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Foreword

This volume contains papers and abstracts presented at the First Symposium on Cellular Au-
tomata “Journées Automates Cellulaires” (JAC 2008). This year’s conference was held on 21-25
April 2008 at the Hôtel du Général d’Entraigues, in the scenic old city of Uzès, France.

The Symposium on Cellular Automata “Journées Automates Cellulaires” (JAC 2008) is an
international conference centered on cellular automata and other models of computation. Topic of
interest included: cellular automata, tilings, computation models, logic and other bistroodles.

The call for papers led to approximately 25 submissions from 7 countries. Each was assigned to
at least two program committee members, refereed directly by them or treated by external referees.
The program committee selected 14 regular and 5 exploratory papers. As chair of this committee, I
would like to sincerely thank its members and the external referees for the valuable work they have
invested in the reviewing process. In the name of both the program committee and the organizing
committee, I would like to thank authors of selected papers: they chose JAC, a new conference,
to submit very good papers that could have been also accepted at top notch and well established
conferences with a wide scope.

During the four days of the conference 14 regular papers and 5 exploratory papers were pre-
sented. Indeed, the PC committee of JAC 2008 has created a special category for exploratory papers:
we considered in this category papers dealing with very special new variants of cellular automata,
papers that are scope borderline, or papers that present interesting works for the conference audience
but are yet in preliminary state.

In addition to these presentations, 5 informal talks were also given. The extended abstracts
of the invited talks, the regular and exploratory papers and the abstracts of the informal talks are
included in these proceedings.

It was a pleasure and an honor to have the opportunity to organize this first Symposium on
Cellular Automata “Journées Automates Cellulaires” (JAC 2008). The conference benefited from
six invited speakers, whose topics spanned the above list, and a total of 50 registered attendees. I
would like to express my thanks to the six invited speakers, Jacques Mazoyer, Gianpiero Cattaneo,
Eric Goles, Jarkko Kari, Maurice Nivat and Alexander Shen.

I wish to particularly thank the sponsors for the meeting: Laboratoire d’Informatique Fon-
damentale de Marseille, Escape research group of the Laboratoire d’Informatique Fondamentale
de Marseille, Laboratoire de l’Informatique du Parallélisme, IXXI Rhône-Alpes Complex Systems
Institute and Université de Provence.

Special thanks are due to A. Voronkov for his EasyChair software (http://www.easychair.
org/) which gives the organizers of conferences a remarkable level of comfort. The conference could
not be organized without the help of the members of the Organizing Committee, chaired by Grégory
Lafitte and Nicolas Ollinger. I wish to express in these lines my deepest gratitude for the harsh work
done mainly in a vacation period and for their tenacity.

These proceedings are published in an electronic format and in a printed version with ISBN 978-
5-94057-377-7. The electronic proceedings are available through several portals, and in particular
through HAL. HAL is an electronic repository managed by several French research agencies. We
want to thank HAL for hosting the proceedings of JAC and guaranteeing them perennial availability.
The rights on the articles in the proceedings are kept with the authors and the papers are available
freely, under a Creative Commons license.

Marseille, April 2008 Bruno Durand
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F. Becker, É. Rémila, and N. Schabanel

Computational models and codes on graphs (extended abstract) . . . . . . . . . . . . . . . . . . . . 263
H. Ben-azza and W. Baousar

Optimal time self-assembly for squares and cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C. Bercoff

From undecidability to randomness: a new paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
S. Grigorieff





Journées Automates Cellulaires 2008 (Uzès), pp. 1-1

A FULL CELLULAR AUTOMATON TO SIMULATE PREDATOR-PREY
SYSTEMS COMPARISON WITH THE DISCRETE TIME

LOTKA-VOLTERRA EQUATIONS

G. CATTANEO

Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,
Via Bicocca degli Arcimboldi 8, 20126 Milano (Italy)
E-mail address: cattang@disco.unimib.it

Abstract. A Cellular Automata (CA) model describing a predator-prey dynamics is
introduced; this model is based on a uniformly applied update rule which is fully local, i.e.,
without any spurious Monte Carlo step during the diffusion phase. A particular attention
has been addressed to the comparison of the obtained discrete time simulations with the
theoretical results from the difference equation versions of some generalized version of the
Lotka-Volterra equation.
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Journées Automates Cellulaires 2008 (Uzès), pp. 2-2

COMMUNICATION COMPLEXITY AND CELLULAR AUTOMATA

E. GOLES

E-mail address: eric.chacc@uai.cl

Abstract. Given a one dimensional CA with two states, nearest interactions and n left
bits, x, a central bit c and n right bits, y. The question is what is the minimum information
the left (say Alice) have to send to the right (say Bob) in order to Bob compute the n-
th step state of the C.A? We will give examples, numerical experiments and some exact
results.
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UNDECIDABLE PROPERTIES ON THE DYNAMICS OF REVERSIBLE
ONE-DIMENSIONAL CELLULAR AUTOMATA

JARKKO KARI

Department of Mathematics
FIN-20014 University of Turku
Finland
E-mail address: jkari@utu.fi

Abstract. Many properties of the dynamics of one-dimensional cellular automata are
known to be undecidable. However, the undecidability proofs often rely on the undecid-
ability of the nilpotency problem, and hence cannot be applied in the case the automaton
is reversible. In this talk we review some recent approaches to prove dynamical properties
of reversible 1D CA undecidable. Properties considered include equicontinuity (=periodic-
ity), sensitivity, variants of mortality, one-sided expansivity and regularity. All these prop-
erties are undecidable, according to recent proofs obtained in collaboration with N.Ollinger
or V.Lukkarila.

Introduction

Let S be a finite set – the state alphabet – and consider bi-infinite sequences of symbols
of S, called configurations over S. The set SZ of all configurations is endowed with the
standard compact and metrizable topology obtained as the countably infinite product of
the discrete topology on S. A one-dimensional cellular automaton (CA for short) over state
set S is a continuous transformation G : SZ −→ SZ that commutes with the shift function
σ : SZ −→ SZ, defined by σ(x)i = xi+1 for all x ∈ SZ and i ∈ Z.

It follows from the classical Garden-of-Eden theorem that every injective CA transfor-
mation G is also surjective, and hence bijective. Because SZ is compact, the inverse function
G−1 is continuous and commutes with the shift — it is also a CA. We call an injective G a
reversible cellular automaton, and G−1 its inverse automaton. See [6] for more details and
further historical results.

To treat cellular automata algorithmically one needs a finite representation for them.
This is provided by the famous Curtis-Hedlund-Lyndon theorem, which states that cel-
lular automata are exactly the functions that can be defined by a simultaneous, parallel
application of a local update rule [3]. More precisely, a non-negative integer r (called the

Key words and phrases: cellular automata.
Research supported by the Academy of Finland grant 211967.
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4 J. KARI

neighborhood radius) and a local rule f : S2r+1 −→ S define the CA function G over state
set S where

G(x)i = f(xi−r, . . . , xi+r)
for all i ∈ Z. All cellular automata functions G arise in this fashion.

Many dynamical properties of cellular automata are known to be undecidable: there is
no algorithm that would determine if a given CA (given in terms of its local update rule)
has the property. Examples of such undecidable properties include nilpotency, equiconti-
nuity and sensitivity (see Section 3 below). These properties are known to be undecidable
among the general, not necessarily reversible cellular automata. The undecidability proofs
rely mostly on nilpotency, which is a property possessed only by non-reversible CA. Until
recently, no analogous undecidability results were known for reversible CA. Yet reversible
CA constitute an important family of dynamical systems whose properties and long time
behavior should be better understood. In this paper we report some recent undecidabil-
ity results for a few dynamical properties for reversible CA. The results are obtained with
N.Ollinger and V.Lukkarila. We give the results without proofs here — the proofs will
appear elsewhere.

The paper is organized as follows: in Section 1 we define and discuss the dynamical
properties studied in this paper. In Section 2 we briefly recall some concepts and results on
Wang tiles. Section 3 reviews some basic undecidability results for non-reversible CA, and
in Section 4 we give undecidability results for reversible CA.

1. Dynamical properties

This paper summarizes some undecidability results on dynamical properties of reversible
one-dimensional cellular automata. Properties considered are equicontinuity (=periodicity),
sensitivity, variants of mortality, one-sided expansivity and regularity. In this section we
define these concepts.

First some general terms and notations: elements i ∈ Z are referred to as cells. For
configuration x ∈ SZ and integers m ≤ n we use the notation x[[m,n]] to denote the word
xmxm+1 . . . xn. Configuration x is called spatially periodic if σm(x) = x for some m > 0.
Spatially periodic configurations form a dense subset of SZ. Configuration x is called
temporally periodic (or just periodic) for G if Gp(x) = x for some period p > 0, and it
is called (temporally) eventually periodic for G if Gm+p(x) = Gm(x) for some pre-period
m ≥ 0 and period p > 0. A spatially periodic configuration is always eventually periodic.
In reversible CA eventually periodic configurations are all periodic, so in reversible CA
periodic configurations are dense. A well known open problem asks whether the same holds
for all surjective CA.

1.1. Equicontinuity points

Configuration x is an equicontinuity point for G if for all m ∈ N there exists M ∈ N
such that for all configurations y

x[[−M,M ]] = y[[−M,M ]] =⇒ Gi(x)[[−m,m]] = Gi(y)[[−m,m]] for all i ∈ N.

The evolution of equicontinuity points can be reliable simulated up to any precision on a
computer: all forthcoming states within an observation window of radius m are uniquely
determined by the initial states within a window of radius M .
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If G is reversible one may be interested in the evolution of x both in backwards and
forwards in time. Let us define two-way equicontinuity of x analogously, only difference
being that time i now takes also negative values: for all m there exists M such that for all
y ∈ SZ

x[[−M,M ]] = y[[−M,M ]] =⇒ Gi(x)[[−m,m]] = Gi(y)[[−m,m]] for all i ∈ Z.
The two definitions, however, coincide:

Lemma 1.1. Let G be reversible. Point x ∈ SZ is an equicontinuity point for G if and only
if it is a two-way equicontinuity point for G.

Proof. Let x be a configuration that is not a two-way equicontinuity point for reversible G.
Then for some window radius m holds the following: for all M there is some configuration y
and time i ∈ Z such that x[[−M,M ]] = y[[−M,M ]] while Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]]. Periodic
configurations are dense, so there are periodic x′, y′ such that

x′[[−M,M ]] = x[[−M,M ]] = y[[−M,M ]] = y′[[−M,M ]]

and
Gi(x′)[[−m,m]] = Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] = Gi(y′)[[−m,m]].

Since x′ and y′ are temporally periodic, we have a positive j such that

Gj(x′)[[−m,m]] = Gi(x′)[[−m,m]] 6= Gi(y′)[[−m,m]] = Gj(y′)[[−m,m]].

Then, either Gj(x′)[[−m,m]] 6= Gj(x)[[−m,m]] or Gj(y′)[[−m,m]] 6= Gj(x)[[−m,m]]. In any case,
a configuration contradicting the equicontinuity of x exists for all M , that is, x is not
equicontinuous.

The other direction is trivial.

1.2. Equicontinuity

Cellular automaton G is called equicontinuous if all configurations are equicontinuity
points. It easily follows from the compactness of SZ that the radius M of the initial window
can be chosen independently of configuration x, that is, G is equicontinuous iff the following
holds:

(∀m ∈ N)(∃M ∈ N)(∀x, y ∈ SZ)
x[[−M,M ]] = y[[−M,M ]] =⇒ Gi(x)[[−m,m]] = Gi(y)[[−m,m]] for all i ∈ N.

For reversible G one can define two-way equicontinuity by considering also negative time
i < 0 (that is, by requiring all configurations to be two-way equicontinuity points) but
according to Lemma 1.1 the concept obtained would be equivalent to normal equicontinuity.

A CA is called periodic (eventually periodic) if all configurations are periodic (eventually
periodic, respectively). One can easily see that the pre-period m and period p can be then
chosen independently of the configuration x, so that a CA is periodic (eventually periodic)
if and only if there exists p (or m and p) such that Gp(x) = x (or Gm+p(x) = Gm(x),
respectively) for all x.

