both families T (IATrt,rt) and T (IATrt,lt).

Proof. The incomparability follows from the incomparability of the languages ac-
cepted by real-time iterative arrays and deterministic as well as nondeterministic
context-free languages [12].

However, by simulating pushdown stores as shown above IATrt,rt can simulate
DPDTλ, and IATlt,lt can simulate DPDT. Together with the previous incomparabil-
ity results proper inclusions follow. It is known that Turing machines can simulate
linear-time iterative arrays in quadratic time. On the other hand, it is not known
whether every Turing machine working in quadratic time can be simulated by a
linear-time iterative array. Since unambiguous context-free languages can be parsed
in quadratic time using a variant of Earley’s algorithm [1], it is an open problem to
find out whether this approach can be applied for simulating UPDT or SPDT on
linear-time iterative arrays.

Although nondeterministic devices in general have been excluded a priori, we
conclude the section with an example emphasizing that there are structurally inter-
esting “non-unary” transductions realizable by some IATrt,lt but not realizable by
any nondeterministic pushdown transducer.

TRANSDUCTIONS COMPUTED BY ITERATIVE ARRAYS 167

Example 5.3. The transductions { (ucv, vcu) | u, v ∈ {a, b}+} and { (uc, uRcu) |
u ∈ {a, b}+} belong to T (IATrt,lt), but cannot be realized by any, even nondeter-
ministic, pushdown transducer [1].

T (IATlt,lt) T (SPDT)

T (IATrt,lt) T (DPDT) T (UPDT)

T (IATrt,rt) T (DPDTλ) T (SFST)

T (DFST)

Figure 5: Summary of inclusions. Solid lines are proper inclusions, dashed lines are
conjectured inclusions. All families which are not linked by a path are
pairwise incomparable.

References

[1] Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Volume I: Parsing.
Prentice-Hall, Englewood Cliffs (1972)

[2] Berstel, J.: Transductions and Context-Free-Languages. Teubner, Stuttgart (1979)
[3] Buchholz, Th., Kutrib, M.: Some relations between massively parallel arrays. Parallel Comput.

23 (1997) 1643–1662
[4] Choffrut, C., Čulik II, K.: On real-time cellular automata and trellis automata. Acta Inform.

21 (1984) 393–407
[5] Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state machines.

IEEE Trans. Comput. C-18 (1969) 349–365
[6] Čulik II, K., Yu, S.: Iterative tree automata. Theoret. Comput. Sci. 32 (1984) 227–247
[7] Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM

12 (1965) 388–394
[8] Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)
[9] Ibarra, O.H., Jiang, T., Wang, H.: Parallel parsing on a one-way linear array of finite-state

machines. Theoret. Comput. Sci. 85 (1991) 53–74
[10] Kutrib, M.: Automata arrays and context-free languages. In Where Mathematics, Computer

Science and Biology Meet. Kluwer Academic Publishers (2001) 139–148
[11] Kutrib, M.: Cellular automata – a computational point of view. In New Developments in

Formal Languages and Applications. Springer (2008) 183–227
[12] Kutrib, M.: Cellular automata and language theory. In Encyclopedia of Complexity and

System Science. Springer (2009) 800–823
[13] Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf. Syst.

E87-D (2004) 721–725
[14] Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inform. Comput.

118 (1995) 327–340
[15] Yu, S.: Regular languages. In Handbook of Formal Languages. Volume 1. Springer, Berlin

(1997) 41–110

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 168-179

AN UPPER BOUND ON THE NUMBER OF STATES
FOR A STRONGLY UNIVERSAL HYPERBOLIC
CELLULAR AUTOMATON ON THE PENTAGRID

MAURICE MARGENSTERN

Université Paul Verlaine, LITA EA 3097, UFR MIM and CNRS, LORIA, Campus du
Saulcy, 57045 Metz Cedex 1, France
E-mail address : margens@univ-metz.fr
URL: http://www.lita.sciences.univ-metz.fr/~margens

Abstract. In this paper, following the way opened by a previous paper deposited
on arXiv, see[7], we give an upper bound to the number of states for a hyperbolic
cellular automaton in the pentagrid. Indeed, we prove that there is a hyperbolic
cellular automaton which is rotation invariant and whose halting problem is un-
decidable and which has 9 states.

1. Introduction

In [7], we gave a general tool to embed a 1D-cellular automaton into a whole
family of tilings of the hyperbolic plane and into two tilings of the hyperbolic 3D-
space.

In this paper, we try to improve the method in order to find a strongly universal
cellular automaton in the pentagrid. We remind the reader that by strong univer-
sality, we mean a cellular automaton which mimics the computation of universal
devices starting from a finite configuration. We also remind the reader that the
pentagrid is the tiling {5, 4}, i.e. the tessellation of the hyperbolic plane based on
the regular pentagon with right angles, see [2, 4]. Within the limit on the number
of pages given to the author, the paper cannot be self-contained. This is why we
assume that the reader is familiar with both cellular automata and their implemen-
tation in tessellations of the hyperbolic plane, and we refer him/her to the above
references and to this additional one, [5], in case he/she would not be familiar with
these notions.

In Section 2, we give the outline of the construction. In Section 3 we implement
the preliminary structure of the implementation. In Section 4 we give a construction
with 13 states. In Section 5, we reduce this number by one state, which will give
the way to Section 6 where the number of states is reduced to 9 of them. Section 7
concludes the paper with indications on further work.

Key words and phrases: cellular automata, strong universality, hyperbolic spaces, tilings.

168

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 169

2. Scenario

In traditional literature on cellular automata, a quiescent state is defined as a
state q such that if a cell and all its neighbours are under state q, the cell remains
under state q at the next time of the clock. By analogy with the empty squares of
the tape of a Turing machine which are said to contain the blank symbol, we shall
fix a quiescent state and we shall call it the blank.

For cellular automata which have a blank state, an initial finite configuration is
a configuration in which all cells are blank except, possibly, finitely many of them.
It is plain that if the initial configuration is finite, all further configurations are also
finite, even when the computation requires an infinite time: in this case, there may
be no uniform bound to the size of each configuration.

Let us now turn to the idea of the construction.
The idea of [7], which embeds any 1D-cellular automaton with infinite initial

configuration is very simple: it consists in embedding the 1D-structure of the con-
sidered cellular automaton into the desired tiling of the hyperbolic plane. In this
construction, we simply had to devise a simple way to make the cells of the embed-
ded structure different from the other cells of the tiling. In this way, we can easily
transport the rules of the 1D-cellular automaton into those of the hyperbolic cellular
automaton. The key point is that in this construction, the differentiation is made a
priori: it is given in the initial configuration.

If we wish to implement a 1D-cellular automaton which starts its computation
from a finite configuration, then we have to go on the embedding at the same time as
the computation is going on. And so, we have to find out a simple way to construct
the 1D-structure together with the computation. But this is not enough. Remember
that the halting of the computation of a cellular automaton is defined by the oc-
currence of two consecutive identical configurations. And so, when the computation
of the 1D-cellular automaton is completed, we have to stop the construction of the
1D-structure.

In [3], the propagation of the tree structure of the pentagrid is implemented in
a triangular cellular automaton, and this automaton can easily be adapted to the
pentagrid, also as a rotation invariant one. Rotation invariance means that the
new state is unchanged if we perform a circular permutation on the neighbours of the
cell, this cell being excepted. This was done in [5] and repeated, as an example in [6],
not in the shortest way as in that context the goal was that a cell should recognize
whether it is black or white with respect to the Fibonacci structure simply by looking
at its neighbourhood. Here, we do not really bother of this condition so that instead
of six states as it is the case in [5], three states are enough: the blank, a white one
and a black one. As we have the choice for the place of the initial configuration,
we can place it around the central cell which spares us the burden of initializing
the propagation of the structure: it is enough to assume it is installed in the initial
configuration and to continue it, this spares one state.

However, we have to stop the computation, which means that a signal has to be
sent to stop the others. In order to perform this task, it is needed to slow down the
propagation. Indeed, the speed of a signal is at most 1. And so, if the halting signal
travels at speed 1, it can catch up previously sent signals only if these latter signals
travelled at a lower pace. Now, slowing down necessarily costs states as we shall see.
But, fortunately, the 1D-cellular automaton which we shall consider is also slow, so
that we shall not have to slow down too much.

170 M. MARGENSTERN

After that, we have to look at the way to find a 1D-cellular automaton which is
strongly universal with a small number of states. We shall use the implementation
of the 7×4 universal Turing Machine of Marvey Minsky which is precisely described
in [1]. This gives us a 1D-, strongly universal cellular automaton with 7 states. In
the rest of the paper, we denote this cellular automaton by L.

Now, to see how many states we can obtain, we have to go into finer details of
the implementation. The first step is the propagation of the 1D-structure which is
a common feature of the three cellular automata which we construct in the paper.

3. Implementation of the 1D-structure

In [7], in the case of the pentagrid, we implemented the line of a 1D-cellular
automaton along a line of the pentagrid. We remind the reader that such a line
is any line which contains a side of a pentagon of the tiling: such a line contains
the sides of infinitely many pentagons which can be gathered into two sequences of
pentagons indexed by ZZ, two consecutive pentagons having a side on the line, these
just indicated sides being also consecutive.

Here, as we start from a finite configuration, we have at most finitely many cells
along such a line and our task is to devise a way to go on this line as a continuation
of the segment which already exists.

Figure 1: The first two configurations of the propagation of the 1D-structure. Left-
hand side: initial configuration, say time 0. In dark red, cells in state B,
in light yellow, the cell in state W0. Right-hand side: time 1. In bright
red, the cell in state B0. In green, the cell in state W1. The blue cells
represent the blank denoted by N: the different hues of blue remind the
tree structure of the tiling, but they represent a single state. Note that
here, the central cell is not the central pentagon of the figure, it is the dark
red cell in contact with the light yellow, green one in the left-, right-hand
side picture respectively.

Now, the problem can be a bit simplified by the fact that L possesses an inter-
esting feature. The cellular automaton L implements a Turing machine which is an
interpreter of tag systems. This mean that we may assume that the Turing machine
works on a semi-infinite tape: i.e. the tape has an end but it is infinite in one
direction only. This is particularly interesting for our implementation: this allows
us to implement a ray only, so that we can put the end of this ray around the central
cell. For the propagation algorithm, we can define the first two configurations as
illustrated by Figure 3.

We need six states for the propagation of the ray: N, B0, B, W0, W1 and W.
Informally, cells in B will follow a branch of black nodes of one of the Fibonacci

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 171

trees rooted around the central cell. This branch is the leftmost branch of the chosen
Fibonacci tree. Now, the cells W follow the rightmost branch of the next Fibonacci
tree while clock-wise turning around the central cell. It is easy to remark that the
pentagons of these two branches share a ray which supports one side of each one of
these pentagons.

The propagation itself advances at a speed 1/2. This is suggested by the presence
of the states B0 and B as well as by that of the states W0 and W1.

The mechanism is the following. A new B is produced by the transformation
of B0 into B. Now, a new B0 is obtained by the continuation of both the black
branch and the white one. It is created by the simultaneous occurrence of a B and
a W0 around a blank cell abutting the cell at contiguous sides and in a precise
order: while counter-clockwise turning around the cell, we first meet B and then,
immediately, W0. The three cells, the blank, B and W0 share a common vertex.
We know that there is a fourth cell. In the initial configuration it is a cell in B. In
the other configurations, when this local configuration occurs, the fourth cell is a
cell in W: it is a cell in W1 which evolved into W. The roles between W0 and W1

Figure 2: Left-hand side: time 2 of the propagation. Right-hand side: time 3 of the
propagation. In bright yellow, state W which indicates a fixed cell. The
blue cells have the same meaning as in Figure 3.

are the following. A cell in W0 becomes N at the next time if it is surrounded by
cells in N. Otherwise, it becomes W1. Now, a cell in W1 becomes W if and only if
it sees a neighbour in B0. Otherwise, it becomes N. Now, a cell in N becomes W0

if and only if it has one neighbour in W1 exactly. Otherwise, it remains N.
Now, we can see that the configuration which allows a cell in N to become B0

requires the cells in W or W0 to be one step in advance with respect to those in B
and B0. This is also allowed by the progression of the cells in W0. The condition
on W0 allows us to stop the progression of the W0’s which do not follow the ray.
Whence the importance on the condition of the transformation of the W0’s and also
of the W1’s which disappear unless they can see a cell in B0, in which case they
become W.

We have no room here for the table of the rules. Such tables can be found in [8].
We refer the reader to this paper for them. In the present paper, the expression the
rules for A refers to the tables in [8] which display the rules of the automaton A.
Note that in all the tables of [8], there are two kinds of rules. In the first group,
the current state of the cell is left unchanged: this is why these rules are called
conservative. In the second group, the current state of the cell is changed: these
rules are called propagation rules.

Basically, there are two propagation rules: the rule N B W0 N N N B0 and the
rule N W1 N N N N W0. In both of them, the blank is changed into a cell which will

172 M. MARGENSTERN

contribute to the extension of the 1D-structure. Now, the other rules contribute to
create the context required by these two propagation rules as well as the transfor-
mation of a first signal, B0 and W0 into the final one, B and W, respectively.

The fact that we have three signals for the white node instead of two as the

speed of progression of the 1D-structure is
1

2
is explained by the structure of the

pentagrid: when a cell in W1 propagates the signal W0, this is performed upon
several cells, at least two of them, while it is needed for only one of them. This is
the reason of the signalW1 which is an intermediate step betweenW0 andW. Now,

in order to keep the speed
1

2
, the alternation is performed between W1 and W0.

It is now time to go to the other parts of the implementation. In these parts,
we shall refer to the cells in B and in W of the just described construction as the
ray in which the cells in B constitute the track and the cells in W constitute the
support of the track.

Figure 3: Illustration of the propagation from the beginning until a few steps. In
bright yellow, state W which indicates a fixed cell. The blue cells have
the same meaning as in Figure 3.

4. The 13-state cellular automaton

First of all, we remind the reader that in this paper, we shall consider deter-
ministic cellular automata only, as L is itself a deterministic 1D-cellular automaton.
Let us denote by A the automaton which implements the computation performed
by L. We require A to be rotation invariant.

In the previous propagation, we consider that B represents the blank of L which
has to be distinct from the blank N of A. Indeed, if we give the same state for the
two blanks, we shall have problems with the propagation, as can easily be seen from
the scenario of Section 2.

An important point is that in the working of L, it can be noticed from [1]
that the configuration of L, i.e. the smallest interval which contains the non blank

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 173

cells, remains the same during at least three consecutive steps and that it may go
outside by one cell, only at the fourth time. This means that the progression of
the configuration of L is much slower than the propagation of the ray described
in Section 3. As a consequence, when the signal of L goes outside the current
configuration, the track is ready to deliver free blank cells.

Accordingly, the computation of A is able to perform that of L during the
propagation stage. In fact, it is enough to consider that in the process described
in section 3, B can be any of the states of L and that it must be the blank for
the cell in B0 which is transformed into B. This latter B, at this moment, is the
blank of L. Indeed, the cells of the track are the single one which, except the ones
which are at the ends of the track, have two neighbours which are also cells of the
track. In fact, except for two exceptional cells, a rule of the track is of the form
y x W z N N u where xyz → u is a rule of L. For the exceptional cells, the origin
and its neighbour of the track, the cell has three neighbours under N, and the origin
has a single neighbour on the track. All these features can easily be seen from the
pictures of Figure 3, there cannot be ambiguity about these local configurations.

This means that, presently, as B is one of the states of L, A has 12 states as L
itself has 7 states, see [1].

Now, let us closer look at the working of L. In [1], L mimics rather closely the
computation of Minsky’s Turing machine. In particular, there is a state T , notation
of [1], which represents the position of the head of the machine. In the simulation
devised in [1], the halting is performed by the disappearance of T . Our task is to
change this transformation into a signal which will trigger the stage at the end of
which the computation of A will also halt in the traditional sense of the halting of
a cellular automaton starting from a finite configuration, see Section 2.

To perform this task, we replace the instruction 0Ty → 0 of the table of L in [1]
by the instruction OTy → H, where H is a new state of A. Also, we append the
new instructions HyB → B, B0T → B, where B is in both cases , the blank of L.
Note that 0T → is a rule of L, see [1].

Now, we can make a bit more precise the scenario depicted in Section 2. As
just indicated, H appears on the track. In some sense it is far from the ends as we
can put several blanks to the left of the leftmost non blank cell of the Turing tape
in the initial configuration. We remind the reader that we may choose the initial
configuration and we may choose it so that the initial segment of L outside which
there are only blank cells is in middle of the initial configuration, with at least two
blank cells outside this segment. We decide that H does not affect the cells of the
track which will remain unchanged. However, we decide that a cell in W which sees
at least one H among its neighbours becomes H itself.