It is known that one-dimensional equicontinuous cellular automata are exactly the
eventually periodic CA, and among surjective CA equicontinuity is equivalent to periodic-
ity [12, 2]. In particular, all surjective, equicontinuous CA are reversible. These facts are
summarized in the following theorem:

Theorem 1.2. The following hold [12, 2]:
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(a) One-dimensional CA is equicontinuous if and only if it is eventually periodic.
(b) One-dimensional surjective CA is equicontinuous if and only if it is periodic.

A cellular automaton is called nilpotent if there exists a positive integer i such that
Gi(SZ) contains only one element. Nilpotent CA have the most trivial dynamics possible:
all activity dies out within time i. It is clear that a nilpotent CA is eventually periodic,
and hence equicontinuous.

1.3. Sensitivity

A CA is sensitive, if there is an observation window radius m ∈ N such that for every
initial configuration x and every M ∈ N there exists a configuration y and time i ∈ N such
that x[[−M,M ]] = y[[−M,M ]] but Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]]. In other words, every configu-
ration x can be modified arbitrarily far away in space in such a way that the modification
eventually propagates inside the observation window. Note that the definition states that
in sensitive CA no configuration is equicontinuous, and moreover, the observation window
size m that contradicts the equicontinuity at point x can be chosen independently of x. It
turns out that the second condition is automatically satisfied: If a one-dimensional CA has
no equicontinuity points then arbitrarily distant modifications can be made to any configu-
ration in such a way that the change propagates into the observation window whose radius
m equals the neighborhood radius r of the CA [12]. So we have the following:

Theorem 1.3. A one-dimensional CA is sensitive if and only if it has no equicontinuity
points [12].

A CA is called almost equicontinuous if it has some equicontinuity points. Almost
equicontinuity and sensitivity are complementary properties.

Two-way sensitivity of a reversible CA is defined analogously to sensitivity, only differ-
ence being that the time i when Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] may be negative. It is easy to
see, analogously to Theorem 1.3, that a reversible one-dimensional CA is two-way sensitive
if and only if it has no two-way equicontinuity points. It follows then from Lemma 1.1 that
sensitivity and two-way sensitivity are equivalent concepts among reversible CA.

1.4. Expansivity

CA G is positively expansive if any difference in configurations eventually propagates
inside a fixed observation window: there exists m ∈ N such that

x 6= y =⇒ Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] for some i ∈ N.
A reversible CA is expansive if time i is allowed to have a negative value: there exists m ∈ N
such that

x 6= y =⇒ Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] for some i ∈ Z.
According to our naming convention above, expansivity should be termed two-way expan-
sivity, but we rather decided to follow the historical terminology. Unlike for the dynamical
properties discussed so far, the concepts of expansivity and positive expansivity are not
equivalent. For example, the shift function σ is expansive but not positively expansive. In
fact, it is easy to see that a reversible CA can never be positively expansive.
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Expansivity and positive expansivity of one-dimensional CA have quite natural left-
and right-sided variants. Let us call a CA positively left-expansive if there exists m ∈ N
such that

x[[0,∞) 6= y[[0,∞) =⇒ Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] for some i ∈ N.
Analogously, in positively right-expansive CA differences propagate to the right. A CA is
clearly positively expansive iff it is both positively left- and positively right-expansive. The
shift σ is an example of a positively left expansive CA. For reversible CA we analogously
define left- and right-expansive CA by allowing time i to obtain also negative values: G is
left-expansive if for some m ∈ N holds

x[[0,∞) 6= y[[0,∞) =⇒ Gi(x)[[−m,m]] 6= Gi(y)[[−m,m]] for some i ∈ Z.
We see in Theorem 4.4 below that it is undecidable whether a given reversible CA is left-
expansive.

1.5. Equicontinuity classification of CA

In [12] Kurka proposed a classification of one-dimensional cellular automata into four
classes based on their degree of sensitivity to initial conditions. The classes are as follows:

(K1) Equicontinuous CA.
(K2) Almost equicontinuous CA that are not equicontinuous.
(K3) Sensitive CA that are not positively expansive.
(K4) Positively expansive CA.

Each 1D CA belongs to exactly one of these classes. First three classes are based on
the number of equicontinuity points (none, some but not all, and all configurations are
equicontinuity points, respectively). No reversible CA is in class (K4), so when classifying
reversible CA it makes sense to replace (K3) and (K4) by
(K3’) Sensitive CA that are not expansive.
(K4’) Expansive CA.

1.6. Mortality

Mortality of a dynamical system refers to the property that the evolution leads from
every initial configuration into an ”accepting” configuration. In cellular automata theory,
acceptance can be defined in various ways which leads to different variants of mortality. We
consider two variants.

Let us specify a set F ⊆ S of accepting states. In our first variant acceptance happens
when some cell enters an accepting state, and in the second variant acceptance happens when
a fixed, predefined cell enters an accepting state. This leads to the following definitions: G
is globally mortal with respect to set F ⊆ S if for every x ∈ SZ there are i ∈ N and j ∈ Z
such that Gi(x)j ∈ F . It is locally mortal with respect to set F if for every x ∈ SZ there
is i ∈ N such that Gi(x)0 ∈ F . Every locally mortal CA is also globally mortal, while the
converse is not true.
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1.7. Column subshifts and the language classification of CA

In [12] also another classification of CA was proposed based on the complexity of their
column subshifts. A column subshift is the set of all possible temporal sequences of views
to the CA configurations through a fixed finite window. More precisely, let G be a one-
dimensional CA and let k be a positive integer, the width of the observation window. The
column subshift Σk(G) of width k associated to G is

Σk(G) = {y ∈ (Sk)N | ∃x ∈ SZ : yi = Gi(x)[[1,k]] for all i ∈ N}.
It is a one-sided subshift over the alphabet Sk. Term trace subshift was used in [4] for the
column subshift Σ1(G) of width one.

The column language Lk(G) of width k is defined as the set of finite subwords of
sequences in Σk(G). It is a language over the alphabet Sk. Language Lk(G) is always
context-sensitive [14].

As in several sections above, if G is reversible then it makes sense to allow also negative
time. The two-way column subshift of width k associated to G is

{y ∈ (Sk)Z | ∃x ∈ SZ : yi = Gi(x)[[1,k]] for all i ∈ Z}.
Among reversible (and even surjective) CA this does not, however, bring any new infor-
mation on the dynamics because the language of this two-sided subshift is the same Lk(G)
extracted from the one-sided case.

Cellular automaton G is called regular if Σk(G) is a sofic shift for every k > 0. This is
equivalent to Lk(G) being a regular language. Many questions on the dynamics of a given
CA become decidable when restricted to regular CA [10]. This fact is largely based on the
following result:

Theorem 1.4. If G is regular then the column subshift Σk(G) of width k can be effectively
constructed, for every k > 0 [10].

CA G is equicontinuous if and only if it is eventually periodic with some pre-period
m and period p (see Theorem 1.2). This is equivalent to the column subshift Σk(G) being
bounded periodic: For all y ∈ Σk(G) we have yi = yi+p whenever i ≥ m. It is easy to
see that such subshifts are always sofic (even of finite type), so all equicontinuous CA are
regular.

The language classification of CA proposed in [12] has three classes:
(L1) Equicontinuous CA (the column subshifts are all bounded periodic).
(L2) Regular but not equicontinuous CA (the column subshifts are sofic but not bounded

periodic).
(L3) Non-regular CA (a column subshift is not sofic).

2. Wang tiles

Wang tiles and the tiling problem have been used in many undecidability proofs con-
cerning cellular automata. While the tiling problem relates naturally to two-dimensional
CA, also limiting behavior of one-dimensional CA can be treated by interpreting the space-
time diagrams as plane tilings. This leads naturally to the definition of determinism in
Wang tiles.

A Wang tile is an oriented unit square tile with labeled edges. We denote by N(t),
E(t), S(t) and W (t) the label of the north, east, south and west edge of tile t, respectively.
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A tile set T is a finite set of such tiles. A valid tiling by T is an assignment c ∈ TZ2

of tiles on two-dimensional lattice in such a way that abutting edges of adjacent tiles are
everywhere identical, that is, for every (i, j) ∈ Z2 we have N(c(i, j)) = S(c(i, j + 1)) and
E(c(i, j)) = W (c(i+ 1, j)).

The tiling problem is the algorithmic question of determining whether a given set T
admits at least one valid tiling. This problem was proved undecidable by R.Berger in [13].
This is the starting point in many reductions to prove undecidability results for cellular
automata.

To deal with one-dimensional CA we add the following constraint on tile sets: tile set
T is NW-deterministic if the colors of the north and the west edges determine each tile
uniquely, that is, for all t, u ∈ T

N(t) = N(u) ∧W (t) = W (u) =⇒ t = u.

We define analogously NE- SW- and SE-determinism. Tile set T is called two-way determin-
istic if it is both NW- and SE-deterministic (i.e. deterministic in two opposite directions),
and T is four-way deterministic if determinism holds in all four directions.

If c is a valid tiling admitted by a NW-deterministic tile set T then any southwest-to-
northeast diagonal of c uniquely determines the next diagonal below. A local rule using just
two tiles of the previous diagonal gives each tile. Valid tilings become space-time diagrams
of a one-dimensional CA if we interpret the diagonals as configurations of the CA. With a
similar interpretation a two-way deterministic tile set yields a reversible CA. This method
is better explained below in the proofs of Theorems 3.1 and 4.1.

The following result was proved in [15]. A weaker version dealing with NW-deterministic
tile sets only was proved earlier in [5]. The result provides a basis for some of the undecid-
ability results reported here:

Theorem 2.1. It is undecidable whether a given 4-way deterministic tile set admits a valid
tiling [15].

3. Non-reversible CA

In this section we review some undecidability results concerning general, not necessarily
reversible CA. Using the undecidability of the tiling problem among NW-deterministic tile
sets (Theorem 2.1) we easily obtain the following:

Theorem 3.1. It is undecidable whether a given one-dimensional CA is nilpotent [5]. The
question is undecidable even among CA over the binary state set S = {0, 1} [1].

Proof. For a given NW-deterministic set T of Wang tiles we construct a one-dimensional
CA over state set S = T ∪ {q} where q 6∈ T is a new state. The local update rule only uses
the state s1 of the cell and state s2 of its right neighbor. If s1, s2 ∈ T and there exists a tile
t ∈ T such that

W (t) = E(s1) and N(t) = S(s2)
then the new state of the cell is t. (Note that this t is unique due to NW-determinism.) In all
other cases the new state is q. It is clear that the configuration ωqω = . . . qqqq . . . is a fixed
point of this CA. Any southwest-to-northeast diagonal of a valid tiling is a configuration
that never evolves to this fixed point, so if T admits a valid tiling then the CA is not
nilpotent.
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Conversely, if a valid tiling does not exist then, by a compactness argument, the n× n
square can not be properly tiled for some n. This means that inside every segment of length
n state q will appear within the first 2n time steps. As state q spreads the configuration
becomes ωqω in at most 3n time steps. Hence the CA is nilpotent. The first result now
follows from the undecidability of the tiling problem among NW-deterministic tile sets.

See [1] for the technique to reduce the state set into the binary alphabet.

Corollary 3.2. It is undecidable whether a given 1D CA is equicontinuous [1]. It is unde-
cidable whether it is sensitive [1]. These two properties are recursively inseparable. This is
true even among CA over the binary state set S = {0, 1}.
Proof. Let G be an arbitrary 1D CA of radius r. Then clearly G ◦ σr+1 is nilpotent (and
hence equicontinuous) if G is nilpotent, and it is sensitive if G is not nilpotent.

Among equicontinuity classification, the decidability status of positive expansivity re-
mains a challenging open problem. Concerning the mortality of non-reversible CA, we have
the following easy corollary:

Corollary 3.3. Local mortality and global mortality are undecidable among one-dimensional
CA.

Proof. Let F = {q} where q is the external non-tile state in the proof of Theorem 3.1. The
CA constructed in the proof is locally (and globally) mortal with respect to F if and only
if the tile set does not admit a valid tiling.

Finally, it was shown in [10] that it is undecidable to determine if a given one-dimensional
CA is regular. In fact, nilpotency and non-regularity are recursively inseparable properties.
In particular, this means that the classes (L1) and (L3) in the language classification of
Section 1.7 are recursively inseparable from each other:

Corollary 3.4. It is undecidable whether a given one-dimensional CA is regular [10]. More
precisely, nilpotency and non-regularity are recursively inseparable.