In this way, the cells of the support of the track are progressively changed to H.
The corresponding rules are given in [8] and they are illustrated by Figure 4. We
have just to see that we can effectively stop the generation of cells in W0 and in W1,
which will to its turn stop the production of B0. We also have to check that no
problem arises on the fixed end of the ray which represents the leftmost part of the
Turing tape.

Figure 4 shows how the propagation of the ray is stopped by the arrival of the
states H. For simplicity, call signal H, the propagation of H replacing the state W
in the cells of the support of the track.

174 M. MARGENSTERN

Figure 4: The propagation of the H-signal. Note that the back ground of blue cells
is the same as in the previous figures.

First, assume that the signal H arrives as indicated in the figure: almost all cells
of this part of the support are now in state H, and just a single cell in W remains
whose next neighbour is a cell in W1. Necessarily, the cell in W is changed to H
and the cell in W1 becomes W: the cell in W1 cannot see what is on another side of
its neighbour in W. And so, at the next step, we have a cell in W again for which
one neighbour is in H and two others are in W0. At the next time, the cells in W0

become W1 and the cell in W becomes H. Now, the cell in H is neighbouring a
cell in W1. If the cell in W1 turns to W again, then the signal will never stop
the propagation of the ray. And so, the cell in W1 turns to H when one of its
neighbours is in H: this is possible as no rule with the current state W1 involved
a neighbour in H. And this solves the problem: at the next time, the cells in W0

either have their five neighbours in N, or they have a neighbour in H. We decide
that the neighbouring of H makes a cell in W0 to turn to N too, and this stops the
process. It can be checked that the rules of [8] allow to perform this task. This was
done by the computer program which also computed the data for the PostScript file
producing Figures 3, 4, 4 and 4. The computer program also checked the rotation
invariance of the rules.

From the figure, it is not difficult to see that the situation illustrated by Figure 4
is general: as the signal goes faster than the progression of the ray, there will always
be a time when the rightmost cell in H will be close to the rightmost cell in W at
a time when this cell is neighboured by cells in W1. Indeed, if there are two cells
in W between the cell in H and the cell in W1, at the next time, the cell inW1

which is close to the track becomes W while the others become N, and the blank
cells close to W1 become W0. Now, between the rightmost cell in H and the cell
in W0, there are two cells in W. But at the next time, the cell in W close to H
becomes H and the cell in W0 which is close to the border becomes W1. And so, at
this time, we have the same configuration as the one illustrated by Figure 4. This
proves that, in all cases, the signal H stops the progression of the ray as this was
planned.

We remain with checking that the progression of the signal H in the other
direction is stopped by the origin: this is illustrated by Figure 4. See the rules
in [8].

At this point, we have proved the following result:

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 175

Figure 5: How the H-signal stops the propagation of the ray.

Figure 6: How the H-signal is stopped at the other end of the ray, near its origin.

Theorem 4.1. There is a rotation invariant hyperbolic cellular automaton in the
pentagrid which starts from finite configurations and whose halting problem is unde-
cidable which has 13 states, the blank included.

Indeed, A satisfies the statement of Theorem 4.1. However, the reader may
wonder why we stated that the halting problem of A is undecidable and why we did
not state that A is strongly universal? This is due to a strange property of Minsky’s
Turing machine with 7 states and 4 letters, a property which is inherited by L as
it closely simulates this Turing machine. The problem lies in the way the Turing
machine detects the halting of the simulated tag system. In fact, in this machine,
when the halting production is found, the Turing machine erases its tape so that
when it stops, the content of the tape can no more be red. This ’defect’ of Minsky’s
machine was noticed and corrected by Rogozhin in [11]. Of course, ’morally’ the
machine is universal but rigorously, we can say no more than the statement of the
theorem.

5. The 12-state cellular automaton

Now, we can show that a slight tuning of A allows us to obtain a cellular
automaton which simulates the computation of L using 12 states only.

The idea is to replace the state H by one of the states of A which is not used by
L. In fact we have no choice. State W cannot be chosen as the support of the track
consists already of cells in W. Using W would require to circumvent the support
which would lead to more states. Similarly, neither W0 nor W1 can be used as they
contribute to continue the propagation. For the same reason, B0 is rules out and,
of course, B cannot be used: this does not give a clear signal that the computation
halted. And so, the only possibility is N.

176 M. MARGENSTERN

Let B be the cellular automaton in the pentagrid obtained from A by replacing
H by N in the rules for A.

We can easily see that under this replacement of H by N in the rules of [8],
the rule obtained from N H N N N W1 N is in conflict with the rule we get from
N W1 N N N N W0, as we require our cellular automaton to be rotation invariant.
Of course, the solution is to cancel the rule obtained from N H N N N W1 N. And
it works: there are no more conflicts, we just have a few repetitions with the rules
for A where H does not occur.

And so, we proved the following result:

Theorem 5.1. There is a rotation invariant hyperbolic cellular automaton in the
pentagrid which starts from finite configurations and whose halting problem is unde-
cidable which has 12 states exactly, the blank included.

Note that the remark about strong universality for Theorem 4.1 also holds for
this one.

Replacing H by N boils down to erase the support of the track so that, at the
end of the computations, we remain with the track only. This erasing occurs at
both ends of the ray. We have no room to provide the figures proving this point.
These figures can be found in [8]. They also show that the erasing process stops the
propagation of the ray.

Now, could we reduce again the number of states, using the same 1D cellular
automaton? The next Section gives a positive answer to this question.

6. The 9-state cellular automaton

We have already seen that to reduce the number of states from 13 down to 12,
we replaced the state H by the state N. We can try to go further in this direction.
In [7], we reduced the number of states for a weakly universal cellular automaton
from 3 states down to 2 ones by replacing the extra state in the simulation with
3 states by a state of the embedded 2-states cellular automaton. So that here, a
natural idea is to replace as many as we can states from N, W, W0, W1 and B0,
by states of L only. If we look at the rules displayed in [1], we can notice that
the symbol T has a rather empty sub-table. In particular, there is no rule assigned
to TTT , so that we can decide that TTT → T is used by our new automaton, C.
Inspired by the table of the rules given in [1], we shall see that W, W0 and B0 can
be replaced by T , 0 and A respectively. It is enough to check that performing these
replacements and taking the above figures, we obtain new rules which are rotation
invariant and compatible.

Indeed, consider the first stage of the working of B which consists in propagating
the structure at the same time when the computation is going on. It will be enough
to ensure that a pure propagation process can be performed under the new set of
states and that there is no contradiction between the new involved rules and the
rules derived from the computation of L. We also have to check that the new rules
do not disturb the computation itself.

Now, this latter condition entails that we cannot replace W1 by a state of L.
Indeed, imagine that W1 is a state of L, say α. There are occurrences of α on the
track. Each cell of the track has at least two neighbours in state N. Consider one
of these neighbours. It has α as a neighbour and all the others are in N. From
Section 3, we know that in this case, the state N is replaced by W0 and this W0,

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 177

as it is not surrounded by cells in N only, will become W1. Now, if W1 has a
neighbour in A, which may happen in the track, this W1 becomes T which will
disturb the computation. Even in the case it will not disturb the computation,
the production of W0 nearby the track will be repeated periodically even when the
computation has stopped. So that we cannot replace W1 by a state of L. Can
we replace W0 by a state of L? The answer is yes: in the propagation context, a
cell in W0 has at least four neighbours in N. A cell of the track which is not the
blank has two neighbours in N exactly, so that it is possible to distinguish the role
of a distinguished α, depending on its neighbourhood. Moreover, a neighbour in N
of a cell in α would remain unchanged due to the rules N N N N N W0 N and
N N N N N B N.

6.1. The propagation of the ray

Let us have a new inspection of Figure 3. The tables of [8] indicate the rules
applied for going from one picture of the figure to the next one. As can be seen from
the table, after time 7, no new rule is needed for the propagation of the ray. We
can notice that these rules are obtained from those defined for the automaton A,
see [8], by replacing W, W0 and B0 by T , 0 and A respectively.

However, we have to keep in mind that, during the propagation, the computation
is going on. And so, we have to look at the cells of the track and of their neighbours
in order to check that they are compatible with the rules for C.

A rule which applies to a cell of the track is of the form

BNNB T BB (∗).
As we know, B is a generic name for the states of L. If we replace B by the states
of L, we get rules of the form

α0NNα−1Tα1α
1
0 (∗∗)

where α−1α0α1 → α1
0 is a rule of L. When α0 ∈ {B, y}, then the rule cannot be

confused with one of C which we have already defined. At the times up to 5, when
B is the current state, it is always , the blank of L. Now the rules for A, where
the current state is B and which are used up to time 6, either contain at least
three consecutive occurrences of N, or they contain an occurrence of A and so, they
cannot be confused with a rule (∗∗) whose current state would be . We have to
look at all the other possibilities.

Consider the case when B is T : the rules for A, where the current state is T are
those of the cell 1(1) at times 3, 4 and 5, and those of cell 0 at times 5 and 6. Only
one rule contains two consecutive occurrences ofN: the rule T N N T B B T . Note
that the relative positions of these two occurrences of N and that of T are fixed.
Now, when T occurs in a cell of the track, it is the single occurrence of this symbol
on the track as this is the case with L. In particular, in (∗∗), if α0 = T , then α1

or α−1 must be and the other symbol is any one of L except the blank and T : see
the table of the rules of L in [1]. Consequently, a rule of the track when the current
state is T cannot be confused with the rules with T as the current state in the rules
for A.

Now, consider the case when B is 0 or A. We compare (∗∗) with the rules for A
which have the same symbol as the current state. When it is A, the rules for A of N
while there are only two of them in the rule (∗∗). For symbol 0, we have a similar

178 M. MARGENSTERN

argument: the rules (∗∗) with 0 as the current state have at least three consecutive
neighbours in N.

We remain with the case when B is the blank of L. From the previous cases,
we know that there is no possible confusion when the rule contains at least three
consecutive occurrences of N. Now, two rules have two consecutive occurrences
of N exactly: the rule B N N B T A B and the rule B N N B T B B. These
rules can be seen as rules of the form (∗∗) when B= . The corresponding rules
are N N T A and N N T , respectively. Now, interpreted as rules
induced by a rule of L, the corresponding rules of L would be A → and

→ . Now, these rules are indeed present in the table of the rules of L,
see [1]. And so, at this stage, there is no confusion by replacing W, W0 and B0 by
T , 0 and A respectively.

6.2. The erasing of the support of the track

We have to look at the final stage of the process. When the halting is met, N
is introduced onto the track and, as we know from Section 5, this starts the erasing
process of the support of the track by propagation of N which successively replaces
all occurrences of T and, at the end of the propagation of the ray, which stops the
production of cells in 0.

This requires the following rules:

0 T : N N T N T N
0 N : N N T N T N

1(1) T : N N N B T N
1(4) T : N N N T B N

T : N N W1 W1 B N
T : N N 0 0 B N
N : N N N B T N
N : N N N T B N

Now, it is easy to see that none of them cannot be confused with the rule
T N N T B T T nor a rule of the form (∗∗) as these latter rules have only two
occurrences of N. It can also be seen that the above rules cannot be confused with
any of the other rules for A where the current state is T : again the number of
occurrences of N is different. Indeed, this number is two or three in the above rules
while it is at most one only in the rules for A except the rules T N N T B B T and
T N N T B T T . But there can be no confusion with these latter rules either: they
have T after the two occurrences of N while in the above rules with two occurrences
of N exactly, which are also consecutive, there is 0 or W1 after the second N.

We also have to check that the track is not disturbed by the replacement of T
by N. Indeed, this replacement has, as a consequence, that the form (∗∗) is replaced
by the following one:

α0NNα−1Nα1α
1
0 (∗ ∗ ∗)

As the three occurrences of N in (∗ ∗ ∗) are not consecutive, there is no confusion
with the rules for A where the current state is B.

This completes the proof that C exactly simulates the computation of L with a
true stopping of the cellular automaton in the case when the computation of L also
stops. Accordingly we have proved the following result:

UNIVERSAL HYPERBOLIC CELLULAR AUTOMATON 179

Theorem 6.1. There is a rotation invariant hyperbolic cellular automaton in the
pentagrid which starts from finite configurations and whose halting problem is unde-
cidable which has 9 states exactly, the blank included.

7. Conclusion

While stating Theorem 4.1, we have explained why we did not say that the
cellular automaton A is strongly universal and the same explanation holds for the
automata B and C of Theorems 5.1 and 6.1 respectively.

Can we still have a strongly universal cellular automaton with 9 states or possibly
less?

One way to solve this problem would be to apply the technique of [1] to another
small Turing machine. In [11] where the defect of this machine was first noticed, the
author provides another Turing machine with 7 states and 4 letters which mimics any
tag system of a given family, the same as for Minsky’s machine, and the machine
of [11] is actually universal. Another Turing machine with 7 states and 4 letters
which is truly universal was later provided by R. Robinson, see [10]. It would be
interesting to see whether a smaller machine, as the one devised by T. Neary and
D. Woods with 6 states and 4 letters, see [9], could yield a better solution.

Accordingly, there is some work ahead, probably a tedious one if not more
difficult.

Acknowledgement

The author is very much in debt to the referees for their remarks allowing him
to improve the paper.

References

[1] Lindgren K. and Nordahl M.G., Universal computation in simple one-dimensional cellular au-
tomata. Complex Systems, 4, 299–318, (1990).

[2] M. Margenstern, New Tools for Cellular Automata of the Hyperbolic Plane, Journal of Uni-
versal Computer Science, 6(12), (2000), 1226–1252.

[3] M. Margenstern, Implementing Cellular Automata on the Triangular Grids of the Hyperbolic
Plane for New Simulation Tools, ASTC’2003, (2003).

[4] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Volume 1, Theory, OCP, Philadel-
phia, (2007), 422p.

[5] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Volume 2, Implementation and
computations, OCP, Philadelphia, (2008), 360p.

[6] M. Margenstern, A universal cellular automaton on the heptagrid of the hyperbolic plane with
four states, Theoretical Computer Science, (2010), accepted.

[7] M. Margenstern, About the embedding of one dimensional cellular automata into hyperbolic
cellular automata, arXiv:1004.1830[cs.FL], (2010), 19pp.

[8] M. Margenstern, An upper bound on the number of states for a strongly universal hyperbolic
cellular automaton on the pentagrid, arXiv:1006.3451[cs.FL], (2010), 17pp.

[9] T. Neary, D. Woods, Four Small Universal Turing Machines, Fundamenta Informaticae, 91(1),
(2009), 123-144.

[10] R. Robinson, M. Minsky’s small universal Turing machine, International Journal of Mathe-
matics, 2(5), (1991), 551-562.

[11] Yu. V. Rogozhin, Sem’ universal’nykh mashin T’juringa. Matematicheskie Issledovanija, 69,
76-90, 1982 (Seven universal Turing machines) (in Russian)

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 180-190

TIME-SYMMETRIC CELLULAR AUTOMATA

ANDRÉS MOREIRA 1 AND ANAHÍ GAJARDO 2

1 Departamento de Informática and Centro Tecnológico de Valparáıso (CCTVal), Univer-
sidad Técnica Federico Santa Maŕıa, Casilla 110-V, Valparáıso, Chile
E-mail address: amoreira@inf.utfsm.cl

2 Departamento de Ingenieŕıa Matemática and Centro de Investigación en Ingenieŕıa
Matemática (CI2MA), Universidad de Concepción, Casilla 160-C, Concepción, Chile

Abstract. Together with the concept of reversibility, another relevant physical
notion is time-symmetry, which expresses that there is no way of distinguishing
between backward and forward time directions. This notion, found in physical
theories, has been neglected in the area of discrete dynamical systems. Here we
formalize it in the context of cellular automata and establish some basic facts and
relations. We also state some open problems that may encourage further research
on the topic.

1. Introduction

An important property that may be present or not in physical or abstract dy-
namical systems is reversibility; consequently, it has also been an active topic of
research in the context of cellular automata[8]. At least two particular reasons for
this interest are often mentioned: on one hand, if CA are seen as models for massive
distributed computation, then Landauer’s principle suggests that we should focus on
reversible cases. On the other hand, reversibility is often observed in real systems;
it is therefore desirable in models of them[15]. Furthermore, a number of interesting
results (like the dimension-sensitive difficulty of deciding reversibility[6]) have kept
reversible CA in sight over the years.

However, there is one aspect of reversibility, as seen in real systems, which
has been mostly neglected when considering cellular automata (in fact, for discrete
dynamics in general): the dynamical laws governing physical reality seem to be
not only reversible, but time-symmetric. For Newtonian mechanics, relativity or
quantum mechanics, we can go back in time by applying the same dynamics, pro-
vided that we change the sense of time’s arrow, through a specific transformation
of phase-space. In the simplest example, Newtonian mechanics, the transformation
leaves masses and positions unchanged, but reverses the sign of momenta.