Proof. Suppose there exists an algorithm to separate nilpotent CA from non-regular CA.
Then we can decide nilpotency of a given G as follows: The separating algorithm either
tells that G is definitely not nilpotent or that G is definitely regular. In the first case we
know the non-nilpotency of G directly, and in the second case we can effectively construct
the trace subshift Σ1(G) of G using Theorem 1.4. Note that G is nilpotent if and only if
Σ1(G) is eventually constant, that is, there is state s ∈ S and number N such that yi = s
for all y ∈ Σ1(G) and i > N . This condition can be easily verified from the finite automaton
representation of the trace subshift.

4. The case of reversible CA

4.1. Mortality

Analogously to Theorem 3.1, a direct application of the undecidability of the tiling
problem among two-way deterministic tile sets was used in [9] to show that global mortality
is undecidable among reversible CA:

Theorem 4.1. It is undecidable whether a given reversible 1D CA is globally mortal. This
holds even if the CA is known to be expansive [9].
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Proof. For a given two-way deterministic tile set T we start by adding to it tiles until we
have a tile set S = T ∪ F that is two-way deterministic and complete in the sense that for
every horizontal color h and vertical color v there is a unique tile t ∈ S with N(t) = h and
W (t) = v, as well as a unique tile t′ ∈ S with S(t) = h and E(t) = v. The added tile set
F can be effectively constructed by arbitrarily pairing the missing horizontal/vertical color
pairs among NW- and SE-edges in T .

One can next construct a one-dimensional CA over the state set S analogously to the
proof of Theorem 3.1: Let s1 and s2 be the states of a cell and its right neighbor, respectively.
Then the new state of the cell is the unique tile t ∈ S such that

W (t) = E(s1) and N(t) = S(s2).

It follows from two-way determinism of S that the CA is reversible.
The CA is globally mortal with respect to the added tiles F if and only if T does not

admit a tiling. Indeed, if T admits a tiling then a diagonal of a valid tiling is a configuration
whose space-time diagram only contains elements of T . So the CA is not globally F -mortal.

Conversely, if T does not admit a tiling then there exists a number n such that T does
not admit a tiling of an n× n square. Then every segment of length n will contain a state
in F within 2n time steps, so the CA is globally mortal.

The first part of the theorem now follows from the undecidability of the tiling problem
among two-way deterministic tile sets.

For the second part we observe that global mortality is invariant under composing the
CA with the shift: G is globally mortal if and only if G◦σr+1 globally mortal. But G◦σr+1

is always expansive where r denotes the neighborhood radius.

A layer of binary signals was introduced in [9] to obtain the following result.

Theorem 4.2. It is undecidable whether a given reversible 1D CA is locally mortal. This
holds even if the CA is known to be left-expansive [9].

Proof. We reduce global immortality to local immortality. Let G be an expansive one-
dimensional CA, with state set S = T ∪F where T ∩F = ∅. Let us construct a new CA G′
with state set S×{0, 1}2. Each state has two binary signals associated with it. The S-states
evolve according to G. Normally (if the underlying S-state belongs to T ) the two signals
travel left and right, respectively. An exception happens in every cell whose state belongs
to F : If the incoming right and left moving signals have binary values a and b, respectively,
the outgoing right and left moving signals will have binary values 1 + b (mod 2) and a+ b
(mod 2), respectively. Let F ′ (the new acceptance set) consist of all states that contain a
signal with binary value 1.

It is easy to see that G′ is left-expansive, and it is locally mortal w.r.t F ′ if and only if
G is globally mortal w.r.t F . The result now follows from Theorem 4.1.

If one executes the constructions in the proofs of Theorems 4.1 and 4.2 starting with
an aperiodic, two-way deterministic tile set T then the final CA G′ is left-expansive but not
regular. Aperiodic two-way deterministic tile sets must exist due to the undecidability of
the tiling problem — and an aperiodic four-way deterministic example was even explicitly
constructed in [8] — so we have the following corollary:

Corollary 4.3. There are left-expansive reversible CA that are not regular.

By adding yet another layer of signals we can reduce local mortality among left expan-
sive CA into the problem of determining if a given CA is left-expansive:
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Theorem 4.4. It is undecidable whether a given reversible 1D CA is left-expansive [9].

Proof. Let G be a left-expansive CA over the state set S = T∪F where T∩F = ∅. Construct
a new CA G′ with two additional binary signals in each cell. The first signal shifts left while
the second one does not move. In addition, in each cell where the underlying S-state belongs
to F the two signals are swapped. It is easy to see that G′ is left-expansive if and only if G
is locally mortal with respect to F . The result now follows from Theorem 4.2.

It is not known whether expansivity of reversible CA is decidable. Note that if lo-
cally mortality were undecidable among expansive CA then the construction we used in
Theorem 4.4 would show that expansivity is undecidable. Global mortality is known to
be undecidable among expansive CA (Theorem 4.1), but it remains a challenge to reduce
global mortality to local mortality while preserving expansivity. For left-expansive CA this
was successfully done in the proof of Theorem 4.2.

4.2. Equicontinuity

Using a reduction from the mortality problem of reversible Turing machine it is shown
in [7] that it is undecidable if a given one-dimensional CA is periodic:

Theorem 4.5. It is undecidable whether a given reversible 1D CA is periodic [7].

Using Theorem 1.2(b) we directly obtain the following:

Corollary 4.6. It is undecidable if a given reversible one-dimensional CA is equicontinu-
ous [7].

By observing that periodicity of a sofic shift is decidable, one sees analogously to Corol-
lary 3.4 that the classes (L1) and (L3) in the language classification of Section 1.7 are
recursively inseparable even among reversible CA.

Corollary 4.7. It is undecidable if a given reversible one-dimensional CA is regular. More
precisely, periodicity and non-regularity are recursively inseparable among reversible one-
dimensional CA [16].

Proof. Suppose there exists an algorithm to separate periodic from non-regular reversible
CA. Then we can decide periodicity of given G as follows: The separating algorithm either
tells that G is definitely not periodic or that G is definitely regular. In the first case we
know the non-periodicity of G directly, and in the second case we can effectively construct
the trace Σ1(G) of G using Theorem 1.4. It is an easy matter to effectively determine if
Σ1(G) is periodic, given the finite automaton representation of its language.

Finally, we mention without proof that recently V.Lukkarila reduced the halting prob-
lem of reversible Turing machines to show that sensitivity is undecidable among reversible
CA:

Theorem 4.8. It is undecidable whether a given reversible 1D CA is sensitive [16].
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5. Conclusions and open problems

We have discussed recent undecidability results from [9, 7, 16]. These show that
many dynamical properties that were previously known to be undecidable for general one-
dimensional CA remain undecidable with the additional constraint of reversibility.

Many challenging and interesting decidability problems remain open. Most notably, it
is not known whether it is decidable if a given one-dimensional reversible CA is expansive.
Another, closely related open question is a conjecture of Nasu [11] that all expansive one-
dimensional cellular automata are conjugate to subshifts of finite type, or equivalently, that
the column subshift Σr+1(G) of width r + 1 is of finite type when G is expansive and r
is its neighborhood radius. It would be even interesting to know if all expansive CA are
regular, a weaker statement than Nasu’s conjecture. Note that Corollary 4.3 states that
left-expansive CA are not necessarily regular.

One approach to the expansivity problem is to try to reduce global mortality to local
mortality of expansive CA, as suggested in Section 4.1. It would seem, however, that for
this to work a counter example to Nasu’s conjecture would be needed, in an analogy to
Corollary 4.3.

We also have not yet touched the decidability status of any mixing property such as
transitivity.
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Since their origin, algorithms on cellular automata have been defined. The noticeable
point is that algorithms and computations are disjoints notions. Besides many computations
(in the framework of Turing computability) as multiplication, real-time recognition of primes
in unary, . . . , algorithms without sequential counterpart have been defined as Firing Squad
Synchronization Problem, French Flag, self-reproduction, . . .

We recall the notion of signal or particle. It is simply the trajectory (a neighborhood-
connected line) of an information (subset of states up to a grouping operation) in the orbit of
some configuration. Basic signals are straight lines; from them a large variety of signals may
be constructed on a finite configuration: but all signals are not constructible and it remains
to characterize (if possible) such signals. When the initial configuration is infinite, all signal
are constructible: in some way input (of some computation) may define new signals.

On other hand, a signal viewed as a connected line in an orbit may be constructed in
different manners: so, states and their order used to defined a signal may be viewed as data
setting on the signal. Many algorithms in a geometrical way move this kind of data. We
briefly indicate main algorithms showing how to translate, reverse dat and to carry data
from one signal to another one. We also give an example of how transform parts of an
orbit using tiling of the orbit respecting the natural dependencies of cellular automata. We
observe that there exist in literature a large variety of methods; so, it is quite impossible to
list all of them.

Since work of K. Čulik and C. Choffrut, it is well done how to transform the graph of
dependencies of a 1D-CA of neighborhood {−1, 0,+1} into a graph of dependencies of a
1D-CA of neighborhood {−1, 0} and then to see the initial cellular automaton as a trellis
automaton. This leads us to the notion a grid (an injection of Z ×N into Z ×N). Given
a cellular automaton A which constructs a grid G on the initial configuration cA and an
another cellular automaton B, it is possible to algorithmically defined a new cellular automa-
ton C such that from every initial configuration cB, a new configuration cC has an orbit such
that the orbit of cB appears on grid G. This is a convenient way to move the whole orbit of
B in space-time. Another interest of grids is that when communication time between cells
or computational time of cells are not uniform, the grid is modified but remains a grid: this
allows, in some sense, to bypass to synchronous character of cellular automata.

c
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We study a typical example of Turing computation: the function (x, y) −→ (xy)2. This
points that often "good" cellular computational algorithms are the "natural" ("human")
ones. This example also show how to compute composition of functions ( (x, y) −→ xy and
z −→ z2) using grids. On a grid, we have two basic moves of information (to the right and
to the left), to stay on a cell (time move) is now to achieve a right move followed by a left
one. To compose functions we put first computation on a grid G1 and second computation
on a grid G2 the right move of which is a time move of G1 (we have choice for its left move).

Then we propose some hints to achieve a programming language for 1D-CA:
• The s-n-m theorem has two components: the classical one on local (cell based)
computations and a global one on the grid constructed during the computation. In
particular, not only the shape of the grid but also the size of its holes depend on the
data.
• Memory garbage is now synchronization of the active part (computations make sev-
eral composition and the efficient of the sequence of grids decrease).
• Recursive calls are now simply to construct a new grid in holes of the previous one.
• A while instruction is to construct an infinite family of grids.
• Clearly, problems about for loops remain.

Finally, we show that the situation for 2d-CA is far more complicated.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.



Journées Automates Cellulaires 2008 (Uzès), pp. 17-17

AUTOMATA, TILINGS AND TOMOGRAPHY

M. NIVAT

c
17



Journées Automates Cellulaires 2008 (Uzès), pp. 18-28

SPARSE SETS

LAURENT BIENVENU 1, ANDREI ROMASHCHENKO 2, AND ALEXANDER SHEN 1
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Abstract. For a given p > 0 we consider sequences that are random with respect to
p-Bernoulli distribution and sequences that can be obtained from them by replacing ones
by zeros. We call these sequences sparse and study their properties. They can be used in
the robustness analysis for tilings or computations and in percolation theory.

This talk is a report on an (unfinished) work and is based on the discussions with
many people in Lyon and Marseille (B. Durand, P. Gacs, D. Regnault, G. Richard a.o.)
and Moscow (at the Kolmogorov seminar: A. Minasyan, M. Raskin, A. Rumyantsev,
N. Vereshchagin, D. Hirschfeldt a.o.).

1. Motivation

There are several results which say, intuitively speaking, that “if errors are sparse
enough, they do not destroy the intended behavior of the system”. For example, percolation
theory says that if every edge of a planar conducting grid is cut with probability ε, cuts
of different edges are independent and ε is small enough, then the grid remains mostly
connected (there is an infinite connected component). Similar statements can be done for
cellular automata computations with independent random errors, for tiling with errors etc.

It would be nice to translate these results into the language of algorithmic information
theory and define the notion of “individual sparse set” (for a given ε). This notion could
be used to split the above mentioned results into two parts: first, we note that with prob-
ability 1 with respect to the Bernoulli distribution the resulting set and any its subset is
sparse; second, we prove that a sparse set of errors does not destroy the desired behavior
(connectivity of the grid, computation of the error-correcting automaton etc.)