Key words and phrases: time-symmetry, reversibility, universality.
This work has been supported by CONICYT FONDECYT #1090568 (A. Gajardo) and

#1080592 (A. Moreira), as well as UTFSM grant 241016 (A. Moreira).

c

180

TIME-SYMMETRIC CELLULAR AUTOMATA 181

In the most general sense, we say that a dynamical system (X,T) is time-
symmetric if there exists a reversible R : X → X such that R ◦ T ◦ R−1 =
T−1 [10](notice that this applies to systems with discrete or continuous time). How-
ever, time-symmetries observed in physical systems follow usually a more restricted
definition, in which R−1 = R, and therefore R is an involution on X. This is a
natural restriction, which follows whenever there is no way to distinguish where the
arrow of time is heading. Apparent irreversibility (Loschmidt’s paradox) comes only
from macroscopic (i.e., coarse-grained) differences in entropy.

Here we will discuss some basic facts about time-symmetric cellular automata,
defined as those CA F for which there exists an involution H (which is a CA itself)
such that

F−1 = H ◦ F ◦H (1.1)

Requiring H to be a CA is somewhat arbitrary, since for other systems the time-
reversing transformation is not necessarily of the same nature as the dynamics (in
fact, the physical theories discussed above are continuous in time). The reason for
this restriction is that we expect reversibility (including the particular case of time-
symmetry) to be a local property. Even if we do not address the case when H is not
a CA, it may be an interesting direction for future studies.

CA are usually defined over a full shift SZ, but they can also be studied over
(stable) subshifts. We remark that in this case, for time-symmetry to apply, the
subshift must be stable for both F and H. This may cause some problems, since
subsystems of a time-symmetric CA cannot be assumed to be time-symmetric too,
even if they are stable for F .

2. Some motivating examples

Not only our models of physical reality turn out to exhibit time-symmetry; it
is also found in some well known reversible discrete dynamical system. We show in
this section how it applies to two 2D system, Margolus’ billiard and Langton’s ant.
As a technical note, notice that in both cases the system is not originally described
as a cellular automaton in the strict sense; therefore, we describe for each of them
a CA that contains them as particular case for a subshift of valid configurations.
This should -in principle- be followed by an extension of the rule to the full shift,
and such that the system remains time-symmetric; however, doing that is not really
required, since we want to show the time-symmetry of the original system; we hence
restrict ourselves to the valid subshift.

Margolus’ billiard. A well known example of time-symmetric CA is the
Billiard ball model of Margolus [12]. It is not a proper CA, but rather a so-called
partitioned CA, where the space Z2 is partitioned in 2 × 2 blocks of cells in two
different ways (see Figure 1(a)). A transformation is applied to each block of each
partition alternately. It is easy to see that such an automaton is reversible if and
only if its local transformation is one-to-one. The rule used by Margolus is shown in
Figure 1(b). It tries to emulate balls that move in straight lines, colliding elastically
with each other or with static obstacles. The importance of this model comes from
its Turing-universality, proved in [12] by computing reversible Fredkin gates [3].

We can express Margolus’ system in terms of a CA with alphabet {white, black}×
{↗,↘,↙,↖} and Moore neighbourhood. Here the first layer (the white/black

182 A. MOREIRA AND A. GAJARDO

component) represents the states of the original Margolus model, and the other rep-
resents the current partition, along with the relative position of the cell within its
current block. This layer must be initialized in an appropriate way in order to work
correctly (see Figure 1)(c).

Notice that reversing the arrows makes the partition flip to the alternative one.
At each time step, each cell computes its next white/black state by applying Mar-
golus’ rule to the quadrant indicated by its arrow, and then reverses its arrow. Each
of this actions -the first on the first layer, the second on the second- is an involution.
Furthermore, if at one time step we omit any of them, further iterations will make
the automaton evolve back in time.

(a) (b) (c)

Figure 1: (a) The two partitions of the Margolus model are shown, one with solid
lines and the other with dashed lines. (b) The Billiard Ball Model is
defined through a permutation over 2× 2 blocks of cells. (c) The current
partition is obtained by grouping the four cells that point to the same
point; reversing the arrows gives the alternate partition.

Langton’s ant. Langton’s ant was introduced in [11] together with several
models emulating different life properties. It was also defined in physics as a model
for particles presenting self correlated trajectories [1]. The model can be seen as a
Turing machine working on a 2-dimensional tape. Its internal state is an arrow that
represents its last movement direction. At each step, the ant turns to the left or to
the right depending on the cell color (white or black), it flips this color and moves one
cell forward (see Figure 2(a)). Besides being Turing-universal [4], its celebrity is due
mostly to its particular behavior over finite initial configurations. Simulations show
that it always falls eventually into a repetitive movement -of period 104- that makes
it propagate unboundedly (see Figure 2(b)); this assertion has not been proved, and
appears to be very difficult despite the simplicity of the transition rule.

Langton’s ant can also be described in terms of a CA with Moore neighborhood
and state cell {head, tail, empty}×{white, black}. We represent the arrow through
two adjacent cells, one in state head and the other in state tail. The cell in state
tail always becomes empty, while the cell in state head always becomes tail and flip
its color. Cells adjacent to a head can decide to become head themselves by looking
at the tail position and the color of the head cell. The system simulates Langton’s
ant only if it starts with only one ant.

TIME-SYMMETRIC CELLULAR AUTOMATA 183

Here again, we can define the involution consisting in exchanging tails and heads.
This immediately makes the ant come back to the cell it just had left, which it finds
in the color opposite to the one it had found before, causing the ant to turn in the
opposite direction, which in turn makes it again go to a previously visited cell, and
so on: the ant will forever retrace (and undo) its past trajectory.

(a) (b)

Figure 2: (a) Langton’s ant rule. (b) Space configuration at iteration 10,837 after
starting with every cell in white color.

3. Basic results

Proposition 3.1. Let F be a CA. Then the following are equivalent:

(1) F is time-symmetric.
(2) There exists an involution H such that (F ◦H) is an involution.
(3) F is the composition of two involutions.

Proof. (1) =⇒ (2)
Let F and H be the CA satisfying 1.1. Then

(F ◦H)2 = F ◦H ◦ F ◦H = F ◦ F−1 = id

(2) =⇒ (3)
Take H from (2) and let G = F ◦H which is an involution. We have

F = F ◦ id = F ◦ (H ◦H) = (F ◦H) ◦H = G ◦H
(3) =⇒ (1)

Let G and H be involutions such that F = G ◦H. Then

F−1 = (G ◦H)−1 = H−1 ◦G−1 = H ◦G = H ◦G ◦H ◦H = H ◦ F ◦H

184 A. MOREIRA AND A. GAJARDO

Remarks 3.2. The following additional facts are noteworthy:

(1) If F is time-symmetric, then so is its inverse F−1. Moreover, if F = G ◦H is
a decomposition into involutions, then F−1 = H ◦ G is a decomposition for
the inverse. If H was the involution verifying 1.1, then G plays that role for
F−1.

(2) For any i ∈ Z, F i is also time-symmetric.
(3) The identity is a (trivial) involution; from there and the third condition we

have that any involution is trivially time-symmetric.
(4) Not every reversible CA is time-symmetric. For example, σ (the shift): if for

some H, (σ ◦H) ◦ (σ ◦H) = id, since any CA commutes with the shift, we
would have σ2 = id, which is a contradiction.

The following diagram commutes:

X

h−−−−→
←−−−−

h

X

F
y
xF−1 F

y
xF−1

X

h−−−−→
←−−−−

h

X

Moreover, if we use F = G ◦ H to decompose the dynamics into the alternate
applications of the involutions, so that successive configurations are computed as
c′t = H(ct), ct+1 = G(c′t), we get a dynamics c0, c

′
0, c1, c

′
1, . . . , where both F and

F−1 are being iterated: ct+1 = F (ct) and c′t+1 = F−1(c′t). This curious situation is
represented in Figure 3.

hh

gg

hh

gg

hh

gg

F

F

F -1

F -1

Figure 3: The decomposition of time-symmetric CA into alternating involutions cre-
ates a situation where both F and its inverse can be read from the space-
time diagram as time moves forward (or backward).

TIME-SYMMETRIC CELLULAR AUTOMATA 185

4. Involutions

Involutions are quite infrequent in the space of CA. For example, the only ele-
mentary CA of period two are the identity and its negation.

It is easy to decide whether a given CA is an involution or not: we just have
to compute its square and compare it to the identity. Nevertheless, if we want
to enumerate the set of involutions, this procedure is very slow. A constructive
characterization or a practical set of strong necessary conditions is still missing.

Meanwhile, it may be useful to consider restricted families of CA. For instance,
if we restrict ourselves to additive CA, we get an alternative characterization in
terms of coefficients. If we consider an additive CA of radius r defined on (Zm)Z by
the local rule

h(x−r, . . . , x0, . . . , xr) =
r∑

i=−r
aixi

then by applying the rule twice and grouping the terms it is easily seen that h is an
involution if and only if

a0 + 2
r∑

i=1

aia−i = 1 and

r+min{j,0}∑

i=−r+max{j,0}
aiaj−i = 0 ,∀j 6= 0

For instance, for m = 4 and r = 1, we get 2a−1a0 = 2a0a1 = a2−1 = a21 = 0 and
a20 + 2a−1a1 = 1. Putting a−1 = a1 = 2 we obtain all the zeroes, and with a0 = 1 or
a0 = 3 we have the last condition. An example of an additive involution is thus

h(x−1, x0, x1) = (2(x−1 + x1) + 3x0) mod 4 (4.1)

Another well studied family of CAs are permutative ones. Unfortunately, we do
not have a characterization there. A necessary condition is given by the following
fact:

Proposition 4.1. Given an involution h, the following two assertions are equiva-
lent:

• h is left-permutative.
• h is one-way to the right1.

Proof. If h is left-permutative of left radius l, h2 is also left-permutative of left
radius 2l, but the left radius of h2 is 0, then l is 0. Conversely, if h is oneway to the
right and it is not permutative, there exists x1...xn and y1 such that h(x1, ..., xn) =
h(y1, x2, .., xn). Taking any extension z of x1..xn to Z, and z′i = zi for every i 6= 1
and z′1 = y1, we have that h(z)[1,∞[= h(z′)[1,∞[. Thus, z′1 = h2(z)1 = h2(z′)1 = z1,
which is a contradiction.

Thus the involution in (4.1), which is clearly two-way, is not permutative. An
example of a permutative involution of radius r is:

h(x−r, ..x0) =

1 if x−r = 0 ∧ x0 = 2
2 if x−r = 0 ∧ x0 = 1
x0 otherwise

(4.2)

This kind of construction is the simplest one, with permutations which are trans-
positions and which do not affect the states that regulate their application. More

1The neighbourhood is a finite subset N of N0.

186 A. MOREIRA AND A. GAJARDO

complicated examples may have associated permutations which are not transposi-
tions.

Example (4.2), incidentally, shows how an involution can have an arbitrarily
large neighbourhood. This long-distance dependence may be lost when it is com-
posed with another involution, making the determination of time-symmetry non-
trivial. For instance, the involution (4.2) yields the permutation (12) of radius 0
when it is composed with

g(x−r, ..x0) =

1 if x−r 6= 0 ∧ x0 = 2
2 if x−r 6= 0 ∧ x0 = 1
x0 otherwise

5. Diversity in the class of time-symmetric CA

One simple example of time-symmetric automata is given by the following.

Proposition 5.1. Every reversible CA of radius 0 is time-symmetric.

Proof. Let f be the local rule of a reversible CA of radius 0, and let S be its set
of states. Suppose first that f : S → S is a cyclic permutation and, without loss
of generality, that S = {0, .., n − 1} and f(i) = i + 1 mod n. Let us define the
involution h(i) = n − i − 1. Consider g = h ◦ f ; for i < n − 1, g(i) = h(f(i)) =
h(i+1) = n− (i+1)−1 = n− i−2, while otherwise g(n−1) = h(f(n−1)) = n−1.
Thus g is an involution: g2(n − 1) = g(n − 1) = n − 1, and for other i, g2(i) =
g(n− i− 2) = n− (n− i− 2)− 2 = i. Since f = h ◦ h ◦ f=h ◦ g is the composition
of two involutions, it is time-symmetric.

If f decomposes into more than one cycle, we define h and g as before over each
of them, obtaining again a decomposition into involutions.

It is important to notice here the preservation of time-symmetry under conju-
gacy.

Proposition 5.2. If F is conjugated to T and T is time-symmetric, then F is also
time-symmetric.

Proof. From time-symmetry, there is an involution H such that T−1 = H ◦ T ◦H.
From conjugacy, there is a bijective, continuous, shift-commuting φ such that T =
φ ◦ F ◦ φ−1. Then we have (removing the composition symbol, for clarity) that

F−1 = φ−1T−1φ = φ−1HTHφ = φ−1HφFφ−1Hφ = GFG

and G = φ−1Hφ is cleary an involution, making F time-symmetric.

Periodic CA of radius r > 0 behave almost like a CA with radius 0, in the
sense that information cannot travel “very far”; this makes them nearly time-
symmetric, because they are conjugated to a subshift of a radius 0 CA. To see
this, let F be a p-periodic CA with states S and define ϕ : SZ → (Sp)Z as
ϕ(x)i = (xi, F (x)i, .., F

p−1(x)i). This ϕ is continuous and injective, and the in-
duced CA F ′ in (Sp)Z has radius 0 and period p; its local rule is f ′(a0, a1, .., ap−1) =
(a1, a2, .., ap−1, a0). From Proposition 5.1 we see that F ′ is time-symmetric; more-
over, ϕ(SZ) is F ′ invariant. However, ϕ(SZ) is not invariant for the involution
defined in the proof, and therefore we cannot conclude that F is time-symmetric.

TIME-SYMMETRIC CELLULAR AUTOMATA 187

When we consider the group of reversible CA with the composition operation,
involutions correspond to elements of order two. These objects were already con-
sidered by Hedlund et al in [5], where the last theorem shows that the composition
of two involutions (i.e., time-symmetric CA) can have infinite order. The example
that proves this theorem is defined on alphabet {0, 1} and consists in the compo-
sition of α, the negation of the identity, and β, a CA that negates xi if and only
if xi−1xi+1xi+2 = 101. Figure 4 shows simulations of this CA; the Hedlund’s proof
exhibited a configuration with infinite orbit consisting in one traveling signal over a
periodic background like the one appearing in Figure 4(a).

(a) (b)

Figure 4: Simulations of the time-symmetric CA defined by Hedlund et al on pe-
riodic boundary conditions. (a) Two traveling signals. (b) A simulation
over a random initial configuration.

This already suggests a variety of dynamical behaviors within the class. But
the examples given in Section 2 are even more interesting, as they correspond to
Turing-complete systems. The following results shows that, indeed, the whole range
of reversible dynamical behaviors can be observed in time-symmetric CA.

Proposition 5.3. Let F be a 1D reversible CA. Then there exists a 1D CA F̃ which
is time-symmetric and simulates F in real time.

Proof. Let f be the local rule of F and denote with f−1 the local rule of its inverse
F−1; let ` and r be large enough so that N = {−`, . . . , r} contains the neighbour-
hoods of both f and f−1; finally, let S be the set of states. We define the CA F̃
with neighbourhood N and states S2, through the local rule

f̃ ((x−`, y−`), . . . , (xr, yr)) = (f(x−`, . . . , xr), f
−1(y−`, . . . , yr))

F̃ simulates F in real time: to project the space-time diagram of F̃ into that of F ,
we just discard the second component of the ordered pairs. By discarding the first
component instead, we note that F̃ simulates F−1 as well.

Let H be the involution given by the radius 0 local rule h(x, y) = (y, x). Abusing
notation, denote configurations c ∈ (S2)Z as pairs (x, y) ∈ (SZ)2. Then we have

F̃ ◦H(x, y) = F̃ (y, x) = (F (y), F−1(x))

and

(F̃ ◦H)2(x, y) = F̃ ◦H(F (y), F−1(x)) = F̃ (F−1(x), F (y)) = (x, y)

and thus F̃ is time-symmetric.

188 A. MOREIRA AND A. GAJARDO

Cellular automata are said to be intrinsically universal if they are able to simu-
late any other CA. The details vary according to the accepted notion of simulation,
from which there is a variety. Delorme et al [2] have recently reviewed and com-
pleted the study of three of these, surjective, injective and mixed simulation, and
shown that for every pair of CA F and G, F × G simulates both F and G in all
three senses.

Corollary 5.4. There exist time-symmetric CA which are intrinsically universal
within the class of reversible CA.

Proof. This follows from the previous results and comment, and from the existence
of reversible intrinsically universal CA (see for example [14]).

Notice that reversible CA cannot simulate arbitrary CA: intrinsic universality
is therefore limited to the reversible class, and time-symmetric CA are as general as
reversible CA can get. Turing-universality is not limited by reversibility (information
can be “swept away” to preserve it and maintain reversibility) and hence is implied
by reversible intrinsic universality.

Not every reversible CA is time-symmetric; a simple example is the shift σ,
which commutes with every CA and therefore cannot satisfy equation (1.1) for any
involution H. But in general, it is not easy to prove non-time-symmetry. An in-
teresting theory which may provide better tools for doing this, and possibly for
characterizing time-symmetry, is the one developed by Kari in [7]. We will not re-
produce here his construction, but one important fact is the following: he introduces
a morphism h− from the set of reversible CA with the composition (Aut(A), ◦) into
the set of rational numbers with the multiplication (Q, ·): h−(f ◦ g) = h−(f)h−(g)
for all reversible f, g. Clearly, involutions and every periodic CA are in the kernel of
h−. Moreover, since time-symmetric CA are compositions of involutions, they are
in this kernel as well. We do not presently know whether they are identical to the
whole kernel or not.

Kari proves that reversible CA which are not in this kernel are compositions of
some element of the kernel with a partial shift which is easily computed from the
value of h−; in turn, every element of the kernel can be written as a composition of
two block permutations (akin to Margolus rule), and thus he expresses reversible CA
in an explicitly reversible way. Our motivation here is different, but the approach is
promising and the connection should be explored. As a first conclusion, we obtain
that every CA in the kernel of h− is a composition of two time-symmetric CAs, and
hence is also the composition of four involutions.

6. Conclusions

We believe that this note just scratches the surface of the topic of time-symmetry
in cellular automata; their rich internal structure and the connection to physical
models suggests that much more can be done with them.

On the other hand, as shown by the examples in Section 2, time-symmetric
CA are actually quite familiar to CA researchers, and have appeared in different
contexts. Some cases are very explicit, like the automata constructed in the proof of
undecidability of periodicity [9], which actually include an “arrow of time” toggle.
Moreover, there are ways of constructing CA rules that make the construction of
time-symmetric CA straightforward. For instance, Margolus’ billiard is an example

TIME-SYMMETRIC CELLULAR AUTOMATA 189

of a block automata, i.e., a system which is a composition of two functions applied
to independent blocks of the configuration. By incorporating the current function
and block to be applied into the configuration, a block automaton can always be
expressed as a CA. Defining an involution that toggles the current block is a good
idea to prove time-symmetry, but it only works if both block functions are also
involutions. What must be stressed is that this is only a sufficient condition; the
system may be time-symmetric by means of an entirely different involution.

Likewise, partitioned CA (in the sense of Morita [13]) can easily give birth to
time-symmetric CA. In that case, cells are partitioned into sub-cells, one for each
neighbours; iteration proceeds by the alternation between an exchange step, where
cells exchange the contents of the sub-cells associated to each other, and a step
which applies a block transformation on the cell. This scheme was succesfully used
to construct reversible CA (all we need is a reversible block transformation), and
can produce time-symmetric CA as well if the block transformation is chosen as
an involution: the exchange step already is one. Again, what we want to stress is
that this is a sufficient condition: we could have a partitioned CA which is time-
symmetric while having a non-involutive block transformation, if the decomposition
happens to be another one.

There are several interesting questions that should probably be addressed next,
and have appeared along this text:

• Is there a constructive characterization of CA involutions that can make
their enumeration practical? Right now the only way we have to find the
involutions is to test all CA exhaustively; some trivial necessary conditions
can be used to reduce the search, but they are not enough to make it efficient.
• Is time-symmetry a decidable property? Since the definition calls for the

existence of an involution that verifies a condition, a bound on the necessary
neighbourhood for the involution would be enough to ensure decidability.
• Do time-symmetric CA correspond to the kernel of Kari’s h− morphism?

We conjecture a positive answer for these three questions, at least in dimension
1; Kari’s result on undecidability of reversibility in dimension 2 [6] suggests that
answers here may be dimension-sensitive too. The answers to the questions may
be related to each other. For instance, a better understanding of the structure
of involutions may be useful for bounding the required neighbourhood and thus
deciding time-symmetry. On the other hand, since h− is easily computed, a positive
answer to the third question would imply a positive answer to the second as well.

Notice that if the answer to the third question is positive, then time-symmetric
CA would be closed under composition. This is by no means obvious, and in fact it
is a further interesting open question.

A further direction for future work may be the study of time-symmetry in other
discrete dynamical systems. In each case an important issue is to precise what kind
of involution is to be applied. Generally speaking, what we need is an involutive and
hopefully local transformation of the system’s configuration. That transformation
may not be, in general, an object of the same kind as the dynamics itself: that was
the case for CA because of the special nature of CA, which transform the whole
configuration in discrete time too, and will be the case for automata networks in
general. In other cases, like for instance Turing machines, it is not only difficult (the
composition of two Turing machines moves the head two steps, and is no longer a
Turing machine unless we extend the definitions) but also not expected; rather, for

190 A. MOREIRA AND A. GAJARDO

Turing machines, the involution would likely be a transformation on the tape (a CA
involution?) along with a change in the current state of the machine. Finally, the
locality of the time-reversing involution is not completely granted either: even in
CA, it would be interesting to see what happens if that requirement is removed.

Acknowledgment

Andrés Moreira thanks Gaetan Richard for useful remarks on the characteri-
zation of time-symmetry, and Nicolas Ollinger and the Laboratoire d’Informatique
Fondamentale de Marseille for the visit during which that discussion took place.

References

[1] E. G. D. Cohen. New types of diffusion in lattice gas cellular automata. In M. Mareschal and
B. Holian, editors, Microscopic Simulations of Complex Hydrodynamic Phenomena. Plenum
Press, 1992.

[2] M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier. Bulking II: Classifications of cellular
automata. 2010.

[3] E. Fredkin and T Toffoli. Conservative logic. Int. J. of Theoret. Phys., 21(3/4):219–253, 1982.
[4] A. Gajardo, A. Moreira, and E. Goles. Complexity of Langton’s ant. Discrete Applied Math-

ematics, 117(1-3):41 – 50, 2002.
[5] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical systems. Mathe-

matical Systems Theory, 3(4):320–375, 1969.
[6] J. Kari. Reversibility of 2d cellular automata is undecidable. Physica D: Nonlinear Phenomena,

45(1-3):379 – 385, 1990.
[7] J Kari. Representation of reversible cellular automata with block permutations. Mathematical

Systems Theory, 29(1):pp 47–61, 1996.
[8] J. Kari. Reversible cellular automata. In Clelia De Felice and Antonio Restivo, editors, De-

velopments in Language Theory, volume 3572 of Lecture Notes in Computer Science, pages
57–68. Springer Berlin / Heidelberg, 2005.

[9] J. Kari and N. Ollinger. Periodicity and immortality in reversible computing. In Edward
Ochmanski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science
2008, volume 5162 of Lecture Notes in Computer Science, pages 419–430. Springer, 2008.

[10] J. S. W. Lamb and J. A. G. Roberts. Time-reversal symmetry in dynamical systems: A survey.
Physica D: Nonlinear Phenomena, 112:1 – 39, 1998.

[11] C. G. Langton. Studying artificial life with cellular automata. Physica D, 22:120–149, 1986.
[12] N. Margolus. Physics and Computation. PhD thesis, M. I. T., Cambridge, Mass., U.S.A., 1987.
[13] K Morita and M Harao. Computation universality of one-dimensional reversible (injective)

cellular automata. The Trans. of the IEICE, E72-E(6):758–762, 1989.
[14] N. Ollinger. Universalities in cellular automata: a (short) survey. In B. Durand, editor, Sym-

posium on Cellular Automata - Journes Automates Cellulaires (JAC’2008), pages 102–118,
Moscow, 2008. MCCME Publishing House.

[15] T. Toffoli and N. H. Margolus. Invertible cellular automata: A review. Physica D: Nonlinear
Phenomena, 45(1-3):229 – 253, 1990.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 191-202

YET ANOTHER APERIODIC TILE SET

VICTOR POUPET

LIF Marseille
E-mail address: victor.poupet@lif.univ-mrs.fr

Abstract. We present here an elementary construction of an aperiodic tile set.
Although there already exist dozens of examples of aperiodic tile sets we believe
this construction introduces an approach that is different enough to be interesting
and that the whole construction and the proof of aperiodicity are hopefully simpler
than most existing techniques.

Aperiodic tile sets have been widely studied since their introduction in 1962
by Hao Wang [7]. It was initially conjectured by Wang that it was impossible to
enforce the aperiodicity of a coloring of the discrete plane Z2 with a finite set of local
constraints (there either was a valid periodic coloring or none at all). This would
imply that it was decidable whether there existed a valid coloring of the plane for
a given set of local rules. This last problem was introduced as the domino problem,
and eventually proved undecidable by Robert Berger in 1964 [1, 2]. In doing so,
Berger produced the first known aperiodic tile set: a set of local rules that admitted
valid colorings of the plane, none of them periodic. Berger’s proof was later made
significantly simpler by Raphael M. Robinson in 1971 [12] who created the set of
Wang tiles now commonly known as the Robinson tile set.

Since then many other aperiodic tile sets have been found, not only on the
discrete plane [3, 4, 8, 9], but also on the continuous plane [5, 11].

In this article we will describe yet another construction of an aperiodic tile set.
Although the resulting tile set will produce tilings quite similar to those of Robin-
son’s (an infinite hierarchical structure of embedded squares) the local constraints
will be presented in a (hopefully) more natural way: we will start from simple geo-
metrical figures and organize them step by step by adding new rules progressively.

1. Tilings

There are many different ways to define tilings of the discrete plane Z2. The
historical definition as presented by Wang is that of unit square tiles with colored
edges (nowadays called Wang tiles). The domino problem is to decide whether one
can arrange copies of a given set of such tiles on the plane so that the adjacent sides
of two neighbor tiles have the same color.

Key words and phrases: tiling, Wang tile, tile set, aperiodic, domino problem.
The author is partly supported by ANR-09-BLAN-0164.

c

191

192 V. POUPET

Although the description of the problem with Wang tiles is extremely simple,
it is not the easiest way to deal with tilings. A more modern approach consists in
defining a tile set as a set of local constraints in the form of a finite set of forbidden
patterns. A tiling of the plane according to such a tile set is a coloring of the plane
such that no forbidden pattern appears. Both definitions are known to be equivalent.

1.1. Patterns and Configurations

Definition 1.1 (Configuration). Given a finite set of symbols Σ, a Σ-configuration
is a mapping C : Z2 → Σ that associates a symbol of Σ to each element of Z2

(elements of the plane Z2 will be referred to as cells).

Definition 1.2 (Pattern). Given a finite set of symbols Σ, a Σ-pattern is a mapping
P : DP → Σ from a finite subset of cells DP ⊂ Z2 to Σ.

Definition 1.3 (Tile Set). A tile set is a couple τ = (Σ,F) where Σ is a finite set
of symbols and F is a finite set of patterns called forbidden patterns.

Definition 1.4 (Tilings). Given a finite set of symbols Σ, we say that a Σ-pattern
P : DP → Σ appears in a Σ-configuration C if there exists a vector v ∈ Z2 such that

∀x ∈ DP ,P(x) = C(x+ v)

A Σ-configuration C is said to be valid for a tile set τ = (Σ,F) if it contains
none of the patterns in F . A tiling of the plane by a tile set τ is a valid configuration
for τ .

1.2. Periodicity

Definition 1.5 (Periodicity). A configuration C is said to be periodic if there exists
a non-zero vector v ∈ Z2 such that C is invariant by a translation of v (v is a vector
of periodicity of C):

∀x ∈ Z2,C(x) = C(x+ v)

A configuration is said to be bi-periodic if it has two independent vectors of period-
icity.

Definition 1.6 (Aperiodicity). A tile set is said to be aperiodic if it admits at least
one tiling of the plane but admits no periodic tiling.

The two following propositions will be of use later. The first one is folklore and
its proof will be omitted.

Proposition 1.7. If a tile set admits a valid periodic tiling of the plane it admits a
valid bi-periodic tiling of the plane.

Remark 1.8. The contraposition of Proposition 1.7 states that if a tile set cannot
tile the plane bi-periodically it cannot tile it periodically either. We will use this in
our construction of an aperiodic tile set as it is easier to prove that there exist no
bi-periodic valid configuration.

Proposition 1.9. If a configuration is bi-periodic it has both a vertical and a hori-
zontal vector of periodicity.

Proof. If (x, y) and (x′, y′) are two independent vectors of periodicity of a configura-
tion then x′.(x, y)−x.(x′, y′) = (0, x′y−xy′) and y′.(x, y)− y.(x′, y′) = (xy′−x′y, 0)
also are.

YET ANOTHER APERIODIC TILE SET 193

2. Construction of an Aperiodic Tile Set

2.1. General Overview

The aperiodic tile set that we are going to describe is based on the following
simple observation: if a picture contains arbitrarily large squares such that none of
these squares intersect each other, the picture cannot be periodic. Indeed, because
squares do not intersect a translation vector that leaves the picture unchanged must
be larger than the side of every square for if a square is translated less than the
length of its sides it intersects its original position.

What we will do now is design a set of local constraints that only accepts pictures
on the discrete plane that contain arbitrarily large non-intersecting squares.

These “pictures” will contain lines of different sorts made of horizontal, vertical
and diagonal segments. To be consistent with the previous definitions of configu-
rations, tile sets and tilings we should be describing configurations as symbols on
the cells of Z2. However it will be much easier to explain (and understand) the
construction by describing geometrical shapes.

This means that when we will say something like “blue lines are made of hori-
zontal and vertical segments, have no extremities and cannot cross” what this really
means is that we have symbols representing blue lines going through cells verti-
cally, horizontally and changing directions (for example entering from the top side
and exiting from the right side). Once represented, it is easy to enforce the stated
properties with a set of forbidden patterns. In this case the forbidden patterns are
those where a blue line is interrupted because it exits a cell from one side but does
not enter its neighbor from the corresponding side. The fact that blue lines can-
not cross is simply enforced by having no symbol corresponding to a crossing on a
cell (no symbol corresponds to a blue line going through a cell both vertically and
horizontally).

Our construction will consist in two main types of lines that we will call “blue
lines” and “arms”. Blue lines will be made to draw non intersecting squares while
arms will be used to control the size of squares and connect them together to build
a structure that enables us to prove the existence of arbitrarily large squares.

2.2. Blue Lines

Blue lines are made of vertical and horizontal segments. They have no extrem-
ities (only infinite or closed paths) and cannot cross or overlap. They are oriented
(they have an inner and an outer side) and can only change their direction by
turning towards the inside.

All of these rules are local conditions and can therefore be enforced by a tile set.
Because blue lines cannot cross and can only turn towards the inside, finite blue

lines can only be rectangles. For the same reasons, infinite blue lines can only be of
three kinds, each corresponding to a degenerate rectangle with some bi-infinite or
semi-infinite sides (see Figure 1).

2.3. Blue Squares

We now want to make sure that only squares are valid. To do so, the usual
method is to draw a diagonal line from the upper-left and lower-right angles of every

194 V. POUPET

Figure 1: Possible blue paths. The infinite paths can have 0, 1 or 2 angles.

blue rectangle. This diagonal line is oriented towards the inside of the rectangle and
is not allowed to meet a blue line other than the angles from which it starts. If the
rectangle is a square, the two diagonal lines merge into one but if it is not a square
the diagonals will reach a side of the rectangle, which is forbidden.

This however only works if there are no smaller squares inside larger ones. Be-
cause we need some small blue squares to lie on the diagonal of larger ones, we will
have to allow the diagonal line to “go around” a square, but only from one corner
to the other as shown in Figure 2.

Figure 2: Diagonal line used to ensure all closed blue paths are squares

We can show inductively that all closed blue paths are squares:

• if a path has no other blue path inside, the diagonal line goes straight from
its upper-left to its lower-right corners, it is therefore a square;
• if all blue paths inside a larger one are squares, the diagonal line only goes

around squares and hence it remains on the real diagonal of the larger one,
the large one is a square too.

Remark 2.1. A small blue square inside a larger one can only be either perfectly
aligned with the latter’s diagonal or far enough from it so that it does not intersect
it.

YET ANOTHER APERIODIC TILE SET 195

2.4. Infinite Paths

Lemma 2.2. The only possible infinite blue paths in a valid bi-periodic configuration
are infinite straight lines (no angle).

Proof. According to the basic rules of blue lines, infinite blue paths can be of three
different kinds (illustrated by Figure 1): they can have zero, one or two angles.

However, because of the diagonal line that starts from the upper left and lower
right angles of any blue line, infinite paths with two angles cannot be valid (see
Figure 3).