2000 ACM Subject Classification: 68Q30, 82B43.
Key words and phrases: algorithmic randomness, percolation theory, error correction.
Thanks to all members and guests of the ESCAPE team at LIF who contributed to the discussions

reported in this paper.
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Note that the notion of sparse set should take into account not only the overall density
of errors but also their distribution. For example, if we cut all the conductors along some
line in a grid, we may destroy the connectivity though the fraction of destroyed conductors
is negligible (density in a N ×N square tends to 0 as N →∞).

In this paper we suggest such a definition of p-sparse set and outline some its properties
as well as possible applications.

2. Definition of sparse sets

Let p > 0 be some rational number. Consider a Bernoulli distribution Bp on the space
Ω of all infinite sequences of zeros and ones where bits are independent and each bit equals
1 with probability p. This is a computable distribution on Ω, so the notion of Martin-Löf
random sequence with respect to this distribution is well defined (see, e.g., [2, 6]).

Identifying each sequence ω with a subset of N that consists of all i such that ωi = 1,
we get a notion of a random subset of N according to this distribution. Let us call p-sparse
all these sets and all their subsets. The following proposition justifies this definition:

Theorem 2.1. Let 0 < p1 < p2 < 1 be two rational numbers. Then every p1-sparse set is
p2-sparse.

Proof. We need to prove that any p1-random sequence α can be converted to a p2-random
sequence by replacing some zeros by ones. Informally, we want to replace each 0 by 1 with
probability q = (p2 − p1)/(1 − p1); if this replacement is directed by a q-random (with
respect to α-oracle) sequence β then the result will be p2-random. To prove this, we may
use van Lambalgen theorem; it says that the pair (α, β) is random with respect to the
product distribution, and the replacement result is therefore random with respect to the
image distribution, i.e., p2-Bernoulli distribution. (We do not go into the details since we
prove more general result about coupling below.)

Remark. We have defined the notion of a p-sparse set for subsets of N, but the Bernoulli
distribution is invariant under permutations and Bernoulli-random sequences remain Ber-
noulli-random after computable permutations of the domain. Therefore this notion can be
defined for subsets of Z, Zk, sets of strings etc.

By definition, every p-Bernoulli random sequence α is p-sparse. The next theorem
shows that there could be another reason of α to be p-sparse:

Theorem 2.2. For every computable p ∈ (0, 1) and every p-Bernoulli random sequence α
one could replace infinitely many zeros in α by ones but still have p-Bernoulli random
sequence (for the same p).

Proof. (Discovered independently by Peter Gacs.) Consider a diverging series with con-
verging squares, say, qi = 1/i. Then consider a sequence β that is random with respect to
the distribution of independent bits where ith bit is 1 with probability qi. Moreover, let
us assume that β is random even relative to the oracle α. Then we can check that αi ∨ βi
will contain infinitely many additional ones compared to α (since

∑
qi diverges and β is

independent of α). On the other hand, αi ∨ βi is still random with respect to p-Bernoulli
distribution since its natural distribution (p+ (1− p)qi) is equivalent to p-Bernoulli distri-
bution due to the effective version of Kakutani’s theorem (because the sum of squares of
the differences between probabilities of the two Bernoulli measures converges).
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3. Criteria

One would like to have a more straightforward definition for p-sparse sets that does not
involves the existential quantifier (“there exists a random sequence such that. . . ”). Such
a criterion indeed can be obtained if we restrict ourselves to monotone cylinders in the
Martin-Löf definition of randomness.

Let X be a finite subset of N. Consider the set ΓX of all ω ∈ Ω that have ones at all
positions in X. The p-Bernoulli measure of ΓX equals pk where k is the cardinality of X.

Let us call a set N ⊂ Ω effectively p-monotone null set if there exists an algorithm
that given rational ε > 0 enumerates a sequence X1, X2, . . . of finite subsets of N such that
the union of corresponding monotone cylinders ΓXi has measure at most ε (with respect to
p-Bernoulli distribution) and covers N .

Theorem 3.1.
A. For every rational p > 0 there exists the maximal effectively p-monotone null set

that contains all effectively p-monotone null sets.
B. A sequence ω is p-sparse if and only if ω does not belong to the maximal effectively

p-monotone null set.

Proof. A. This can be proved in the same way as Martin-Löf theorem about the existence
of the maximal effectively null set: one can enumerate all algorithms, modify them to
guarantee the bound for the measure and then take the union of all corresponding sets.

B. (See [3].) Let us note that every effectively p-monotone null set N is an effectively
null set by definition; moreover, all the sequences obtained from the elements of N by
replacing zeros with ones still form an effectively null set. Therefore, the elements of N are
not p-sparse.

On the other hand, we have to prove that the set U of all sequences that cannot be made
p-random by replacing zeros by ones is an effectively p-monotone null set. By definition, a
sequence ω belongs to U if the set Eω of all sequences that can be obtained from ω by such
a replacement is a subset of the maximal effectively null set M (with respect to p-Bernoulli
measure). We need (for a given ε > 0) to cover U by the sequence of monotone cylinders of
total measure at most ε. Consider the enumerable union of (non-monotone) cylinders that
covers M and has total measure at most ε. This union covers the closed (and therefore
compact) set Eω, therefore a finite union of these cylinders also covers Eω. Those cylinders
deal with finitely many positions in Eω, therefore there exists a monotone cylinder that
contains ω and is covered by that union. The set of all monotone cylinders covered by
some finite union of (non-monotone) cylinders in the sequence is enumerable, and we get
the required enumerable family of monotone cylinders of total measure at most ε.

Remark. This criteria can be used to prove Theorem 2.1: it remains to show that for
a monotone set X its p-Bernoulli measure Bp(X) is a monotone function of p. (This is a
standard result in classical probability theory that is proved essentially in the same way, by
coupling p1- and p2-Bernoulli random variables, see below Theorem 4.4.)

It would be interesting to find another equivalent definition of p-sparse sets. One may
look for a martingale criterion of sparseness. Recall [4] that a sequence is random if and only
if every lower semicomputable martingale is bounded on its prefixes. Trying to characterize
sparse sequences, one may try to find the corresponding class of martingales.
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Formally speaking, a p-martingale (in the algorithmic information theory) is defined as
a function x 7→ m(x) defined on binary strings with non-negative real values such that

m(x) = pm(x1) + (1− p)m(x0).

If m(x) is interpreted as the capital of the player after bits of x appear during the game
(from left to right), this equation says that the game is fair, i.e., the expected capital after
the next round equals the capital before it. We say that martingale m makes bets only on
ones if the outcome 1 is always more profitable than 0, i.e., if

m(x0) ≤ m(x1)

for every binary string x. A stronger condition: a martingale m is monotone if m(x) ≤ m(y)
when x ≺ y, i.e., when y can be obtained from x by replacing some zeros by ones. It
turns out that monotone martingales can be used for defining sparse sets (sequences) while
martingales that bet only on 1’s are not suitable (there are too many of them).

Recall that a martingalem is lower semicomputable if there exists a computable function
(x, n) 7→ M(x, n) with rational values (here x is a string and n is a natural number) such
that for every x the sequence M(x, 0),M(x, 1), . . . is non-decreasing and converges to m(x).

Theorem 3.2.
A. If a sequence α is not p-sparse, there exists a monotone lower semicomputable

martingale m that tends to infinity on the prefixes of α.
B. If there exists a monotone lower semicomputable martingale m that is unbounded

on the prefixes of α, then α is not p-sparse.
C. There exists a p-sparse sequence α and a lower semicomputable martingale m that

makes bets only on ones and still tends to infinity on the prefixes of α.

Proof. A. For every enumerable union T of monotone cylinders we may consider a lower
semicomputable martingale mT by letting mT (x) be the conditional probability to get
a sequence in T starting from x (and adding independent p-Bernoulli bits). Since T is
monotone, this martingale is also monotone; it starts from the measure of T and reaches 1
at any sequence in T . Adding up these martingales (say, take Tn of measure at most 4−n and
multiply the corresponding martingale by 2n), we get a lower semicomputable martingale
that tends to infinity on the prefixes of all elements of given monotone effectively null set.

B. Let m be any lower semicomputable monotone martingale. For a given c we may
consider the enumerable set of all x such that m(x) > c, and all (non-monotone) cylinders
rooted at these x. The union of these cylinder has measure at most 1/c due to martingale
inequality. Since the martingale is monotone, we can replace non-monotone cylinders by
the monotone ones not changing the union. Doing this for large c, we get the required
covering by an enumerable union of monotone cylinders that has small measure.

C. To construct a required counterexample, let us consider a p-Bernoulli random se-
quence and split its elements into pairs. Then let us modify this sequence replacing pairs
01 and 10 by 00 (and leaving 00 and 11 unchanged). This gives us a p-sparse sequence since
we replace ones by zeros in a random sequence. However, the player can make a safe bet
on the second bit of each pair if she sees that the first bit is 1, and this happens infinitely
many times since we have started from a random sequence.
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4. Coupling

In this section we review a well known technique that can be then adapted to prove
that some operation produce sparse sets.

Let A and B be two finite sets and let R ⊂ A × B be a binary relation; we write aRb
if 〈a, b〉 ∈ R. Consider two random variables α and β that range over A and B. defined
on unrelated probability spaces. We say that αRβ (abusing slightly the notation) if there
exist random variables α′ and β′ defined on some common probability space M such that

• α′ has the same distribution as α;
• β′ has the same distribution as β;
• α′(m)Rβ′(m) for every m ∈M .

This definition refers not to α and β themselves, but only to the corresponding prob-
ability distributions on A and B, so it defines a relation between probability distributions
on A and B.

In other terms, we are looking for a matrix of non-negative reals (a distribution on
A × B) that has given sums for all rows and columns. This task can be reformulated in
terms of network flows. Indeed, consider a bipartite graph that has A on the left and B
on the right. The source s is connected with all elements of A by edges whose capacities
are given probabilities of the elements in A; all elements of B are connected to the sink t
by edges whose capacities are probabilities of the elements of B. The edges between A and
B have unlimited capacities and correspond to the elements of R. Then αRβ means that
this network has a flow of size 1. The Ford–Fulkerson theorem provides a criterion for the
existence of such a flow; this criterion describes the obstacles for αRβ. A pair of sets S ⊂ A
and T ⊂ B is an obstacle if

• all R-neighbors of all elements in S belong to T
• Pr[α ∈ S] > Pr[β ∈ T ]

It is evident that if such an obstacle exists, then αRβ is not possible, and Ford–Fulkerson
duality says that this condition is necessary and sufficient:

Theorem 4.1. αRβ if and only if there are no obstacles of described type.

Now we extend this result to infinite sequences. Consider two random variables α and
β that range over A∞ and B∞ (here X∞ stands for the set of all sequences x0, x1, . . . where
xi ∈ X). We say that αRβ if there exist α′ and β′ that share the same probability space M ,
have the same distribution as α and β, and α′i(m)Rβi(m) for every m ∈ M and for every
i ∈ N.

Note that this definition refers only to the distributions on A∞ and B∞ and that the
relation on A∞ × B∞ is defined coordinate-wise (separately for each i). It turns out that
the statement about possible obstacles remains true for this definition.

Theorem 4.2. The relation αRβ is false if and only if there exist Borel sets S ⊂ A∞ and
T ⊂ B∞ such that:

• for every a0a1 . . . ∈ S every b0b1 . . . ∈ B∞ such that ∀i (aiRbi) belongs to T ;
• Pr[α ∈ S] > Pr[β ∈ T ]

Proof. It is evident that the existence of S and T with these properties is indeed an obstacle
for αRβ. In the other direction we cannot use just the Ford–Fulkerson argument since the
spaces are infinite. However, the relation is defined coordinate-wise, and we may for every
N find a joint distribution on AN ×BN that has the same projections on AN and BN as α
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and β, and has the required property with respect to R. (Indeed, an obstacle to this finite
task as described in Theorem 4.1 at the same time is an obstacle in our current sense.) It
remains to find limit point as N →∞ using the standard compactness argument.

Note that the existential quantifier for one of the sets S and T can be eliminated:
the obstacle can be defined as the set S such that the set of all its neighbors have β-
probability less than the α-probability of T . This evident remark shows that defined relation
is transitive:

Theorem 4.3. Let A,B,C be finite sets; let R1 ⊂ A×B and R2 ⊂ B × C be two binary
relations and R = R1 ◦R2 be its composition. Then αR1β∧βR2γ ⇒ αRγ for any random
variables α, β, γ that range over A∞, B∞, C∞ respectively.