Figure 3: Two-angled infinite paths cannot be valid.

Moreover, no valid bi-periodic configuration can contain an infinite path having
only one angle. Indeed, such a configuration must be both horizontally and vertically
periodic (Proposition 1.7) and any finite horizontal or vertical translation of the
infinite angle would intersect it.

The only remaining case of infinite blue path is that of bi-infinite vertical or
horizontal straight lines (with no angle).

2.5. Arms

Blue squares alone are not sufficient to ensure the aperiodicity of the tile set.
What we will do now is organize them into groups in such a way that for every blue
square of finite size we can prove the existence of a larger finite blue square. In order
to group them, we extend vertical and horizontal lines from every corner of a blue
square towards the exterior (see Figure 4). These new lines are called arms.

The basic properties of arms can be described by the following rules:

• Arms are horizontal or vertical continuous straight lines. They do not turn.
• Arms and blue lines cannot overlap.
• Arms are allowed to cross other perpendicular arms.
• The extremities of an arm must be angles of blue paths (some extremities

might not exist if the arm is semi or bi-infinite).
• The orientations of two blue squares connected by an arm must match: an

arm cannot connect the upper (resp. right) side of a square to the lower
(resp. left) side of another.
• There can be at most one point on an arm where it crosses a blue line.

196 V. POUPET

The last rule is the key to most of the properties that we will need later. It
might appear as a non-local constraint as it is formulated as a global condition on
the arm but it can be enforced locally by orienting the arms from their extremities
as shown in Figure 5: blue lines are only allowed to cross an arm where the two
opposite orientations meet (which needs not be the middle of the arm).

Figure 4: Arms extend from every angle of a blue path towards the exterior. In the
right part there are three errors: the middle one is an orientation error
(down side connected to an up side) while the two others are arms that
cross more than one blue line.

Figure 5: Orientation on the arms to enforce locally the fact that an arm can cross
at most one blue line. The blue line can only cross where the orientations
meet.

Two blue squares are said to be neighbors if they are connected by an arm.

2.6. Size Matching

Lemma 2.3. In a valid bi-periodic configuration, if two blue squares are neighbors
they are of equal size.

Proof. By contradiction, let us assume there exists a valid bi-periodic configuration
having two connected squares of different size. Let us consider one of the smallest
squares so connected to a larger square. In order to describe the situation, we will

YET ANOTHER APERIODIC TILE SET 197

consider that the two squares are connected horizontally by an arm joining their
lower sides (as shown in Figure 6).

Figure 6: Why arms cannot connect squares of different sizes.

There has to be an arm that starts from the upper side of the smaller square
and goes towards the larger. Because this arm is not allowed to cross two blue lines,
it cannot go entirely through the larger square. Thus it must be connected to the
upper side of another blue square, either before entering the larger square or inside
it (both cases are illustrated by Figure 6). In both cases, this third square at the
other extremity of the arm must be smaller than the initial small square :

• if the third square is outside of the larger one, its vertical sides cannot cross
the arm connecting the two initially considered squares for this would mean
this arm is crossed by two blue lines;
• if the third square is inside the larger one, it cannot cross the side of the

larger square;

This contradicts the fact that the initial square was chosen as being one of the
smallest squares connected to a square of different size.

Lemma 2.4. In a valid bi-periodic configuration, every finite blue square has exactly
four neighbors, one in each direction, and it is connected to each of its neighbors by
two arms.

Proof. Because all connected squares have the same size, if two squares are connected
by an arm, they are also connected by a second arm. Since every finite blue square
has eight arms, it is connected to at most four neighbors.

Moreover there can be no semi-infinite horizontal or vertical line in a configu-
ration that is both vertically and horizontally periodic (the line would have to be
bi-infinite) hence every arm connected to a square is connected to another one. Ev-
ery square must then have at least four neighbors, one in each direction.

2.7. Groups

It is now time to add a communication between the different finite blue squares
in order to organize them in groups in such a way that for each group of neighbor
squares there exists a larger finite square associated with this group, in turn leading
to the proof that there exist arbitrarily large finite squares.

To do this, we add two coordinates (x, y) ∈ (Z/3Z)2 to every blue line, and the
arms only allow a connection that corresponds to a correct arrangement of squares:

198 V. POUPET

the right neighbor of a square (x, y) must have coordinates (x + 1, y) and its up
neighbor must have coordinates (x, y + 1) (all additions are performed modulo 3).

To realize this with a tile set we use different sorts of blue lines for each possible
set of coordinates (9 possibilities), and different sorts of arms depending on the
coordinates of the squares they connect. Obviously we require that the coordinates
of a blue line are constant along the line (which is a local condition) and that the
coordinates of an arm (the coordinates of the squares it connects) are also constant
along one arm.

The structure is then enforced by the arms at their extremities: a horizontal
arm whose coordinates are ((x, y), (x + 1, y)) must be connected to a square of
coordinates (x, y) by its left extremity and to a square of coordinates (x + 1, y) by
its right extremity, and similarly with vertical arms of coordinates ((x, y), (x, y+1)).

Lemma 2.5. In a valid bi-periodic configuration, if there exists a blue square then
there exists a blue square of the same size with coordinates (1, 1).

Proof. This is a straightforward consequence of Lemmas 2.3 and 2.4 and the coordi-
nates system. All squares have neighbors in all directions and all neighbors have the
same size. Because the first (resp. second) coordinate is incremented by 1 modulo
3 each time we consider the right (resp. up) neighbor, we eventually find a square
of coordinates (1, 1).

The construction is now nearing its end. All we need to do is ensure that in any
possible bi-periodic configuration, for every finite blue square there exists another
blue square that is larger. The easy way to prove that a square is larger than another
is to have the large one contain the other. Because for every square there is a (1, 1)
square of the same size, it is enough to make every (1, 1) square be inside a larger
one.

To do so, we slightly change the arms connecting (1, 1) squares to their neighbors.
Instead of being allowed to cross at most one blue line, these arms are required to
cross exactly one blue line. Moreover the inner side of the crossing blue line must
be towards the (1, 1) square. This is easy to do with local constraints by requiring a
blue line to cross such an arm where the opposite orientations meet (as explained in
sub-section 2.5 and illustrated by Figure 5). We can now prove the following lemma:

Lemma 2.6. In a valid bi-periodic configuration, every finite (1, 1) blue square is
contained in a larger finite blue square.

Proof. Consider a finite (1, 1) blue square. By lemma 2.4 it has both an up and a
right neighbor. The arms that connect it to these neighbors are each crossed by a
blue line, with its inside turned towards the (1, 1) square. The situation is illustrated
in Figure 7 (a). The two blue lines that cross the arms must be connected:

• if the vertical one turns before the position of the horizontal one, it will have
to cross the arm that is already crossed by the horizontal portion of blue line
(b) or turn once more and move a second time though the arm it has already
crossed once;
• if the vertical blue line goes further up than the position of the horizontal

one, the horizontal one must turn before and cross one of the two arms that
have already been crossed (c).

The two blue lines that cross the arms are two sides of the same blue path (d). This
blue path contains the (1, 1) square and is therefore larger.

YET ANOTHER APERIODIC TILE SET 199

Figure 7: The two blue lines that cross the right and top arms of a (1, 1) square are
connected.

2.8. Aperiodicity

All we need to do now is make sure there is a blue square somewhere in any
valid configuration. The simplest way to do this locally is to forbid large patterns
that have no blue angle. In our specific case, patterns of size 2 are sufficient so we
add this last rule to our tiling constraints: every 2× 2 pattern must contain a blue
angle.

We can now prove the key proposition of the construction:

Proposition 2.7. There exists no valid periodic configuration.

Proof. By Proposition 1.7, we need only show that there exists no valid bi-periodic
configuration. As a consequence of the last rule any valid configuration has a blue
angle. By Lemma 2.2 this angle is part of a finite blue square. Finally, by Lemmas
2.5 and 2.6 for every finite blue square in a valid bi-periodic configuration there
exists a larger finite blue square. This means that any such configuration contains
arbitrarily large non-intersecting blue squares, which contradicts its periodicity.

2.9. Valid Configuration

We still need to show that there exists at least one valid configuration, for the
tile set would otherwise be of very limited interest. We will now show that the
configuration illustrated by Figure 8 is valid.

This configuration is very regular and has a simple structure. It contains squares
of size 3k for every k ∈ N. For every k, the squares of size 3k are arranged regularly,
each being at a distance 2.3k from its neighbors. They are then considered in groups
of 3 × 3 and there is a square of size 3k+1 that has the same center as the central

200 V. POUPET

Figure 8: A valid configuration

square of size 3k of each group. The central square in each 3×3 group has coordinates
(1, 1) while the others have the matching coordinates (the arms are not represented
in the Figure for better clarity).

This configuration satisfies all the rules of the tile set:

• blue paths are all finite blue squares;
• because squares are so regularly arranged, smaller squares that intersect the

diagonal of a larger one are perfectly aligned with this diagonal;
• arms connect squares of the same size, and every square has four neighbors;
• the squares of size 3k+1 contain the squares of size 3k that have coordinates

(1, 1) but none of their neighbors so they cross all the required arms.

Two things must still be justified. The first is that the arrangement of squares
that has been described can fill an infinite configuration and more precisely that there
is always room for the larger squares without overlapping the previously existing
lines. This can be proved by observing that between two consecutive columns (resp.
rows) of squares of size 3k, if we ignore all the larger squares, there is an empty

YET ANOTHER APERIODIC TILE SET 201

column (resp. row) of cells (cells on which there is no blue line). This property
can be proved inductively since it is true for the squares of size 1 and at each step,
the squares of size 3k+1 occupy two out of three empty columns and rows, leaving
exactly one empty column or row between neighboring squares. The construction
can therefore be continued indefinitely.

Lastly we must verify that in the valid configuration no arm is crossed by more
than one blue line. This fact is closely related to the previous point: the sides
of squares of length 3k lie on rows and columns that were not crossed by smaller
squares (the empty rows and columns previously discussed). No smaller square
can therefore cross arms connecting two squares of side 3k. Finally, between two
neighboring squares there is exactly one empty column or row on which a larger
square could have its side and hence at most one blue line can cross an arm.

3. Conclusion

What we have described is a set of local rules (all rules concern neighboring
cells and can be described with 2× 2 forbidden patterns) that admits infinite valid
configurations but none of these are periodic. Although the local rules remain simple
and the number of geometric structures used is quite limited (blue lines, arms and
diagonals), the number of symbols necessary to represent them on the cells is very
large. Because each cell can contain different combinations of lines and that said lines
must be different depending on the information they hold (orientation, coordinates
in a group of squares, number of blue lines crossed by an arm, etc.) tens of thousands
of different symbols are used.

In order to keep the construction as simple as possible we have only proved that
the tile set was aperiodic but it is not sufficient to prove the undecidability of the
domino problem as it is. The construction can be strengthened however by forcing
blue squares of length one to be regularly arranged as they are in the configuration
described in Subsection 2.9. It is then possible to show inductively that the larger
squares are also regularly arranged by observing the empty columns and rows. By
doing so one can then embed partial space-time diagrams of a Turing Machine in the
free space of each blue square as it is done in Robinson’s construction (see Figure
9). If the halting state of the Turing machine is not included in the tile set, large
valid space-time diagrams of the Turing machine cannot appear in a tiling. The
produced tile set can hence tile the plane if and only if the Turing machine does not
halt, which proves the undecidability of the domino problem.

The structure of the valid tilings can also be easily altered. Groups could be
larger and their inner structure can be more complex. For instance it would be
possible to mimic the behavior of recursive geometric constructions such as the
space-filling curves of Peano [10] or Hilbert [6] to enforce their structure with a tile
set.

References

[1] Robert Berger. The Undecidability of the Domino Problem. PhD thesis, Harvard University,
1964.

[2] Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society, 1966.

202 V. POUPET

Figure 9: Computation area in a square of size 27. Only the intersections correspond
to cells of the space-time diagram of the Turing machine, the horizontal
and vertical lines are used to transmit the data. In this example the square
can compute 8× 8 cells of the space-time diagram.

[3] Bruno Durand, Leonid A. Levin, and Alexander Shen. Local rules and global order, or aperi-
odic tilings. Mathematical Intelligencer, 27(1):64–68, 2004.

[4] Bruno Durand, Alexander Shen, and Andrei Romashchenko. Fixed Point and Aperiodic
Tilings . Technical Report TR08-030, ECCC, 2008.

[5] Chaim Goodman-Strauss. A Small Aperiodic Set of Planar Tiles. Europ. J. Combinatorics,
20:375–384, 1999.

[6] David Hilbert. Ueber die stetige abbildung einer line auf ein flchenstck. Mathematische An-
nalen, 38:459–460, 1891. 10.1007/BF01199431.

[7] A.S. Kahr, Edward F. Moore, and Hao Wang. Entscheidungsproblem reduced to the ∀∃∀ case.
Proceedings of the National Academy of Sciences of the United States of America, 48(3):365–
377, March 1962.

[8] Jarkko Kari. The Tiling Problem Revisited . In Machines, Computations, and Universality
(MCU), number 4664 in Lecture Notes in Computer Science, pages 72–79, 2007.

[9] Nicolas Ollinger. Two-by-two substitution systems and the undecidability of the domino prob-
lem. In CiE ’08: Proceedings of the 4th conference on Computability in Europe, pages 476–485,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen, 36:157–
160, 1890. 10.1007/BF01199438.

[11] Roger Penrose. Pentaplexity: A class of Non-Periodic Tilings of the Plane. Eureka, 39, 1978.
[12] Raphael M. Robinson. Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones

Mathematicae, 12(3), 1971.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 203-213

DECOMPOSITION COMPLEXITY

ALEXANDER SHEN

LIF Marseille, CNRS & University Aix–Marseille; on leave from IITP RAS, Moscow
E-mail address: Alexander.Shen@lif.univ-mrs.fr
URL: http://www.lif.univ-mrs.fr/˜ashen

Abstract. We consider a problem of decomposition of a ternary function into a
composition of binary ones from the viewpoint of communication complexity and
algorithmic information theory as well as some applications to cellular automata.

1. Introduction
The 13th Hilbert problem asks whether all functions can be represented as com-

positions of binary functions. This question can be understood in different ways.
Initially Hilbert was interested in a specific function (roots of a polynomial as func-
tion of its coefficients). Kolmogorov and Arnold (see [5]) gave kind of a positive
answer for continuous functions proving that any continuous function of several real
arguments can be represented as a composition of continuous unary functions and
addition (a binary function). On the other hand, for differentiable functions nega-
tive answer was obtained by Vituschkin. Later Kolmogorov interpreted this result
in terms of information theory (see [4]): the decomposition is impossible since we
have “much more” ternary functions than compositions of binary ones. In a dis-
crete setting this information-theoretic argument was used by Hansen, Lachish and
Miltersen ([3]. We consider similar questions in a (slightly) different setting.

Let us start with a simple decomposition problem. An input (say, a binary
string) is divided into three parts x, y and z. We want to represent T (x, y, z) (for
some function T) as a composition of three binary functions:

T (x, y, z) = t(a(x, y), b(y, z)).

In other words, we want to compute T (x, y, z) under the following restrictions:
node A gets x and y and computes some function a(x, y); node B gets y and z and
computes some function b(y, z); finally, the output node T gets a(x, y) and b(y, z)
and should compute T (x, y, z).

The two upper channels have limited capacity; the question is how much capacity
is needed to make such a decomposition possible. If a- and b-channels are wide
enough, we may transmit all the available information, i.e., let a(x, y) = 〈x, y〉 and

Key words and phrases: decomposition complexity, 13th Hilbert problem, cellular automata.
Author is grateful to V.V. Podolskii, A.E. Romashchenko, and ESCAPE team in general for

useful discussions, and to the reviewers for very helpful comments. The paper was supported in
part by NAFIT ANR -08-EMER-008-01 and RFBR 09-01-00709-a grants.

c

203

204 A. SHEN

x y z

a(x, y) A b(y, z)B

T (x, y, z) = t(a(x, y), b(y, z))

T

Figure 1: Information transmission for the decomposition.

b(y, z) = 〈y, z〉. Even better, we can split y in an arbitrary proportion and send one
part with x and the other one with z.

Is it possible to use less capacity? The answer evidently depends on the function
T . If, say, T (x, y, z) is xor of all bits in x, y and z, one bit for a- and b-values is
enough. However, for other functions T it is not the case, as we see below.

In the sequel we prove different lower bounds for the necessary capacity of two
upper channels in different settings; then we consider related questions in the frame-
work of multi-source algorithmic information theory [7]).