We will mostly deal with the special case where A = B = {0, 1} and the relation R
is linear order ≤. Let us denote the corresponding relation between two random variables
α and β that range over Ω = {0, 1}∞ by α � β. (The same notation will be used for
corresponding distributions.) In this case the description of obstacle can be simplified
further:

Theorem 4.4. α � β if and only if Pr[α ∈ Z] ≤ Pr[β ∈ Z] for every monotone Borel set
Z ⊂ Ω.

(A set Z ⊂ Ω is monotone if α ∈ Z and ∀i (αi ≤ βi) implies β ∈ Z.)

Proof. One could argue that the set T (S) of neighbors (as defined above) for every set S ⊂ Ω
is monotone and contains S, so S can be replaced by T (S). (Note that T (T (S)) = T (S).)

However, there is a technical problem since we need T to be a Borel set. This can be
avoided if we use this argument for finite case {0, 1}N and take a limit point after that.

Remark. Similar statements can be made for any finite set and partial preordering on
it (instead of the standard ordering of {0, 1}).

5. Coupling and algorithmic randomness

We want to apply coupling technique to establish results about random and sparse sets.
The following two statements will be used as main technical tools for this.

LetM be an oracle machine that accepts or rejects its input (natural number) n asking
questions of type “m ∈ L?” for different natural numbers m and oracle L. Such a machine
defines a mapping that maps the oracle set L into the set accepted by M when oracle L is
used.

More precisely, this is a partial map, since it may happen that for some oracles L the
machine ML does not terminate for some inputs. We are not interested in the partial
functions and consider M(L) as undefined in these cases. Recall also that we identify sets
X ⊂ N and their characteristic sequences, so an oracle machine defines a (partial) mapping
Ω→ Ω.

Let P be a computable probability distribution on Ω and let M be an oracle machine.
For a random variable α that ranges over Ω we consider the image distribution M(P ) on
Ω, i.e., the distribution for the variable M(α). This distribution is well defined if M(ω)
is defined with probability 1. We assume that this is the case; then Q = M(P ) is a
computable distribution on Ω. The following natural connection between P -randomness
and Q-randomness [5] holds:
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Theorem 5.1.
A. If ω is Martin-Löf P -random sequence, then M(ω) is Martin-Löf Q-random se-

quence.
B. Any Martin-Löf Q-random sequence τ equalsM(ω) for some Martin-Löf P -random

sequence ω.

Proof. A. If ω is Martin-Löf P -random and M(ω) is defined, this is a direct corollary of
the definitions: if Z is a Q-effectively null set containing M(ω) then its preimage M−1(Z)
is a P -effectively null set containing ω (it is an effectively null set since the preimage of
an effectively open set of Q-measure less than ε is an effectively open set of the same
P -measure).

However, there is one more thing to prove: we need to show that M(ω) is defined on
every P -random ω. Indeed, for every n the set of all oracles ω such that Mω is defined
on n is an effectively open set of full measure. It is easy to see that its complement is an
effectively null set and therefore cannot contain a Martin-Löf random sequence.

B. Let N be the maximal P -effectively null subset of Ω. We need to prove that every
Q-random sequence has a M-preimage outside N . In other terms, we have to prove that
the set N ′ of sequences that do not have preimages outside N is a Q-effectively null set.

Assume that some rational ε > 0 is given. We have to find an effectively open set of
Q-measure less than ε that covers N ′. First, let us consider an effectively open set Nε that
covers N and has P -measure less than ε. We want to show that the set of sequences that
have no preimages outside Nε is an effectively open set. (Note that Q-measure of this set
is less than ε since Q is the image of P .)

Indeed, consider a sequence ω that has no preimages outside Nε. As we have seen,
M is defined everywhere outside N (and therefore outside Nε). So for every τ /∈ Nε

the infinite sequence M(τ) deviates from ω at some place. The set of all τ for which
this happens at ith place is open, and these sets together with the open set Nε form a
covering of Ω. Compactness allows to replace this covering by its finite part, and this gives
some neighborhood of ω; all elements of this neighborhood have no preimages outside Nε.
Moreover, we can search for all finite coverings of this type, so the set of all sequences that
have no preimage outside Nε is effectively open (and has Q-measure less than ε as we have
discussed).

This finishes the argument (which is an effective version of a classical argument proving
that if a continuous function is defined everywhere on a compact set, then the image of this
set is also compact).

This statement has a simple intuitive meaning: if we have a source of random bits
composed of a P -random bit source and an oracle machineM using those bits as an oracle,
what sequences should we expect at the output? There are two possible answers. First, we
can say that the internal P -random source can produce any P -random sequence, so we can
get images of those sequences at the output. On the other hand, we can ignore the internal
structure and say that we altogether have a random bits generator with distribution Q, so
Q-random sequences are expected at its output. Theorem 5.1 says that these two classes
coincide.

Remark. This question is more difficult (and is not solved yet, as far as we know) if
the machine M is undefined with positive probability. Then we get only a semimeasure as
output distribution; one would like to prove that the image of the set of P -random sequences
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is still determined by this semimeasure, but it is not clear how to prove this and whether it
is possible.

The second tool connects coupling with algorithmic randomness.

Theorem 5.2. Let P and Q be two computable distributions such that P � Q and, more-
over, there exists a computable distribution on Ω × Ω that has projections P and Q and
αi ≤ βi has probability one according to this distribution for every i.

Then every P -random sequence can be transformed into a Q-random sequence by re-
placing some zeros by ones. Similarly, every Q-random sequence can be transformed into a
P -random one be replacing some ones by zeros.

Proof. It would be nice to get rid of the additional condition: the computability of the
distribution on pairs. But with this condition (that is easy to check in all applications below)
the statement of the theorem is a direct consequence of Theorem 5.1. Using projection as
M, we see that every P -random sequence is a first term of a random pair, and the second
term of this pair is a Q-random sequence we looked for. (The same argument can be used
for choosing a P -random sequence for a given Q-random one.)

Note that in this way we get one more proof of Theorem 2.1. More interesting applica-
tions will be given in the next section.

6. Operations that preserve sparseness

In this section we want to prove that some transformations preserve sparseness (though
may change the value of parameter p). Let us start with a simple example.

Theorem 6.1. Let a0, a1, a2, . . . be a p-sparse sequence. Then the sequence

a0, a0, a1, a1, a2, a2, . . .

(each bit is doubled) is
√
p-sparse.

Proof. Since bit doubling is a monotone transformation, we may assume that a0, a1, . . . is
a random sequence with respect to the Bernoulli distribution Bp. Theorem 5.1 says that
the sequence a0, a0, a1, a1, a2, a2, . . . is then random with respect to the image distribution
D(Bp) where D doubles each bit.

Theorem 5.2 shows that it remains to prove that D(Bp) � B√p. Since both distributions
are products of (independent) distributions on bit pairs, it is enough to consider these
distributions on pairs. They have the same probability of 11 combination (p in both cases)
while 01 and 10 have zero probability in D(Bp) and positive probability

√
p(1 − √p) for

B√p. So we can start with B√p distribution and then replace 1 by 0 if the other bit is 0.

More complicated tools are needed in the other example.

Theorem 6.2. Let a0, a1, a2, . . . be a p-sparse sequence. Then the sequence

a0 ∨ a1, a1 ∨ a2, a2 ∨ a3, . . .

is 2
√
p-sparse.

Note that this sequence is an upper bound for a1, a1, a3, a3, a5, a5, . . ., so this result
implies that the latter sequence is also sparse (though for a larger value of p compared with
Theorem 6.1).
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Proof. The sequence in question can be represented as bitwise OR of two sequences:
a0 a2 a2 a4 a4 a6 a6 a8 . . .

a1 a1 a3 a3 a5 a5 a7 a7 . . .

a0∨a1 a1∨a2 a2∨a3 a3∨a4 a4∨a5 a5∨a6 a6∨a7 a7∨a8 . . .

If a0, a1, a2, . . . is a random sequence with Bernoulli distribution, then the first two sequences
are independent and their distributions (as we have seen above) are �-below B√p. It follows
easily that the disjuction of these two sequences is �-below the disjuction of two Bernoulli
distributions B√p and therefore is below B2

√
p-distribution. It remains to apply Theorem 5.2

(the computability condition is easy to check).

Similar argument can be applied to the sequence

a0 ∨ a1 ∨ . . . ∨ ak−1, a1 ∨ a2 ∨ . . . ∨ ak, . . .
for any k and shows that it is k k

√
p-sparse if the initial sequence is p-sparse. In terms of

sets we get the following result (note that d-neighborhood of a point in N or Z consists of
2d+ 1 points):

Theorem 6.3. For every positive integer d > 0 and every p-sparse set A the d-neighborhood
of A is q-sparse for q = (2d+ 1) 2d+1

√
p.

For simplicity we may ignore the exact value of the probability and say something like
“the neighborhood of a sparse set is sparse”. The exact meaning of this claim is that for
every q > 0 there exists p > 0 such that the neighborhood of every p-sparse set is q-sparse.
This is true for subsets of Z2 or Zk (the proof works for L∞-neighborhoods as before; then
the statement can be extended to any type of neighborhood).

One would like to strengthen this theorem and prove that the union of two p-sparse
sets is q-sparse if p is much less than q. Unfortunately, this cannot be done:

Theorem 6.4. For every p, q ∈ (0, 1) there exist two p-sparse sets whose union is not
q-sparse.

Proof. (Discovered independently by Denis Hirschfeldt.) Note that for every q ∈ (0, 1) (even
very close to 1) and every N (even very large) every q-sparse sequence α splitted into N -bit
blocks must contain a block of N zeros.

On the other hand, for every p for large enough N there are two p-sparse sequences α
and β whose union α ∨ β does not have this property. If p = 1/2, it is trivial: take N = 1
and two complementary 1/2-random sequences.

In the general case, take N large enough so that (1−p)N < 1/2. Then two events (for a
fixed N -bit block) “all N α-bits are zeros” and “all N β-bits are zeros” can be made disjoint
keeping the p-Bernoulli distributions for α and β in the block unchanged. Making all blocks
independent, we get a computable distribution on pair of sequences that has p-Bernoulli
projections (marginal distributions) and is concentrated on pairs of sequences that have the
required property.

Another source of sparse sequences is provided by the following theorem:

Theorem 6.5. Let P be a computable distribution on Ω and let α = a0a1a2 . . . be a random
sequence with respect to this distribution. If all the conditional probabilites of ones along
this path (i.e., Pr[xi = 1|x0 . . . xi−1 = a0 . . . ai−1]) do not exceed some rational p, then α is
p-sparse.
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Proof. Consider the following randomized machine. It uses uniform Bernoulli distribution to
generate a sequence of independent random variables ξ0, ξ1, ξ2, . . . distributed uniformly in
[0, 1] (by splitting random bits into countably many groups). Then these random variables
are used to produce bits that have distribution P : we compare ξ0 with the probability of 1
at the first place to get a0, then we compare ξ1 with the (conditional) probability of 1 after
a0 to get a1, etc.

Theorem 5.1 guarantees that in this way we can obtain exactly P -random sequences.
Replacing all thresholds by p, we in parallel get p-Bernoulli random sequence that guarantees
that the sequence a0a1 . . . is p-sparse.

Note a subtle point in this argument: we do not claim that the P � Bp since the
inequality for conditional probabilities is guaranteed only along the path a0a1a2 . . .; however,
the sequence generated in parallel with a0a1a2 . . . is p-random since the image of every
random sequence ξ0ξ1 . . . is p-random.

7. Using sparse sets in error analysis

Now several results about robustness may be reformulated in terms of sparse sets. Let
us give an example from percolation theory.

Consider a grid of vertical and horizontal lines (as in the cell paper) that splits the
plane into unit squares. Each node (line crossing) is a contact, and each edge (of a unit
square) is a conductor.

Percolation theory says that if each conductor is independently cut with sufficiently
small probability, the network remains essentially connected (has an infinite connected
component) with probability 1. Now this can be reformulated in terms of sparse sets:

Theorem 7.1. If the set of deleted edges is p-sparse for small enough p, the remaining
network has an infinite connected component.

Proof. It is enough to show this for the case of p-random network failures (since the property
of having an infinite connected component is monotone).

Therefore, we need to show that the set of measure zero (of all networks that have no
infinite connected components or have more than one connected component) is in fact an
effectively null set. This can be done by analyzing one of the classical proofs of this result
(we omit the details since this is another story).

Now we can apply our results about sparse sets to derive the similar result for node
failures (instead of edge failures): failure of a node is equivalent to cutting all four edges
that are adjacent to this node.

Theorem 7.2. If the set of deleted nodes is p-sparse for small enough p, the remaining
network has an infinite connected component.

Proof. It is easy to see that the set of edges adjacent to deleted nodes can be covered
by a neighborhood of fixed size of the set of deleted nodes and therefore is also sparse.
(Technically, we have twice more edges than nodes, so some technical changes are needed.)
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The notion of sparse set can be used in the analysis of tilings that are robust to errors:
the results of [1] can be expressed in terms of sparse error sets.

8. Questions

There are some open (as far as we know) questions related to the topic of this paper.
1. Is it possible to replace in the criterion of sparseness the measure of the union of the

monotone cylinders by the sum of their measures?
2. One would expect there exists some criterion of p-sparseness in terms of complexity

or randomness deficiency. How to define “sparseness deficiency”? One possibility is to take
minimum of randomness deficiency (with respect to p-Bernoulli distribution) over all strings
obtained from a given one by 0 → 1 replacement. Another natural option is to consider
lower semicomputable deficiency functions dn(x) defined on n-bit strings (uniformly in n)
that are monotone (i.e., replacement 0 → 1 may only increase the deficiency) such that
2dn(x) has average at most 1 (over all n-bit strings).

Are these two definitions connected? close to each other? Can any of them be used to
characterize p-sparse sets?

3. Can one get rid of the computability condition in the statement of Theorem 5.2?
4. What can be said about two computable measures P and Q if every P -random

sequence can be made Q-random by replacing some zeros with ones? We cannot expect
P � Q since this may be not the case even for equivalent measures P and Q (that have the
same set of random sequences), but can we claim something weaker in this direction (e.g.,
P is equivalent to P ′ � Q or something like this)?

5. What can be said about sets that are p-sparse for every p > 0? Can we eliminate
the universal quantifier (“for every p”) in the definition?
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Abstract. In this paper we emphasize the links between model theory and tilings. More
precisely, after giving the definitions of what tilings are, we give a natural way to have
an interpretation of the tiling rules in first order logics. This opens the way to map some
model theoretical properties onto some properties of sets of tilings, or tilings themselves.

1. Introduction

Tilings are a basic and intuitive way to express geometrical constraints; they happened
to be of broad interest in computer science since Berger proved the undecidability of the
domino problem [2] by showing that they can embed, despite being static objects, some kind
of computation. This also was the first step in the links between logics and tilings as they
helped to prove the undecidability of some classes for formulae [5, 14, 12, 13]. Some more
links have then been discovered by Makowsky that used previous constructions of aperiodic
tilesets to show the existence of a complete, finetely axiomatizable and superstable theory
[9]. Some recent results by Oger generalize this approach to more abstract definitions
of tilings and proves some nice equivalences between model theory and this generalized
definition [10].

In this paper we will give details of constructions used to translate tilings and tileset
properties into model theoretic ones. Section 2 will be devoted to the proper definitions
of tilings and tilesets; We will then translate these definitions into first order formulae in
Section 3. Finally in Section 4 we shall present the equivalence results that can be obtained
by this translation.

Most of these results are already present in [9, 11]. However we hope that this paper
will offer a new look at these results.

The major part of this paper is devoted to tilings of the plane Z2. However, we may
define similar theories for tilings of other spaces such as Z3 or any Cayley graph. The article
[10] in particular deals with tilings of Rn by polytopes.

c
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2. Tilings

Several definitions of discrete tilings can be found in the litterature, but are equivalent
for many purposes [3]. We will focus here on the definition by forbidden patterns.

First we have to define the space we are going to tile: we want to assign a state taken
in a finite set Q to each cell of the discrete plane Z2. Q may be seen as a set of colors, or a
set of states. Therefore, we define the set of configurations as the functions from Z2 to Q:

Definition 2.1. The set of configurations is QZ2
.

The patterns are nothing but a configuration restricted to a finite domain; that is,
considering a finite subset D of Z2, a pattern is a function from D to Q.

Definition 2.2. A pattern defined on a finite subset D of Z2 is an element of QD.

Informally a tileset represents geometric constraints imposed to the configurations, that
is how the states in the cells of the plane are constrained by their neighborhood and how
they constrain it. Formally we will define a valid tiling as a configuration that contain no
forbidden pattern:

Definition 2.3. A tileset is defined by a finite set of forbidden patterns Fτ .
A configuration c contains a pattern P defined on D (or equivalently P appears in c)

if there exists x ∈ Z2 such that:

∀y ∈ D, c(x+ y) = P (y)

A configuration is said to be a valid tiling by τ if it contains no pattern in Fτ .

The so-called domino problem [2] is to know given a tileset whether it generates a valid
tiling. The problem has been proven undecidable by Berger in [2].

We will now define a preorder � on configurations that focuses on patterns contained
in them. This preorder has been defined in [4, 1], however references to the concept can be
found as early as [11]:

Definition 2.4 (The pre-order �). Let x, y be two configurations, we say that x � y if any
pattern that appears in x also appears in y.

This induces the notion of local isomorphism between two configurations:

Definition 2.5 (Local isomorphism). Two configurations x and y are said to be locally
isomorphic if x � y and y � x. That is x and y contain the same patterns. We denote it
by x ≈ y.

Two configurations that are equal up to shift are locally isomorphic but the converse
is not always true: there exists configurations that are locally isomorphic but one is not a
shifted form of the other.
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x

E(x)

N(x)

Figure 1: The model we would like to obtain

3. From tilesets to model theory

In this section we translate the definitions given in Section 2 into first order formulae
on some given language. This translation maps some properties of tilings onto some other
properties of first order logics.

Such a correspondence between tilesets and first order logic has already been defined
[11, 9] to show an example of finitely axiomatizable and superstable theory. A similar
approach (see 3.4) has been used to prove the undecidability of certain classes of formulae
[13, 14, 12, 5].

3.1. Axiomatizing the plane

The ideal model we would like to obtain is the plane Z2 like depicted in Figure 1. The
natural way to define cells on the plane Z2 is to consider them as variables and the adjacency
relations between them as functions that allow us to move north, south, east or west from
a given cell:

Definition 3.1. We consider the language with the unary functions for movements on the
plane: L0 is a set of unary functions : L0 = {N,S,E,W}.

And the corresponding axioms of the plane Z2:
• ∀x,N(S(x)) = S(N(x)) = E(W (x)) = W (E(x)) = x
• ∀x,N(E(x)) = E(N(x))

These formulae tends to axiomatize Z2 as a Cayley graph with two generators, the first
formula axiomatizing the invertibility of the movements and the second the commutativity.
However, these axioms are not sufficient, as we will see in the following sections.
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x

E(x)

N(x)

Figure 2: A cylindric model

3.1.1. Non standard models. With the axioms of the plane from the previous sections it is
still possible to obtain some weird models. First, they also axiomatize some finite models
like Z/nZ× Z/mZ, or some cylindric models like Z/nZ× Z (like e.g., in Figure 2).

This problem can be dealt with by adding more axioms : For any i and j we may
add the axiom ∀x,EiN j(x) 6= x. The main problem is then that the number of axioms is
not finite, so that (we can prove that) the theory we obtain is not finitely axiomatisable
anymore. However in most cases, the presence of these models is not a problem as we can
“unfold” them into a plane (see e.g proof of lemma 4.2).

3.1.2. Connectedness. The main problem however, which cannot be avoided, is that there
is no way to ensure that all models of our theory are connected : A model is said to be
connected if any two points can be connected using the N,S,E,W functions. An example
of a disconnected model of our theory is depicted on Figure 3. These disconnected models
cannot be avoided. This is e.g., a consequence of the Löwenheim-Skolem theorem (There
exist models of our theory of arbitrary infinite cardinals, these models cannot be connected
if they are not countable) or more simply can be proven by a simple compactness argument:
Consider a theory T that axiomatises the plane Z2. Add two constants c, d and the formulae
φn that express that the points c and d are at distance at least n. Consider the theory
T ′ = T ∪ {φn | n ∈ N}. Any arbitary finite part of T ′ admits Z2 as a model (choose two
points c and d arbitrary far) so that T ′ itself has a model by compactness. Such a model
cannot be connected.

This proof also hints to a way to partially solve the problem. Consider formulae φn(x, y)
that express that the points x and y are at distance at most n. Now consider the collection
p(x, y) = {φn(x, y), n ∈ N}. p(x, y) is a type, that is we can find for every finite part q(x, y)
of p(x, y) some points c and d in any model so that q(c, d) is true. Now we are interested
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x

Figure 3: An example of disconnected model

in those models where p is not satisfied, that is in models where there do not exists c and
d such that p(c, d) is true. We say that such a model omits p

A part of model theory is devoted to the study of models omitting types. As an example,
the omitting type theorem states that given a theory T any reasonable type can be omitted.
However, most of the classical results in model theory will not work in this context, as e.g.
the compactness theorem.

3.2. Encoding configurations

Now that we have some kind of axioms for the plane Z2, we may define what a con-
figuration is. We defined a configuration as an application from Z2 to a finite set of states
Q. We can code the states of the cells in our theory by unary predicates : we take one
predicate Qi for each state. The only thing we need to ensure is that each cell has exactly
one state:

Definition 3.2. New language:

LQ = L0 ∪ {Q1, . . . , Qn}
New axioms:

A : ∀x,
∨
i

Qi(x)

B : ∀x,
∧
j 6=i

(Qi(x)⇒ ¬Qj(x))

We can also reduce the number of predicates by coding the states in binary form: for
example, with 4 predicates, we can code up to 16 states.

3.3. The theory of a tileset

Following our definitions of tilesets in Section 2, all what we need to do in order to
encode them in first order logic is to write formulae that express ”some specific pattern
never appears”. It can be done in the following way : Given a pattern P of domain D,
any point p in D can be represented by a function that is a composition of the functions
N,S,E,W . We can then write formulae that express that P appears at a point x:

Definition 3.3. A formula to express that a pattern P defined on D appears at point x
ϕP (x) :=

∧
(i,j)∈D P (i, j)(Ei(N j(x)))
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As an example, the formula ϕ = Q1(E(x)) ∧ Q2(x) expresses that x is of color 2 and
its east neighbour is of color 1.

Then the formula ∀x,¬ϕP (x) axiomatizes that P never appears.

Definition 3.4. The theory Tτ of a tileset τ is the theory over the langage LQ that contains
all previous formulae and the formula ∀x,¬ϕP (x) for each forbidden pattern P . If the set
of forbidden pattern Fτ is finite, this theory is finitely axiomatisable.

3.4. Other languages

Before proceeding to the results, we give in this section various other languages in which
to express tilings.

Another way to represent tilings is with a single unary function s (that intuitively
denotes the successor of an integer) and with binary predicates Pi. Pi(x, y) means that the
state in the cell (x, y) is i. A structure is then over Z rather than Z2.

It is easy to represent forbidden patterns in this language. As an example, the formula
φ = ∀x, y,¬ (P1(x, y) ∧ P2(s(x), y)) means that there cannot be a cell in state 1 at the left
of a cell in state 2.

Now suppose that the set of forbidden patterns has some particular form, that is
constraints only concern adjacent cells. We now have a set of horizontal constraints H
((i, j) ∈ H if a cell in state i cannot be at the left of a cell in state j) and vertical con-
straints V .

Now, the constraints can be written in the following way:

φ = ∀x∀y
∧

(i,j)∈H
(Pi(x, y)⇒ ¬Pj(s(x), y)) ∧

∧
(i,j)∈V

(Pi(x, y)⇒ ¬Pj(x, s(y))

This can be rewritten (by a slight change of variables in the second part of the formula):

∀x∀y
∧

(i,j)∈H
(Pi(x, y)⇒ ¬Pj(s(x), y)) ∧

∧
(i,j)∈V

(Pi(y, x)⇒ ¬Pj(y, s(x))

Now by a straightforward application of the skolemization process, we can replace the
function s by a quantifier :

∀x∃x′∀y
∧

(i,j)∈H
(Pi(x, y)⇒ ¬Pj(x′, y)) ∧

∧
(i,j)∈V

(Pi(y, x)⇒ ¬Pj(y, x′)

We then obtain a new formula φ such that φ has a model if and only if there exists a
tiling of the plane by the tileset. The proof proceeds as in lemma 4.2 below. Note that the
unfolding gives us only a tiling of a quarter of the plane. But it is known that a tileset can
tile the entire plane if and only if it can tile a quarter of the plane.