Before going into details, let us note that the definition of communication com-
plexity can be reformulated in similar terms: one-round communication complexity
corresponds to the network

x y

p(x, y)

(dotted line indicates channel of limited capacity) while two-rounds communication
complexity corresponds to the network

x y

p(x, y)

etc. Another related setting that appears in communication complexity theory:
three inputs x, y, z are distributed between three participants; one knows x and
y, the other knows y and z, the third one knows x and z; all three participants
send their messages to the fourth one who should compute T (x, y, z) based on their
messages (see [6]).

One can naturally define communication complexity for other networks (we se-
lect some channels and count the bits that go through these channels).

DECOMPOSITION COMPLEXITY 205

2. Decomposition complexity
Now let us give formal definitions. Let T = T (x, y, z) be a function defined on

Bp×Bq×Br (here Bk is the set of k-bit binary strings) whose values belong to some
set M . We say that decomposition complexity of T does not exceed n if there exist
u + v 6 n and functions a : Bp × Bq → Bu, b : Bq × Br → Bv and t : Bu × Bv → M
such that

T (x, y, z) = t(a(x, y), b(y, z))

for all x ∈ Bp, y ∈ Bq, z ∈ Br. (As in communication complexity, we take into
account the total number of bits transmitted via both restricted links. More detailed
analysis could consider u and v separately.)

2.1. General upper and lower bounds

Since the logarithm of the image cardinality is an evident lower bound for de-
composition complexity, it is natural to consider predicates T (so this lower bound
is trivial). This makes our setting different from [3] where all the arguments and
values have the same size. However, the same simple counting argument can be used
to provide worst-case lower bounds for arbitrary functions.

Theorem 2.1. (Upper bounds) Complexity of any function does not exceed n =
p+ q + r; complexity of any predicate does not exceed 2r + r as well as 2p + p.

(Lower bound) If p and r are not too small (at least log n+O(1)), then there
exists a predicate with decomposition complexity n−O(1).

The second statement shows that the upper bounds provided by the first one
are rather tight.

Proof. (Upper bounds) For the first bound one can let, say, a(x, y) = 〈x, y〉 and
b(y, z) = z. (One can also split y between a and b in an arbitrary proportion.)

For the second bound: for each x, y the predicate Tx,y
z 7→ Tx,y(z) = T (x, y, z)

can be encoded by 2r bits, so we let a(x, y) = Tx,y and b(z) = z and get decom-
position complexity at most 2r + r. The bound 2p + p is obtained in a symmetric
way.

(Lower bound) We can use a standard counting argument (in the same way as in
[3]; they consider functions, not predicates, but this does not matter much.) Let us
count how many possibilities we have for a predicate with decomposition complexity
m or less. Choosing such a predicate, we first have to choose numbers u and v such
that u+ v 6 m. Without loss of generality we may assume that u+ v = m (adding
dummy bits). First, let us count (for fixed u and v) all the decompositions where
a has u-bit values and b has v-bit values. We have (2u)2

p+q possible a’s, (2v)2
q+r

possible b’s and 22u+v possible t’s, i.e.,

2u2
p+q · 2v2q+r · 22u+v

= 2u2
p+q+v2q+r+2u+v 6 2(u+v)2p+q+(u+v)2q+r+2u+v

possibilities (for fixed u, v). In total we get at most

m2m2p+q+m2q+r+2m

206 A. SHEN

predicates of decomposition complexity m or less (the factor m appears since there
are at most m decompositions of m into a sum of positive integers u and v). There-
fore, if all 22n predicates Bp ×Bq ×Br → B have decomposition complexity at most
m, then

m2m2p+q+m2q+r+2m > 22n

or
logm+m2p+q +m2q+r + 2m > 2n

At least one of the terms in the left-hand side should be Ω(2n), therefore either
m > n−O(1) [if 2m = Ω(2n)], or logm > r−O(1) [if m2p+q > Ω(2n) = Ω(2p+q+r)],
or logm > p−O(1) [if m2q+r > Ω(2n) = Ω(2p+q+r)].

2.2. Bounds for explicit predicates

As with circuit complexity, an interesting question is to provide a lower bound
for an explicit function; it is usually much harder than proving the existence results.
The following statement provides a lower bound for a simple function.

Consider the predicate T : Bk × B22k × Bk → B defined as follows:
T (x, y, z) = y(x, z)

where y ∈ B22k is treated as a function Bk × Bk → B.

Theorem 2.2. The decomposition complexity of T is at least 2k.

(Note that this lower bound almost matches the second upper bound of Theo-
rem 2.1, which is k + 2k.)

Proof. Assume that some decomposition of T is given:
T (x, y, z) = t(a(x, y), b(y, z)),

where a(x, y) and b(y, z) consist of u and v bits respectively. Then every y : Bk ×
Bk → B determines two functions ay : Bk → Bu and by : Bk → Bv obtained from
a and b by fixing y. Knowing these two functions (and t) one should be able to
reconstruct T (x, y, z) for all x and z, since

T (x, y, z) = t(ay(x), by(z)),

i.e., to reconstruct y. Therefore, the number of possible pairs 〈ay, by〉, which is at
most

2u2
k · 2v2k ,

is at least the number of all y’s, i.e. 222k . So we get
(u+ v)2k > 22k,

or u+ v > 2k, therefore the decomposition complexity of T is at least 2k.

DECOMPOSITION COMPLEXITY 207

Remarks.
1. In this way we get a lower bound Ω(

√
n) (where n is the total input size)

for the case when x and z are of size about 1
2

log n. In this case this lower bound
matches the upper bound of Theorem 2.1, as we have noted.

2. Here is another example where upper and lower bounds match. If the predi-
cate t(x, y, z) is defined as x = z, we need to transmit x and z completely (see [6] or
use the pigeon-hole principle). So there is a trivial (and tight) linear lower bound if
we let x and z be long (of Θ(n)) size.

3. It would be interesting to get a linear bound for an explicit function in
an intermediate case when x and z are short compared to y (preferable even of
logarithmic size) but not as short as in Theorem 2.2 (so a non-constructive lower
bound applies). Such a lower bound would mean that a(x, y) or b(y, z) has to retain
a significant part of information in y. Intuitive explanation for this necessity could
be: “since we do not know z when computing a(x, y), we do not know which part of
y-information is relevant and need to retain a significant fraction of y”. Note that
for the function T defined above this is not the case: not knowing z, we still know
x so only one row (xth row) in the matrix y is relevant.

The natural candidate is the function T ′ : Bk × B2k × Bk → B defined by
T ′(x, y, z) = y(x ⊕ z). Here y is considered as a vector Bk → B, not matrix, and
x⊕z denotes bitwise XOR of two k-bit strings x and z. The size of x and z is about
log n (where n is the total input size), and for these input sizes the worst-case lower
bound is indeed linear. One could think that this lower bound could be obtained for
T ′: “when computing a(x, y) we do not know z, and x ⊕ z could be any bit string
of length k, so all the information in y is relevant”. However, this intuition is false,
and there exists a sublinear upper bound O(n0.92), see [1] or [6], p. 95.1 (This upper
bound should be compared to the Ω(

√
n) lower bound obtained by reduction to T :

in the special case when the left half of x and the right half of z contain only zeros,
we get T out of T ′.)

Question: what happens if we replace x⊕ z by x + z mod 2k in the definition
of T ′? It seems that the upper bound argument does not work any more.

1This upper bound is obtained as follows. Let us consider y as a Boolean function of k Boolean
variables; y : (u1, . . . , uk) 7→ y(u1, . . . , uk). Such a Boolean function can be represented as a multi-
linear polynomial of degree k over the 2-element field F2. This polynomial y(u1, . . . , uk) has 2k

bit coefficients and is known when a(x, y) or b(y, z) are computed. Let us separate terms of “high”
and “low” degree in this polynomial:

y(u1, . . .) = ylow(u1, . . .) + yhigh(u1, . . .),

taking 2
3k as the threshold between “low” and “high”. The polynomial yhigh is included in a (or

b) as is, just by listing all its coefficients. (We have about 2H(2
3)k ≈ n0.92 of them, where H is

Shannon entropy function.) For ylow we use the following trick. Consider y(X1⊕Z1, . . . , Xk⊕Zk)
as a polynomial ỹ of 2k variables X1, . . . , Xk, Z1, . . . , Zk ∈ F2. Its degree is at most 2

3k, and each
monomial includes at most 2

3k variables. So we can split ỹ again:

ỹ(X1, . . . , Z1, . . .) = ỹx-low(X1, . . . , Z1, . . .) + ỹz-low(X1, . . . , Z1, . . .);

here the first term has small X-degree (Z-variables are treated as constants), and the second term
has small Z-degree. Here “small” means “at most 1

3k”. All this could be done in both nodes
(while computing a and b), since y is known there; Xi and Zi are just variables. Now we include
in a(x, y) the coefficients of the polynomial (Z1, . . . , Zk) 7→ ỹz-low(x1, . . . , xk, Z1, . . . , Zk), and do
the symmetric thing for b(y, z). Both polynomial have degree at most 1

3k, so we again need only
O(n0.92) bits to specify them.

208 A. SHEN

3. Probabilistic decomposition
As in communication complexity theory, we may consider also probabilistic and

distributional versions of decomposition complexity. In the probabilistic version we
consider random variables instead of binary functions a, b, t (with shared random
bits or independent random bits). In the distributional version we look for a decom-
position that is Hamming-close to a given function.

It turns out that the lower bounds mentioned above are robust in that sense and
remain valid for distributional (and therefore probabilistic) decomposition complex-
ity almost unchanged.

Let ε be a positive number less than 1/2. We are interested in a minimum
decomposition complexity of a function that ε-approximates a given one (coincides
with it with probability at least 1 − ε with respect to uniform distribution on in-
puts). For ε > 1

2
this question is trivial (either 0 or 1 constant provide the required

approximation). So we assume that some ε < 1
2
is fixed (the O()-constants in the

statements will depend on it).
A standard argument shows that lower bounds established for distributional

decomposition complexity remain true for probabilistic complexity (where a, b, t use
random bits and for every input x, y, z the random variable t(a(x, y), b(y, z)) should
coincide with a given function with probability at least 1− ε). So we may consider
only the distributional complexity.

Theorem 3.1. (1) Let n = p + q + r and p, r > log n + O(1). Then there exists
a predicate T : Bp × Bq × Br → B such that decomposition complexity of any its
ε-approximation is at least n−O(1).

(2) For the predicate T used in Theorem 2.2 we get the lower bound Ω(2k) (in
the same setting).

Proof. 1. Assume this is not the case. We repeat the same counting argument as in
Theorem 2.1. Now we have to count not only the predicates that have decomposition
complexity at most m, but also their ε-approximations. The volume of an ε-ball in
B2n is about 2H(ε)2n , so the number of the centers of the balls that cover the entire
space is at least 2(1−H(ε))2n . So after taking the logarithms we get a constant factor
(1−H(ε)), and the lower bound for m remains n−O(1).

2. If the computation is correct for 1−ε fraction of all triples (x, y, z), then there
exist ε′ < 1

2
and ε′′ > 0 such that for at least ε′′-fraction of all y the computation

is correct with probability at least 1− ε′ (with respect to uniform distribution on x
and z). This means that ε′-balls around functions (x, z) 7→ t(ay(x), by(z)) cover at
least ε′′-fraction of all functions y. (See the proof of Theorem 2.2.) Again this gives
us a constant factor before 22k, but here we do not take the logarithm second time,
so we get u+ v > Ω(2k), not 2k −O(1).

4. Applications to cellular automata
An (one-dimensional) cellular automata is a linear array of cells. Each of the

cells can be in some state from a finite set S of states (the same for all cells). At each
step all the cells update their state; new state of a cell is some fixed function of its old
state and the states of its two neighbors. All the updates are made synchronously.

Using a cellular automaton to compute a predicate, we assume that there are
two special states 0 and 1 and a neutral state that is stable (if a cell and both its

DECOMPOSITION COMPLEXITY 209

neighbors are in the neutral state, then the cell remains neutral). To compute P (x)
for a n-bit string x, we assemble n cells and put them into states that correspond
to x; the rest of the (biinfinite) cell array is in a neutral state.

Then we start the computation; the answer should appear in some predefined
cell (see below about the choice of this cell).

There is a natural non-uniform version of cellular automata: we assume that
in each vertex of the time-space diagram an arbitrary ternary transition function
(different for different vertices) is used. Then the only restriction is caused by the
limited capacity of links: we require that inputs/outputs of all functions (in all
vertices) belong to some fixed set S.

In this non-uniform setting a predicate P on binary strings is considered as a
family of Boolean functions Pn (where Pn is a restriction of P onto n-bit strings)
and for each Pn we measure the minimal size of a set S needed to compute Pn
in a non-uniform way described above. If this size is an unbounded function of
n, we conclude that predicate P is not computable by a cellular automaton. (In
classical complexity theory we use the same approach when we try to prove that
some predicate is not in P since it needs superpolynomial circuits in a non-uniform
setting.)

As usual, getting lower bounds for nonuniform models is difficult, but it turns
out that decomposition complexity can be used if the cellular automaton is required
to produce the answer as soon as possible.

Since each cell gets information only from itself and its two neighbors, the first
occasion to use all n input bits happens around time n/2 in the middle of the string:

u1 un

Now we assume that the output of a cellular automaton is produced at this
place (both in uniform and non-uniform model). (This is a very strong version of
real-time computation by cellular automata; we could call it “as soon as possible”-
computation.)

The next theorem observes that non-uniformly computable family of predicates
is transformed into a function with small decomposition complexity if we split the
input string in three parts.

Theorem 4.1. Let Tk : Bk+f(k)+k = Bk × Bf(k) × Bk → B be a family of predicates
that is non-uniformly computable in this sense. Then the decomposition complexity
of Tk is O(k), and the constant in O-notation is the logarithm of the number of
states.

Proof. Consider Figure 2 where the (nonuniform) computation is presented (we use
bigger units for time direction to make the picture more clear).

Let us look at the contents of the line of length 2k located k steps before the
end of the computation. The left half is a(x, y), the right half is b(y, z) and the
function t is computed by the upper part of the circuit. It is easy to see that a(x, y)
indeed depends only on x and y since information about z has not arrived yet; for

210 A. SHEN

k

x

f(k)

y

k

z

T (x, y, z)

a(x, y) b(x, y)

Figure 2: Automaton run and its decomposition.

the same reason b(y, z) depends only on y and z. The bit size of a(x, y) and b(y, z)
is k log #S.

Corollary 4.2. The predicate T from Theorem 2.2 cannot be computed in this model.

This predicate splits a string of length k + 22k + k into three pieces x, y, z of
length k, 22k and k respectively, and then computes y(x, z). Note that this can be
done by a cellular automaton in linear time. Indeed, we combine the string x and
z into a 2k-binary string; then we move this string across the middle part of input
subtracting one at each step and waiting until our counter decreases to zero; then
we know where the output bit should be read. So we get the following result:

Theorem 4.3. There exists a linear-time computable predicate that is not com-
putable “as soon as possible” even in a non-uniform model.

Remark. This result and the intuition behind the proof are not new (see the
paper of V. Terrier [8]; see also [2]). However, the explicit use of decomposition
complexity helps to formalize the intuition behind the proof. It also allows us to
show (in a similar way) that this predicate cannot be computed not only “as soon
as possible”, but even after o(

√
n) steps after this moment (which seems to be an

improvement).
Another improvement that we get for free is that we cannot even ε-approximate

this predicate in the “as soon as possible” model.
Question: There could be other ways to get lower bounds for non-uniform

automata (=triangle circuits). Of course, there is a counting lower bound, but this
does not give any explicit function. Are there some other tools?

5. Algorithmic Information Theory
Now we can consider the Kolmogorov complexity version of the same decompo-

sition problem. Let us start with some informal comments. Assume that we have
four binary strings x, y, z, t such that K(t|x, y, z) is small (we write K(t|x, y, z) ≈ 0,
not specifying exactly how small should it be). Here K(α|β) stands for conditional
complexity of α when β is known, i.e., for the minimal length of a program that
transforms β to α. (Hence our requirement says that there is a short program that
produces t given x, y, z.)

DECOMPOSITION COMPLEXITY 211

We are looking for strings a and b such that K(a|x, y) ≈ 0, K(b|y, z) ≈ 0, and
K(t|a, b) ≈ 0. Such a and b always exist, since we may let a = 〈x, y〉 and b = 〈y, z〉
(again, y can also be split between a and b). However, the situation changes if we
restrict the complexities of a and b (or their lengths, this does not matter, since
each string can be replaced by its shortest description). As we shall see, sometimes
we need a and b of total complexity close to K(x) + K(y) + K(z) even if t has much
smaller complexity. (Note that now we cannot restrict ourselves to one-bit strings t
for evident reasons.)

To be specific, let us agree that all the strings x, y, z, t have the same length n;
we look for strings a and b of length m, and “small” conditional complexity means
that complexity is less than some c.