The new formula φ is a formula with only three quantifiers ∀∃∀ and which contains only
binary predicates. Thus we actually have proven that the class of formulae [∀∃∀, (0, ω)] is
undecidable. This is the core of the works by Wang, Kahr, Büchi about decidability of
class of formulae. We then can deduce by an intricate transformation that the Kahr class
[∀∃∀, (ω, 1)] (one binary predicate, a finite number of unary predicates) is also undecidable.

See [14, 12, 13] for more details. The encoding also has another property : The formula
φ has a finite model if and only if there exists a periodic tiling of the plane by the tileset.
This actually proves that the class [∀∃∀, (0, ω)] is a conservative reduction class. See [5] for
more details.
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4. Translating tilesets and tilings properties in model theoretical ones

We now show the links between those two different approaches.

Lemma 4.1. A configuration can be seen as a structure over LQ. A tiling by τ can be seen
as a model of Tτ .

This lemma is a consequence of the definitions we have taken, any configuration is a
structure over LQ and the construction of Tτ was done in order to forbid patterns that are
forbidden by τ , thus a tiling by τ is a model of Tτ .

Lemma 4.2. Tτ is consistent if and only if τ can tile the plane.

Proof. It is obvious (by lemma 4.1) that if τ can tile the plane, then Tτ is consistent: A tiling
provides a model of Tτ .

Now suppose that Tτ has a model M . We will “unfold” M starting from a point
x in it by applying the functions N,S,E,W that will give us any point in Z2. We can
define a configuration c, such that c(0, 0) has the “state” of x, and c(i, j) has the “state” of
Ei(N j((x))). This configuration is a tiling : As M is a model of Tτ , no forbidden pattern
can appear. Therefore, from any model of Tτ , we can obtain a tiling of the plane by τ ,
which finishes the proof.

Remark 4.3. Tτ has a model if and only if Tτ has an infinite model.

We can force all models to be infinite by adding (infinitely many) axioms that will
ensure this property. The theory may however not be finitely axiomatisable anymore.

Note however that if a tileset does not admit any periodic tiling, no finite models can
appear. Moreover, if a tileset does not admit any tiling with at least one direction of
periodicity, then all models are only union of copies of Z2. That is, no degenerate torus or
cylinder may appear.

Lemma 4.4. Tτ has a finite model if and only if τ can tile periodically the plane.

Proof. Consider a periodic tiling of period p, we “fold” it into Z/pZ × Z/pZ and obtain a
model of Tτ since the cell at position (x+ p, y) will have the same state as the one at (x, y)
or (x, y + p).

If we have a finite model, we unfold it the same way as in Lemma 4.2. It is easy to see
that we obtain this way a periodic tiling.

Most of these results can be generalized to tilings of R2 using “patches” as tiles and we
still get the same translation from tileset and tilings into model theory [10].

4.1. Isomorphism

One of the first properties of models of a given theory one has to study is the iso-
morphism of models. The translation of this property as properties of tilings is quite
straightforward:

Lemma 4.5. Two configurations are equal up to shift if and only if they are isomorphic as
structures on the language LQ.
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Proof. ⇒ : Let x, y be two configurations equal up to shift and σ be a shift of vector (i, j)
such that x = σ(y). Then σ is an isomorphism from x to y.
⇐ : Let Θ be the isomorphism and a and b two points of x and y such that Θ(a) = b.

Then EiN j(a) has the same state as EiN j(b), as the predicate Pq(EiN j(x)) has the same
value in a and b since Θ is an isomorphism.

4.2. Elementary equivalence

Another model theoretic property that translates to tilings is the elementary equiva-
lence. We recall that two structures are elementary equivalent if and only if they satisfy
the same formulae (that is have the same theory)

Lemma 4.6 ([11, 10]). Two configurations x and y are locally isomorphic if and only if
they are elementary equivalent as structures over LQ.

Proof. We will consider for the proof x and y as structures over the language without func-
tions, i.e., we replace in LQ the functions N,S,E,W by functional predicates N ′, S′, E′,W ′,
that is N ′(x, y)⇔ N(x) = y.
⇐ : One can express the apparition of the pattern M by a first order formula like in

Definition 3.3: ∃x, ϕM (x). Therefore, as any formula valid in one structure is valid in the
other one, any pattern that appears in one tiling appears in the other one. This proves that
if the structures are elementary equivalent then the tilings are locally isomorphic.
⇒ : This proof is rather technical and is given in [10] using Hanf locality lemma

[6](lemma 2.3). Hanf locality lemma states that for two structures, if the spheres (using
the relational distance) all contain finitely many points (what is always true in our case),
and if both stuctures have either the same finite number of different spheres or both have
an infinite number, then the two structures are elementary equivalent. Hanf locality lemma
can be proved using a back and forth method, or an Ehrenfeucht-Fräıssé game.

In our case, the spheres represent the patterns: Consider a point x and all the points
at relational distance at most n, since our language contains only binary predicates and
that they represent the functions N,S,E,W , the relational distance is nothing but the L1

distance (or Manhattan distance or also Taxicab Metric) on Z2. Therefore the sphere at
point x of radius n is the pattern defined on B1(x, n).

Both configurations x and y have the same patterns thus if a pattern appears only a
finite number of times in x, it appears the same number of times in both configurations.
As a consequence, Hanf lemma applies: x and y, having the same patterns, have the same
theory.

This theorem allows us to get an equivalence between the completeness of Tτ and a
property of the tileset τ :

Theorem 4.7. A tileset τ can produce only one tiling up to local isomorphism if and only
if T∞τ = Tτ ∪ {∀x,En(Nm(x)) 6= x|m,n ∈ Z} is complete.

Note that the additional axioms ensure that no model of Tτ is skewed, that is all models
of Tτ are based on Z2 or disconnected copies of Z2.

There is no need indeed for these additional axioms if we can ensure that the only
(up to local isomorphism) tiling by τ is actually strictly aperiodic (that is has no vector of
periodicity)
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Proof. Before going on the proof of Theorem 4.7, we first need an extra lemma on tilings:

Lemma 4.8. If all the tilings produced by a tileset τ are locally isomorphic then every
pattern that appears in a tiling appears infinitely many times in it.

Proof. Consider a tiling x and suppose that there exists a pattern that appears only finitely
many times. By compactness, we can extract a tiling that does not contain this pattern
since we can have arbitrary large patterns that do not overlap with it. The extracted tiling
that does not contain this pattern will thus not have the same patterns as x.

⇒: We prove that any two models of T∞τ are elementary equivalent. This is already
true for models that are tilings (Lemma 4.6) but we still have to prove it for arbitrary
models. Consider two models M and M ′ of T∞τ , they are made of disconnected copies of
tilings; all patterns that appear in a tiling appear infinitely many times therefore all the
spheres that appear in M or M ′ appear infinitely many times. Thus the hypothesis of Hanf
locality lemma hold, so M ≡M ′. Therefore T∞τ is complete.
⇐: If T∞τ is complete, for any pattern M , the formula ∃x, ϕM (x) is either valid in any

model or false in any model, therefore any two tilings contain exactly the same patterns,
thus τ can produce only one tiling up to local isomorphism.

Corollary 4.9. If a tileset τ can produce only one tiling up to local isomorphism then the
appeareance of any pattern is a decidable problem.

This is a corollary of Theorem 4.7 that we express here without any model theoretic
language: τ can produce only one tiling up to local isomorphism thus T∞τ is complete.
Given a pattern M , one can enumerate the valid proofs in T∞τ and stop when either a
proof of ∃x, ϕM (x) or of ¬∃x, ϕM (x) is found; and such a proof will be found since T∞τ is
complete.

4.2.1. On compactness. With all those results one could try to prove some results about
tilings in an elegant and short way using model theoretic arguments. Take for example the
fact that any tileset that produces only periodic tilings can produce only finitely many of
them [1]. This can be reformulated as ”if a tileset can produce tilings with arbitrarily large
periods then it can produce one that is not periodic”. It is easy to write a formula φn that
expresses that there is a tiling with no period lower than n. If a tileset can produce tilings
with arbitrarily large periods then it has a model verifying any finite set of such formulae,
thus by compactness it has a model that verifies all these formulae, e.g., it has a model that
has no period. However, we can not conclude that the tileset can produce a tiling with no
period. Indeed this model we obtain by compactness will certainly consist of a copy of each
periodic tiling : As we have tilings of arbitrary large period, there is no common period for
all these tilings, so that our model indeed does not have a period.

We would like to be able to use the compactness theorem of the first order logic but
within the domain of connected models. However as said earlier, many classical theorems
of first order logic will not hold. See [7] for some possible solutions.

4.3. Applying the results to model theory

A finitely axiomatizable, complete and superstable theory has been exhibited with these
methods of translating tilesets into first order theories. This has historically been done by
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Makowsky [9] to prove that these three properties of theories are not incompatible and then
explained in a more detailed way by Poizat [11].

The idea is quite simple: take τ an aperiodic tileset that produces only one tiling up to
local isomorphism; for example the one used by Berger to prove the undecidability of the
domino problem [2]. Transform it in a first order theory as explained in Section 3 to obtain
a finitely axiomatized theory Tτ . Since Berger proved that his tileset can not produce any
tiling with a vector of periodicity, Theorem 4.7 holds without any need to add more axioms
to ensure that the models are infinite by Lemma 4.4; therefore Tτ is complete and finitely
axiomatizable.

We can then prove that the theory is superstable. This definition has to do with how
many types there are in the theory, or more simply, with how many tilings we can produce.

It has been proven that this tileset can produce 2ℵ0 different tilings [4, 1], therefore
2ℵ0 countable models; Those models are not isomorphic because there is only a countable
number of shifts. Furthermore, there is no skewed models, so that all models of this theory
are then easy to give : they consists of some copies of these 2ℵ0 different tilings, that is we
have to say for each tiling how many times it appears. This shows that the theory is not
ω-stable, but superstable.

5. Conclusion

We have seen along this paper the tight links between tilings and logic, especially
between tilings properties and model theoretical properties of their interpretation. Tilings
have then provided interesting examples of theories [11] as well as a good framework in
which to study properties of classes of formulaes[5]

Some links still remain unexplored and might lead to interesting results. As an exemple,
the Cantor-Bendixson rank [8] introduced in [1] has been motivated by the study of a notion
of rank for finitely generated structures of universal theories in [7].
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Abstract. We continue the study of cellular automata (CA) directional dynamics, i.e.
the behavior of the joint action of CA and shift maps. This notion has been investigated
for general CA in the case of expansive dynamics by Boyle and by Sablik for sensitivity
and equicontinuity. In this paper we give a detailed classification for the class of additive
CA providing non-trivial examples for some classes of Sablik’s classification. Moreover, we
extend the directional dynamics studies by considering also factor languages and attractors.

1. Introduction

Cellular automata (CA) are simple formal models for complex systems. They have
been widely studied in a number of disciplines (Computer Science, Physics, Mathematics,
Biology, Chemistry, etc.) with different purposes (simulation of natural phenomena, pseudo-
random number generation, image processing, analysis of universal model of computations,
quasi-crystals, etc.). For an extensive and up-to-date bibliography, for example, see [13, 8,
17, 21, 31, 11, 23].

The huge variety of distinct dynamical behaviors is one of the main features which deter-
mined the success of CA in applications. Paradoxically, the formal (decidable) classification
of such behaviors is still a major open problem in CA theory. Indeed, many classifications
have been introduced over the years but none of them is decidable [14, 9, 5, 19, 16, 12, 22].