Theorem 5.1. If 3c < n−O(1) and 2m+c < 3n−O(1), there exist strings x, y, z, t
of length n such that K(t|x, y, z) = O(log n), but there are no strings a, b of length
m such that

K(a|x, y) < c, K(b|y, z) < c, K(t|a, b) < c.

For example, this is true if c = O(log n) and m is 1.5n−O(log n) (note that for
m = 1.5n we can split y into two halves and combine the first half with x, and the
second half with y).

Proof. Consider the following algorithm. Given n, we generate (in parallel for all
x, y ∈ Bn) the lists of those m-bit strings who have conditional complexity (with
respect to x and y) less than c (one list for each pair x, y). Also we generate (in
parallel for all strings a and b of length m) the lists of those strings t who have
complexity less than c given a and b (one list for each pair a, b). At every step of
enumeration we imagine that these lists are final and construct a quadruple x, y, z, t
that satisfies the statement of the theorem. It is done as follows: we take a “fresh”
triple x, y, z (that was not used on the previous steps of the construction), take all
strings a that are in the list for x, y, take all strings b that are in the list for y, z,
and take all strings t that are in the lists for those as and bs. Then we choose some
t that does not appear in all these lists.

Such a t exists since we have at most 2c strings a (for given x and y), and at
most 2c strings b (for given y and z). For every of 22c pairs (a, b) there are at most
2c strings t, so in total at most 23c values of t are unsuitable, and we can choose a
suitable one.

We also need to ensure that there are enough “fresh” pairs for all the steps of
the construction. The new elements in the first series of lists may appear at most
2n × 2n × 2c times (we have at most 2n × 2n pairs (x, y) and at most 2c values of a
for each pair). Then we have 2m × 2m × 2c events for the second series of lists. On
the other hand, we have 23n triples (x, y, z), so we need the inequality

22n+c + 22m+c < 23n,

which is guaranteed by our assumptions.
To run this process, it is enough to know n, so for every x, y, z, t generated by

this algorithm we have K(t|x, y, z) = O(log n). (For given x, y, z only one t may
appear since we take a fresh triple each time.)

212 A. SHEN

This result can be improved:

Theorem 5.2. Assume that 3c < n − O(1) and m 6 1.5n − O(log n). We can
effectively construct for every n a total function T : Bn × Bn × Bn → Bn such that
for random (= incompressible) triple x, y, z and t = T (x, y, z) the strings a and b of
length m that provide a decomposition (as defined above) do not exist.

The improvement is two-fold: first, we have a total function T (instead of a
partial one provided by the previous construction); second, we claim that all random
triples have the required property (instead of mere existence of such a triple).

Proof. Let us first deal with the first improvement. Consider multi-valued functions
A,B : Bn × Bn → P(Bm) that map every pair of n-bit strings into a 2c-element
set of m-bit strings. Consider also multi-valued function F : Bm × Bm → P(Bn)
whose values are 2c-element sets of n-bit strings. We say that A,B, F cover a total
function T : Bn×Bn×Bn → Bn if for every x, y, z ∈ Bn there exist strings a, b ∈ Bm
such that a ∈ A(x, y), b ∈ B(y, z), and T (x, y, z) ∈ F (a, b).

Let us prove first the following combinatorial statement: there exists a function
T that is not covered by any triple of functions A,B, F . This can be shown by a
counting argument similar to the proof of Theorem 2.1. Indeed, let us compute the
probability of the event “random function T is covered by some fixed A,B, F ”. This
event is the intersection of independent events (for each triple x, y, z). For given
x, y, z there are 2c possible as, 2c possible bs, and 2c possible elements in F (a, b)
for each a and b, i.e., 23c possibilities altogether. Since 3c < n − O(1), each of the
independent events has probability less than 1

2
, and their intersection has probability

less than 2−2
3n .

This probability then should be multiplied by the number of triples A,B, F .
For A and B we have at most (2m)2

n×2n×2c possibilities, for F we have at most
(2n)2

m×2m×2c possibilities. So the existence of a function T not covered by any triple
is guaranteed if

2m22n+c × 2m22n+c × 2n2
2m+c × 2−2

3n

< 1,

i.e.,
m22n+c +m22n+c + n22m+c < 23n,

and this inequality follows from the assumptions.
The property “T can be covered by some triple A,B, F ” can be computably

tested by an exhaustive search over all triples A,B, F . So we can (for every n)
computably find the first (in some order) function T that does not have this property.
For these T there are some x, y, z that do not allow decomposition. Indeed, we can
choose A so that A(x, y) contains all strings a of length m such that K(a|x, y) < c,
etc.

However, we promised more: we need to show not only the existence of x, y, z
but that all incompressible triples (this means that K(x, y, z) > 3n−O(1)) have the
required property. This is done in two steps. First, we show than (for some F that
computably depends on n) most triples do not allow decomposition. Then we note
that one can enumerate triples that allow decomposition, so they can be encoded
by their ordinal number in the enumeration and therefore are compressible.

To make this plan work, we need to consider other property of function T . Now
we say that T is covered by A,B, F if at least 2−O(1)-fraction of all triples (x, y, z)
admit a and b. The probability of this event should now be estimated by Chernoff
inequality (we guarantee first that the probability of each individual event is, say,

DECOMPOSITION COMPLEXITY 213

twice smaller than the threshold), and we get a bound of the same type, with Ω(23n)
instead of 23n, which is enough.

In fact, this argument provides a decomposition complexity bound similar to
Theorem 2.1, but now the functions a, b and t are multi-valued and we can choose
any of their values to obtain t(x, y, z).

Remarks and questions

1. Similar results can be obtained for more binary operations in the decompo-
sition. Imagine that we have some strings x, y, z, t of length n such that K(t|x, y, z)
is small and want to construct some “intermediate” strings u1, . . . , us such that in
the sequence

x, y, z, u1, u2, . . . , us, t

every string, starting from u1, is conditionally simple with respect to some pair of
its predecessors. We can use our technique to show that this is not possible if all ui
have length close to n and the number s is not large.

2. As before, it would be nice to get lower bounds for some explicit function
T (x, y, z) (even a non-optimal lower bound, like in Theorem 2.2) for the algorithmic
information theory version of decomposition problem.

3. Many results of multi-source algorithmic information theory have some coun-
terparts in classical information theory. Can we find some statement that corre-
sponds to the lower bound for decomposition complexity?

4. Is it possible to use the techniques of [3] to get some bounds for explicit
functions in algorithmic information theory setting?

References
[1] L. Babai, P. Kimmel, Satyanarayana V. Lokam: Simultaneous messages vs communication,

12th Annual Symposium on Theoretical Aspects of Computer Science (STACS’95), Munich,
Lecture Notes in Computer Science, v. 900, 1995, Springer-Verlag, p. 361–372.

[2] C. Choffrut and K. Culik II, On Real-Time Cellular Automata and Trellis Automata, Acta
Informatica, 21, 393–407 (1984).

[3] Hansen, K.A., Lachish, O., Miltersen P.B., Hilbert’s thirteenth problem and circuit complexity.
ISAAC 2009, p. 153–162.

[4] Колмогоров А.Н., Тихомиров В.М., ε-энтропия и ε-ёмкость множеств в функциональных
пространствах. Успехи математических наук, 14 (2), p. 3–86.

[5] Колмогоров А.Н., О представлении непрерывных функций нескольких переменных в виде
суперпозиций непрерывных функций одного переменного и сложения. Доклады Академии
наук СССР, 114(5), 953–956 (1957)

[6] Eyal Kushilevitz, Noam Nisan, Communication complexity, Cambridge University Press, 1997.
[7] Shen A., Multisource information theory, Theory and Applications of Models of Computation,

Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3959 (2006), p. 327-338.
[8] Véronique Terrier, Language not recognizable in real time by one-way cellular automata. The-

oretical Computer Science, 156(1–2), 281–287 (1996).

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

Journées Automates Cellulaires 2010 (Turku), pp. 214-225

REAL-TIME SORTING OF BINARY NUMBERS ON
ONE-DIMENSIONAL CA

THOMAS WORSCH 1 AND HIDENOSUKE NISHIO 2

1 KIT (Karlsruhe Institute of Technology)
E-mail address: worsch@kit.edu

2 Kyoto University
E-mail address: yra05762@nifty.com

Abstract. A new fast (real time) sorter of binary numbers by one-dimensional
cellular automata is proposed. It sorts a list of n numbers represented by k-bits
each in exactly nk steps. This is only one step more than a lower bound.

1. Introduction

Sorting is one of the most fundamental subjects of computer science and many
sorting algorithms including sorting arrays and networks can for example be found
in volume 3 of Knuth’s TAOCP [2]. However, for cellular automata there are only
a few papers on this important topic. It should be pointed out that the algorithm
described by one of the authors in an earlier paper [3] has running 3nk (despite the
title starting with the words “real time”).

We are not aware of any speedup techniques which would allow to turn this
CA or any other solving the problem into one running in real-time, i. e. exactly the
number of steps which is the length of the input. In the present paper we propose a
sorting algorithm of binary numbers and its implementation on one-dimensional CA
with nearest neighbors, which sorts n numbers of k bits each in exactly nk steps.

Sequential comparison based sorting algorithms need time Ω(n log n) where n is
the number of elements to be sorted and it is assumed that each comparison can be
done in constant time independent of the size of the elements. The latter assump-
tion is also usually made for parallel sorting algorithms. On linear arrays odd-even
transposition sort needs exactly n steps. But there the additional assumption is
made that from the beginning each processor knows the parity of its own address
(assuming those are e. g. 1 to n). Of course on parallel models from the second ma-
chine class [1] like PRAM there are algorithms running in poly-logarithmic (or even
logarithmic) time. But for these models one has to assume non-local communication
in constant time when embedded into Euclidean space [4].

The rest of the paper is organized as follows. In Section 2 we precisely state
the problem and the results obtained in this paper. In Section 3 we give a short
proof for the lower bound of the sorting problem. The main aspects of our algorithm
are presented in Section 4. The first version does not achieve a running time which

c

214

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 215

matches the lower bound. For that two modifications are needed which are described
in Section 5.

2. Statement of problem and results

We are considering one-dimensional CA with von Neumann neighborhood of
radius 1 and assume that the reader is familiar with these concepts. Since we will
not define our CA on such a low level there is no need to introduce any related
formalism.

We also assume that the reader is familiar with the firing squad synchronization
problem [5]. If a block of k cells needs to be synchronized and there are generals at
both ends, then synchronization can be achieved in exactly k steps.

The inputs for our CA are provided as finite words with all surrounding cells in
a quiescent state. Those cells will never be used during computations.

The inputs which have to be processed by our CA are n numbers of equal length
k, with the most and least significant bits marked as such.

Problem 2.1. The input alphabet is A = {0, 1, 〈0, 〈1, 0|, 1|}.
Each input w that has to be processed properly is of the form

w = w1 · · ·wn = 〈x1y1z1| · · · 〈xnynzn|
for some n ≥ 1 and k ≥ 2 where all xi, zi ∈ {0, 1} and all yi ∈ {0, 1}k−2. Each wi
is the binary representation of a non-negative integer (also denoted wi) with most
significant bit xi and least significant bit zi.

For every such input after a finite number of steps a stable configuration of
the form wσ(1) · · ·wσ(n) has to be reached where σ is a permutation of the numbers
1, . . . , n such that wσ(i) ≤ wσ(i+1) holds for all 1 ≤ i < n.

We note that it would have been sufficient to mark either the most or the least
significant bits, because the other end of each number can then always be identified
by looking at neighbor cells.

The above problem statement also excludes the case of 1-bit inputs. For those
the “traffic rule” 184 can be easily extended to do sorting, taking into account
quiescent neighbors. The resulting CA works as follows: A cell in state 1 (0) becomes
0 (1) if its right (left) neighbor is 0, otherwise it keeps its current state.

In the following we always call a sequence of cells which initially stores one input
number wi the block i (or simply a block).

It is clear that it can be necessary to move a number from block 1 to block n.
This immediately gives a lower bound of (n − 1)k steps for the sorting time. We
shall see, that one can do slightly better:

Theorem 2.2. Every CA solving Problem 2.1 needs at least time nk − 1.

Until now the fastest sorting algorithms known needed time cnk for some con-
stant c > 1 with no obvious possibility to speed up the computation to run in nk
steps. The main contribution of the present paper therefore is the following:

Theorem 2.3. There is a CA (which does not depend on n or k) with von Neumann
neighborhood of radius 1 solving the Sorting Problem 2.1 in exactly nk steps.

216 TH. WORSCH AND H. NISHIO

3. Lower bound on sorting time

First consider the input w = w1w2 · · ·wn where w1 = 〈01k−21| and w2 = · · · =
wn = 〈10k−20|. Clearly this input sequence is already sorted and the rightmost bit
of the output is a 0.

If on the other hand we flip the leftmost bit of the first block only and consider
the input

w′1 · w2 · · ·wn = 〈11k−21| · 〈10k−20| · · · 〈10k−20|
then the correct sorted output is

w2 · · ·wn · w′1 = 〈10k−20| · · · 〈10k−20| · 〈11k−21|
That is, by changing only the leftmost bit of the input the rightmost bit of the
output must change. Hence no CA correctly solving the sorting problem can be
faster then the distance between leftmost and rightmost bit which is nk − 1.

This proves Theorem 2.2.

4. The base sorting algorithm

The goal of this section is to prove a weakened version of Theorem 2.3.

Lemma 4.1. There is a CA (which does not depend on n or k) with the von Neu-
mann neighborhood of radius 1 solving the sorting Problem 2.1 in exactly k + nk
steps.

Before going into details and explaining some aspects of the CA on the cell level,
we describe the main idea on the level of numbers. In particular we will employ a
well-known simple algorithm for parallel sorting.

4.1. Odd-even transposition sort

Throughout this section, one can assume that N is an even number; this is the
case needed for the CA below.

Assume that N numbers a1, a2, . . . , aN are given, arranged in an array of pro-
cessors. In addition each processor (or each number) has a direction (indicated by
arrows below). In each step each pair of adjacent processors whose arrows point to
each other exchange their numbers. Both processors compare the two numbers; the
left one keeps the smaller number, the right one the larger number, and both change
their direction to the other neighbor. Thus one step can for example look like this:

t ←−a1 −→a2 ←−a3 −→a4 ←−a5 −→a6 ←−−aN−1
−→aN

t+ 1
−→
b1

←−
b2

−→
b3

←−
b4

−→
b5

←−
b6

−−→
bN−1

←−
bN

where bi =

{
min(ai, ai+1) if ai points to the right

max(ai−1, ai) if ai points to the left
.

A missing neighboring number to the left is treated as if it were −∞ and a missing
neighboring number to the right is treated as if it were ∞.

It is known that odd-even transposition sort always produces the correct result
after exactly N steps (see e.g.[2]).

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 217

4.2. Outline of the base algorithm

The algorithm which will be the basis for the improved construction in Section 5
will simply work as follows. Given an input of the form

w1 w2 w3 w4 wn−1 wn
first each number is copied and the two copies get opposite directions assigned. This
will take k steps in the CA. Instead of storing two copies side by side they are stored
in parallel:

←−w1
←−w2

←−w3
←−w4 ←−−wn−1

←−wn
−→w1

−→w2
−→w3

−→w4 −−→wn−1
−→wn

These are now treated as N = 2n numbers that are sorted using odd-even transpo-
sition sort. In the end one would get

←−−wσ(1)
←−−wσ(2)

←−−wσ(3)
←−−wσ(4) ←−−−−wσ(n−1)

←−−−wσ(n)
−−→wσ(1)

−−→wσ(2)
−−→wσ(3)

−−→wσ(4) −−−−→wσ(n−1)
−−−→wσ(n)

where σ again denotes the “sorting permutation” as in Problem 2.1.
During the last sorting step the lower parts and the arrows are deleted, and the

required output is obtained.
It will become clear in the next subsection why it is actually useful to first copy

each number and then seemingly spend twice as much time for the N = 2n sorting
steps. It will be shown that each such step can be implemented in the CA in k/2
steps. Hence the total running time of the CA for this base version of the algorithm
will be k + nk steps.

4.3. Outline of the CA for the base algorithm

In this section we will describe how the base sorting algorithm can be imple-
mented on a CA. It will need n+1 phases each of which needs exactly k steps. First
comes a setup phase followed by phases 1, . . . , n. In order to avoid more complicated
descriptions, throughout the rest of the paper we assume that k is even.

If k is odd the middle cell of a block plays the role of the two middle cells one
would have for the (even) case k + 1. In that case synchronization of a block using
generals at both ends needs at least time 2k+1

2
− 2 = k − 1 and hence is possible in

time k (as is the case for even k).

Algorithm 4.2 (Setup phase).

(1) During the setup phase the following tasks are carried out in each block:
• By sending a signal from the left and the right end of the block the two

middle cells are found. In each resulting sub-block the leftmost and the
rightmost cell are marked as such. They are called L and R respectively.
• Using an additional register the mirror image of the input number is

computed. Below we call the register holding the original value left and
the registers with the mirrored value right .
The numbers in the left registers will play the role of the ←−wi and the
numbers in the right registers the role of the −→wi used in the previous
subsection.
• Using synchronization, the preliminary phase is stopped after k steps.

218 TH. WORSCH AND H. NISHIO

(2) The leftmost and the rightmost cell of the whole input are set up as generals.
Starting with the first step of phase 1 an algorithm is started to synchronize
all nk cells after nk steps.

A concrete example is shown in Figure 1 for two 6-bit numbers. The borders between
sub-blocks are shown as double vertical lines. It can be noted that we also use
markers for the most and least significant bits of the mirrored numbers.

L R L R L R L R

left 〈1 0 0 0 0 0| 〈0 1 1 1 1 1|
right |0 0 0 0 0 1〉 |1 1 1 1 1 0〉

Figure 1: An example configuration for two 6-bit numbers after the setup phase.

In addition to the registers left and right the L- and R-cells of each sub-block
will make use of a register comp which will hold a (preliminary) comparison result
(see also Figure 2). Each comp register can hold one of the values =, < or >. Their
use is described in Algorithm 4.4 below.

The core idea is the following:

C1. Bits are shifted in the left and right registers in the corresponding directions.
C2. Whenever the most significant bits of two numbers arrive in a pair of adjacent

R‖L-cells, the numbers are compared sequentially bit by bit. The smaller num-
ber will be directed to move to the left and the larger one will be directed to
move to the right.

Part C1 basically means that numbers are unconditionally shifted everywhere except
at R‖L pairs. Since those are located at distance k/2 and numbers have length k
this might look suspicious at first sight, because in general a number simultaneously
gets compared at two such pairs. It will become clear later why this does not pose
any problems. Ignoring it for the moment, C1 is easy to implement:

Algorithm 4.3 (Implementation of C1).

(1) The cells which are not an R- or L-cell have a very simple behavior.
• The left register gets its content from the left register of the right neigh-

bor.
• The right register gets its content from the right register of the left

neighbor.
(2) Analogously the left register of an L-cell gets its content from the left register

of the right neighbor and the right register of an R-cell gets its content from
the right register of the left neighbor.

(3) The same holds for the left register of a R-cell and the right register of a
L-cell if the comp register of that cell has value =.

First of all, this part is needed during the first sub-phase of phase 1 when
the R‖L pairs in the middle of a block still have no meaning. As will be seen
this requirement is also consistent with the rules for later sub-phases.

Each of the phases 1, . . . , n is subdivided into two sub-phases of k/2 steps each.
We will now describe how the comparison of numbers is done. For this we use

R.left to denote the left register of the R-cell and similarly for the other cases. It
will be seen that all information needed to update R.comp are also available in
the neighboring L-cell, so that the invariant R.comp = L.comp can be maintained.
Hence it suffices to describe the case of R.comp:

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 219

Algorithm 4.4 (Implementation of C2). If the two bits in R.right and L.left are
most significant ones, then the new value of R.comp is determined as follows:

R.comp becomes

< if R.right < L.left

= if R.right = L.left

> if R.right > L.left

(4.1)

If the two bits to be compared are not most significant ones, the new value of R.comp
is determined as follows:

• If R.comp already has value < or > it is not changed.
• If R.comp has old value = its new value is determined according to rule 4.1

above.

It remains to define how the new value for R.left is computed. That is most easily
described as depending on the just defined new value of R.comp.:

R.left becomes

R.right if R.comp is now <

R.right if R.comp is now =

L.left if R.comp is now >

Dually the new value for L.right depends on the new value of L.comp (remember
that always R.comp = L.comp):

L.right becomes

L.left if L.comp is now <

L.left if L.comp is now =

R.right if L.comp is now >

Figure 2 shows the relevant parts of computations for the comparison of two num-
bers. In the left part of the figure initially the larger number is on the left, in the
right part the smaller number is on the left. After the comparison in both cases the
smaller number is on the left. We remind the reader that at the left resp. right end
of the complete input a missing number is treated as −∞ resp.∞. Hence a number
arriving at a border is simply reflected.

The following picture may be helpful: When the smaller number comes from
the left and the larger from the right, then from the first (most significant) bit both
numbers are reflected at the border between the R- and the L-cell. When the larger
number comes from the left and the smaller from the right, then from the first (most
significant) bit both numbers pass through the border. This is a correct picture even
if the numbers have identical higher order bits, and hence in the beginning no cell
knows which is the present case. Readers are encouraged to check Figure 2 again.

At least from a formal point of view it is now straightforward to put the pieces
together. An even better intuition of how the algorithm works may arise in the
subsequent Subsection 4.4 when the correctness of the algorithm will be shown.

220 TH. WORSCH AND H. NISHIO

R L R L

left 〈0 0 1 1 〈0 1 0 1

right 1 0 1 0〉 1 1 0 0〉
comp

left 〈0 0 1 1 〈0 1 0 1

right 1 0 1 0〉 1 1 0 0〉
comp = = = =

left 〈0 0 1 1 〈0 0 0 1

right 1 0 1 0〉 1 1 1 0〉
comp > > < <

left 〈0 0 1 1 〈0 0 1 1

right 1 0 1 0〉 1 0 1 0〉
comp > > < <

left 〈0 0 1 1 〈0 0 1 1

right 1 0 1 0〉 1 0 1 0〉
comp > > < <

Figure 2: Two comparisons of 4 bits. On the left hand side the number coming from
the left (in the right registers) is larger, on the right hand side the number
coming from the right (in the left registers). If the complete numbers were
longer, the comparisons would continue analogously.

Algorithm 4.5.

• First the setup phase is done as described in Algorithm 4.2. This phase takes
k steps. It is stopped at the correct time using a synchronization algorithm
in each block separately. Both ends of each block have to act as generals in
order to achieve the required synchronization time.
• Once all cells are synchronized they will work as described in Algorithms 4.3

and 4.4: All numbers are shifted to the left or right, and whenever two
most significant bits meet, the sequential comparison of the two numbers is
started. The smaller number is sent to the left and the larger to the right.
• This is repeated until the synchronization started immediately after the setup

phase fires all nk cells after nk steps.
It will be shown that at that point in time the left registers contain the

sorted numbers.

4.4. Correctness of the base sorting algorithm

The correctness of algorithm 4.5 is essentially due to the correctness of odd-even
transposition sort. This is basically a proof by induction. The main parts are stated
in the following Lemma.

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 221

Lemma 4.6. Let X = |xX〉 and Y = 〈Y y| be two numbers with the k/2 higher order
bits denoted by capital letters and the k/2 lower order bits denoted by small letters.
Similarly let A = 〈Aa| be the minimum of X and Y and B = |bB〉 be the maximum.
In other words one basic compare-and-exchange step of odd-even transposition sort
transforms the pair X ,Y into the pair A,B.

If the most significant bits of X〉 and 〈Y meet in an R‖L-pair (with the other
higher order bits following) and if after k/2 steps the lower order bits |x and y|
arrive in the correct order, then during the first k/2 steps the higher order bits of 〈A
and B〉 will be produced moving to the right directions, followed by the lower order
bits a| and |b afterwards.

This is basically a restatement of the construction from Algorithm 4.4.
Since the configuration produced by the setup phase corresponds to the initial

configuration for the odd-even transposition sort, and since the preconditions of
the if-statement in Lemma 4.6 are met, an induction teaches that in particular the
higher order bits of each number after t phases are in the sub-block corresponding
to its position in odd-even transposition sort after t sorting steps.

Corollary 4.7. For all input sequences w1, . . . , wn Algorithm 4.5 does sort the num-
bers as required in Problem 2.1.

Proof. Since odd-even transposition sort does sort N numbers in N sorting steps,
it immediately follows from Lemma 4.6 that at the end of phase n of Algorithm 4.5
the higher order bits of each of the n input numbers and of its n copies are in the
correct blocks. That is, there are the same higher order bits of a number wi in each
block twice, once in the left registers and once in the right registers.

Furthermore it is clear that the most significant bit of the number stored in the
left (resp. right) registers is in the L-cell (resp. R-cell) of the block (not sub-block).
This implies that the lower order bits are in the same block:

L R

left 〈k/2 higher order bits of wi k/2 lower order bits of wi|
right |k/2 lower order bits of wi k/2 higher order bits of wi〉

Therefore the left registers of the full block hold the correct value.

5. A sorting algorithm matching the lower bound

We will save k steps of the running time of Algorithm 4.5 by starting with
some comparisons not after k but already after k/2 steps and stopping the odd-
even transposition sort k/2 steps earlier. A detailed description will be given in
Section 5.1. The resulting algorithm still computes the correct output except for the
rightmost block. This will be fixed in Section 5.2.

5.1. Speeding up the algorithm

We describe the fast algorithm as three changes to Algorithm 4.5.
The first change is simple: Since we want to have the result after nk steps instead

of k + nk, the synchronization of all nk cells is not started after the setup phase,
but in the very first step.

222 TH. WORSCH AND H. NISHIO

The second change concerns the computation of the mirror of a bit string as
required by Algorithm 4.2. It can be implemented by shifting the original to the
left, and letting the L-cell of the block act as reflector sending bits back to the
right in the right cells. This means that after k/2 steps the lower order bits of an
input number have arrived in the left registers of the left sub-block and the higher
order bits are its right registers. It is useful if the shift to the left is not done using
a temporary register but left . In Figure 3 the resulting process is shown for two
adjacent 6-bit numbers. It can be seen that due to the simultaneous shift to the
left, already after k/2 steps for the first time most significant bits meet. (This also
determines the border of the sub-blocks.) Thus comparisons can be started k/2 steps
earlier. The rightmost block now needs some special attention. Analogously to the
other blocks we assume that symbols representing the “number ∞” are shifted to
the left from the rightmost cell. This is also depicted in Figure 3.

This completes the second change to Algorithm 4.5.

left 〈a6 a5 a4 a3 a2 a1| 〈b6 b5 b4 b3 b2 b1|
right

left a5 a4 a3 a2 a1| 〈b6 b5 b4 b3 b2 b1| ∞
right a6〉 b6〉

left a4 a3 a2 a1| 〈b6 b5 b4 b3 b2 b1| ∞ ∞
right a5 a6〉 b5 b6〉

left a3 a2 a1| 〈b6 b5 b4 b3 b2 b1| ∞ ∞ ∞
right a4 a5 a6〉 b4 b5 b6〉

Figure 3: Computing the mirror of two 6-bit numbers. Already after 3 steps most
significant bits meet at the border between sub-blocks.

The third change is the most complicated. For the shifts to the right two reg-
isters are used, right and right2 . The additional register right2 is empty almost
everywhere. After each sub-phase there are only two adjacent sub-blocks in which
right2 stores a number:

(1) The initialization takes place in the leftmost block: During the first k/2 steps
the reflected bits are shifted to the right in right and right2 . And this is done
only during the first k/2 steps, but not afterwards.

(2) Then it happens for the first time that three most significant bits meet, two
coming from the left and one coming from the right.

In such a case the comparisons are done as follows:
• The largest of the three numbers is shifted to the right in right2 .
• The other two numbers are compared and shifted as described in Algo-

rithm 4.4.

A consequence of these rules is, that after k steps the right2 registers are used in
the sub-blocks of block 1, after 2k steps in the sub-blocks of block 2, etc. and after
nk steps in the sub-blocks of block n, and nowhere else.

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 223

Why do these three changes lead to a result after nk steps where in all blocks
except the rightmost one the left registers contain the correct numbers? That the
rightmost block can still be wrong can be seen in examples.

First of all, reflecting w1 twice make sure that there are really 2n numbers which
are sorted, each wi twice. Therefore in the end each block will again contain twice
the same number. This would in general not be the case if w1 would be reflected
only once, and the argument below would fail.

Since we are still using odd-even transposition sort, it is clear that after k/2+nk
steps the correct results are obtained everywhere, but with the most significant bits
in the middle of the blocks. Thus the result would look like

L R

left k/2 lower order bits of wi| 〈k/2 higher order bits of wi

right k/2 higher order bits of wi〉 |k/2 lower order bits of wi

How can such a left sub-block arise? Without loss of generality assume that
the input numbers are pairwise different. Then in the left neighboring full block
a smaller number (or −∞) is present. Hence the lower left half must have been
reflected and going back k/2 steps, the bits must have been in the upper part.
Analogously the upper right half must have been in the lower part. Except in the
rightmost block (where the right2 registers are in use) there is no other possibility
than that the lower order bits are in the remaining registers:

L R

left 〈k/2 higher order bits of wi k/2 lower order bits of wi|
right |k/2 lower order bits of wi k/2 higher order bits of wi〉

Thus the left registers hold the desired result.
In the rightmost block it can happen that lower order bits are not stored in the

left registers of the right sub-block but in the right2 registers of the left sub-block.

5.2. Determining the rightmost output block

In order to produce the largest number in the rightmost output block we use a
separate algorithm which has to be run in parallel to the one described above. It
will have finished after nk steps. Remember that the input is a word

w = w1 · · ·wn = 〈x1y1z1| · · · 〈xnynzn|
and the task is to have the maximum of the wi be stored in the rightmost block in
the end. This can be achieved as follows.

Algorithm 5.1.

(1) During the k steps of the setup phase a signal is sent from the right end of
the input until it reaches the most significant bit of wn, marking all cells as
belonging to the last block.

When the last block is synchronized after k steps, all cells have received
the information and know that they have an additional task.

(2) From the very first step all cells shift their input to the right using an addi-
tional register.

224 TH. WORSCH AND H. NISHIO

Hence after 1 · k steps the number wn−1 reaches the last block, after 2 · k
steps number wn−2 reaches the last block, etc. and after (n−1)k steps number
w1 reaches the last block.

(3) The cells in the rightmost block use two additional registers for storing num-
bers; call them max and next . Register max is initialized in the very first
step with wn, register next is marked as not holding a value. Whenever the
rightmost block ends a phase, in register next the number is stored that has
arrived from the left in right because of the shifting.

(4) If at the beginning of a phase register next has a valid number the rightmost
block computes max← max(max, next). For this a signal is sent from left to
right, that is from the most significant bit to the least significant bit, com-
paring next and max . (While this comparison takes place the next number
is already arriving in right .)

As long as the same bit value is found in both registers nothing is changed
and the signal moves one cell to the right.

As soon as at some position for the first time different bit values are found,
the following happens:
• If next has a 1 bit, but max has a 0 bit, max is smaller than next and

this and all remaining bits are copied from next to max .
• If next has a 0 bit, but max has a 1 bit, max is larger than next and

the signal is simply killed leaving max unchanged.

It is straightforward to verify by induction that for 1 ≤ i < n after phase i one has

max = max{wn−j | 0 ≤ j < i}
and hence in the end max = max{wi | 1 ≤ i ≤ n} as required. Since w1 is copied to
next after (n − 1)k steps the final correct value is stored in max k steps later, i.e.
after nk steps as required.

Taking together the changes to the base Algorithm 4.5 described in Section 5.1
and the additional algorithm just described one gets a proof of Theorem 2.3.

6. Conclusion

We have shown the sorting of n numbers with k bits can be achieved in (almost)
real-time. Thus the situation is very similar to the firing squad synchronization
problem: There is an algorithm which has — in our case except for one step — a
running time matching a lower bound.

Clearly, the number of states per cell required by our algorithm is finite but
large, at least when compared to algorithms e. g. for the synchronization problem.
We do not know how much the set of states can be reduced.

The authors gratefully acknowledge a number of suggestions by the referees for
improving the presentation of the algorithms.

References

[1] Peter van Emde Boas. Machine Models and Simulations. Handbook of Theoretical Computer
Science, Volume A, 1–66, Elsevier, 1990.

[2] Donald Knuth. The Art of Computer Programming; Volume 3, 2nd ed., Addison-Wesley, 1998.

REAL-TIME SORTING OF BINARY NUMBERS ON ONE-DIMENSIONAL CA 225

[3] Hidenosuke Nishio. Real time sorting of binary numbers by 1-dimensional cellular automaton.
In Proceedings of the International Symposium on Uniformly Structured Automata and Logic,
Tokyo, Japan, August 21-23, 1975, IEEE Catalog Number 75 CH1052-OC, pages 153–162,
1975.

[4] Amir R. Schorr. Physical parallel devices are not much faster than sequential ones. Information
Processing Letters, 17(2):103–106, 1983.

[5] Hiroshi Umeo, Masaya Hisaoka, and Takashi Sogabe. A Survey on Optimum-Time Firing Squad
Synchronization Algorithms for One-Dimensional Cellular Automata. Int. Journal of Uncon-
ventional Computing, 1(4):403–426, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