This work has been supported by the Interlink/MIUR project “Cellular Automata: Topological Prop-
erties, Chaos and Associated Formal Languages”, by the ANR Blanc “Projet Sycomore” and by the
PRIN/MIUR project “Formal Languages and Automata: Mathematical and Applicative Aspects”.
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Inspired by [28, 4], M. Sablik proposed to refine Kůrka’s equicontinuity classification
along “directions” different from the standard time arrow [32]. The idea is to see how
“robust” a given topological behavior is when changing the way by which time samples
are taken into account. In other words, Sablik studies the space-time structure of CA
evolutions by classifying the dynamics of σk ◦ F h, where σ is the shift map and F is the
global rule of a CA (k ∈ Z, h ∈ N+, see Section 2 for the definitions). Sablik’s work is
concerned particularly with directions of equicontinuity and (left/right) expansivity: he
provides a directional dynamics classification of CA according to such properties. Despite
his classification sheds new light about the complexity of CA behavior, most of his classes
are still not well understood. Moreover, it is actually unknown whether his classification is
(at least partially) decidable or not.

Additive CA (ACA) are the subclass of CA whose local rule is defined by an additive
function. Despite their simplicity that makes it possible a detailed algebraic analysis, ACA
exhibit many of the complex features of general CA. Several important properties of ACA
have been studied during the last twenty years and in some cases exact characterizations
have been obtained [15, 33, 27, 26, 7, 6].

In this paper we use ACA to further illustrate the work of Sablik and we extend the di-
rectional dynamics picture by further introducing attractors and factor languages directions.
We provide a very detailed directional dynamics classification of ACA and we compare our
classes with Sablik’s ones. Moreover, we show that our classification is completely decidable.

The paper is organized as follows. Sections 2 to 4 are devoted to the basic background
on the subject of CA and ACA. In Section 5, we consider factor languages directions, in
particular we show that all ACA are regular. In Section 6 we consider attractor directions.
In Section 7 we provide a directional dynamics classification of ACA and compare our classes
with Sablik’s ones. In Section 8, we draw some conclusions and provide arguments for the
decidability of our classification.

For lack of space, proofs are put in the Appendix.

2. Cellular automata

A CA consists in an infinite set of finite automata distributed over a regular lattice L.
All finite automata are identical. Each automaton assumes a state, chosen from a finite
set A, called the set of states or the alphabet. A configuration is a snapshot of all the
states of the automata i.e. a function from L to A. In the present paper, we consider one
dimensional CA in which L = Z. A local rule updates the state of each automaton on the
basis of its current state and the ones of a fixed set of neighboring automata individuated by
the neighborhood frame N = {m,m+ 1, . . . , a}, where m, a ∈ Z, with m ≤ a. The integers
m, a and r = max{|m|, |a|} are called the memory, the anticipation and the radius of the
CA, respectively. Formally, the local rule is a function f : Aa−m+1 → A. All automata in
the lattice are updated synchronously. In other words, the local rule f induces a global rule
F : AZ → AZ describing the evolution of the whole system from time t to t+ 1:

∀c ∈ AZ,∀i ∈ Z, F (c)i = f(ci+m, . . . , ci+a) . (2.1)

We say that a CA is one-sided if either m ≥ 0 or a ≤ 0. The shift map σ : AZ → AZ,
defined as ∀c ∈ AZ, ∀i ∈ Z, σ(c)i = ci+1 is one of the simplest examples of CA (it is induced
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by the local rule f : A2 → A defined as ∀x0, x1 ∈ A, f(x0, x1) = x1 with memory m = 0
and anticipation a = 1).

In this work we restrict our attention to the class of additive CA, i.e., CA based on an
additive local rule defined over the ring Zs = {0, 1, . . . , s−1}. A function f : Za−m+1

s → Zs
is said to be additive if there exist λm, . . . , λa ∈ Zs such that it can be expressed as:

∀(xm, . . . , xa) ∈ Za−m+1
s , f(xm, . . . , xa) =

 a∑
j=m

λjxj


s

where [x]s is the integer x taken modulo s. A CA is additive if its local rule is additive. In
this case, Equation (2.1) becomes

∀c ∈ ZZ
s , ∀i ∈ Z, F (c)i =

 a∑
j=m

λjci+j


s

.

A rule f : Aa−m+1 → A is permutive in the position i if ∀bm, bm+1, ..., bi−1, bi+1, .., ba ∈
A,∀b ∈ A,∃!bi ∈ A, f(bm, ..., bi−1, bi, bi+1, ..., ba) = b. The local rule of an ACA is permutive
in the position i iff gcd(s, λi) = 1.

Finally, remark that if (ZZ
s , F ) is additive, then for all k ∈ Z, h ∈ N+ the automaton

(ZZ
s , σ

k ◦ F h) is also additive.

3. Dynamical properties of topological dynamical systems and CA

A topological dynamical system is a pair (X, g) where X is a compact topological
space and g is a continuous mapping from X to itself. When A is equipped with the
discrete topology and AZ with the induced product topology, for any CA F , the pair
(AZ, F ) is a topological dynamical system. The study of the dynamical behavior of CA is
interesting and captured the attention of researchers in the last decades. We now illustrate
several properties which are widely recognized as fundamental in the characterization of the
behavior of dynamical system.

Dynamical and set theoretical properties for topological dynamical systems.
Let (X, g) be a topological dynamical system. It is injective (resp., surjective, open) iff g is
injective (resp., surjective, open). It is sensitive to the initial conditions (or simply sensitive)
if ∃ε > 0 such that ∀x ∈ X,∀δ > 0,∃y ∈ X such that d(y, x) < δ and d(gn(y), gn(x)) > ε for
some n ∈ N. It is positively expansive if ∃ε > 0 such that ∀x, y ∈ X,x 6= y, d(gn(y), gn(x)) ≥
ε for some n ∈ N. If X is a perfect set, any positively expansive dynamical system is also
sensitive. When g is a homeomorphism it cannot be positively expansive. In this case the
notion of expansivity can be considered. It is obtained by replacing n ∈ N with n ∈ Z in
the definition of positive expansivity. Both sensitivity and expansivity are referred to as
elements of unstability for the system. We now recall two notions which represent conditions
of stability for topological dynamical systems. An element x ∈ X is an equicontinuity point
for g if ∀ε > 0, ∃, δ > 0 such that ∀y ∈ X, d(y, x) < δ implies that ∀n ∈ N, d(gn(y), gn(x)) <
ε. The dynamical systems (X, g) is said to be equicontinuous iff every point in X is an
equicontinuity point. It is almost equicontinuous if the set of equicontinuity points is residual
(i.e., it can be obtained by an infinite intersection of dense open subsets).

The system (X, g) is (topologically) transitive if for any pair of non-empty open sets
U, V ⊆ X,∃n ∈ N such that gn(U) ∩ V 6= ∅. It is (topologically) mixing if for any pair
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of non-empty open sets U, V ⊆ AZ,∃n ∈ N such that ∀t ≥ n, gt(U) ∩ V 6= ∅. Trivially, a
mixing dynamical system is transitive.

A morphism between two dynamical systems (X, g) and (Y, h) is a continuous map
φ : X → Y such that h ◦ φ = φ ◦ g. If φ is surjective, (Y, h) is a factor of (X, g). If φ is a
homeomorphism, the two systems are said to be (topologically) conjugated. The conjugacy
preserves most of the properties seen so far. In the sequel we recall some notions useful
to understand the long term behavior of dynamical systems. For a given (X, g), a subset
V ⊆ X is said to be invariant if g(V ) ⊆ V .The omega limit of a closed invariant subset
V ⊆ X is defined as

ω(V ) = ∩n>0∪m>ngm(V )
The limit set of (X, g) is ω(X). A dynamical system is called stable if it reaches its limit set
in a fine amount of time, i.e., if there exists some n > 0 such that ∀m > n, gm(X) = gn(X).
A set Y ⊆ X is an attractor if there exists a nonempty open set V such that F (V ) ⊆ V
and Y = ω(V ). In totally disconnected spaces, attractors are omega limit sets of clopen
invariant sets. A set Y ⊆ X is a minimal attractor if it is an attractor and no proper subset
of Y is an attractor. A quasi-attractor is a countable intersection of attractors which is not
an attractor.

Topology on CA configurations and related properties. In order to study the
dynamical properties of CA, AZ is usually equipped with the Cantor metric d defined as

∀c, c′ ∈ AZ, d(c, c′) = 2−n, where n = min
{
i ≥ 0 : ci 6= c′i or c−i 6= c′−i

}
.

The topology induced by d coincides with the product topology defined above. In this case,
AZ is a Cantor space, i.e., it is compact, perfect and totally disconnected.

For any configuration c ∈ AZ and any pair i, j ∈ Z, with i ≤ j, denote by c[i,j] the
word ci · · · cj ∈ Aj−i+1, i.e., the portion of the configuration c ∈ AZ inside the interval
[i, j] = {k ∈ Z : i ≤ k ≤ j}. A cylinder of block u ∈ Ak and position i ∈ Z is the set
Ci(u) = {c ∈ AZ : c[i,i+k−1] = u}. Cylinders are clopen (i.e. closed and open) sets w.r.t. the
Cantor metric.

In the case of CA, it is possible to study other forms of expansivity. For any n ∈ Z,
let c[n,∞) (resp., c(−∞,n]) denote the portion of a configuration c inside the infinite integer
interval [n,∞) (resp., (−∞, n]). A CA (AZ, F ) is right (resp., left) expansive if there exists
a constant ε > 0 such that for any pair of configurations c, c′ ∈ AZ with c[0,∞) 6= c′[0,∞)

(resp., c(−∞,0] 6= c′(−∞,0]) we have d(Fn(c), Fn(c′)) ≥ ε for some n ∈ N. Remark that a CA
is positively expansive iff it is both left and right expansive. A simple class of left (resp.,
right) expansive CA is the one of automata whose local rule is permutive in its leftmost
(resp., rightmost) position.

Subshifts and column subshifts. A subshift on the alphabet A is a pair (S, σ) where
S is a closed σ-invariant subset of the full shift AN (or AZ). From now on, for the sake of
simplicity, when it is clear from the context, we identify a subshift (S, σ) with the set S. For
w = w1 · · ·wn ∈ An and y ∈ AN, w ≺ y means that w is a proper factor of y ∈ AN, i.e., there
exists i ∈ N such that y[i,i+n−1] = w. Let F ⊆ A∗ and SF =

{
y ∈ AN : ∀w ≺ y, w /∈ F}.

SF is a subshift, and F is its set of forbidden patterns. A subshift S is said to be a subshift
of finite type (SFT) if S = SF for some finite set F . The language of a subshift S is
LS =

{
w ∈ A∗ : ∃y ∈ AN, w ≺ y}. A subshift is sofic if it is a factor of some SFT. We refer

to [24] for more on subshifts. Let S1 and S2 be two subshifts. A function ϕ : S1 → S2 is
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said to be a block map if it is continuous and σ-commuting, i.e., ϕ◦σ = σ ◦ϕ. In particular,
CA are block maps from the sushift AZ to itself. The column subshift of width k > 0 of a
given CA (AZ, F ), is the subshift (Σk(F ), σ) on the B = Ak where

Σk(F ) =
{
y ∈ BN : ∃c ∈ AZ, ∀i ∈ N, yi = F i(c)[1,k]

}
.

Remark that, for a given CA F , the set Σk(F ) does not change when replacing the interval
[1, k] involved in the previous definition with any other interval of width k . A language
L ⊆ A∗ is bounded periodic if there exist two integers l ≥ 0 and n > 0 such that for every
u ∈ L and i ≥ l we have ui = ui+n. A CA is said to be bounded periodic (resp., regular)
if for any k > 0 the the language of the column subshift (Σk(F ), σ) is bounded periodic
(resp., regular).

Directional dynamics of CA. The directional dynamics of CA concerns the study
of the joint action of CA with the shift map. More precisely, for a given CA F and for any
rational k/h ∈ Q, the focus is the dynamical behavior of the CA σkF h. A CA F is said to
be equicontinuous (resp., almost equicontinuous, resp. left expansive, resp., right expansive,
resp., positively expansive, resp., expansive) along the direction k/h, k ∈ Z, h ∈ N+, if the
CA σkF h is equicontinuous (resp., almost equicontinuous, resp. left expansive, resp., right
expansive, resp., positively expansive, resp., expansive). Note that all the above properties
are preserved along directions, i.e., if σkF h has property P then ∀n > 0, (σkF h)n has
property P.

3.1. Classifications of CA

This section reviews three important classifications of CA based on the complexity of
their column subshift languages, the degree of stability/unstability of their behavior, and
the existence of attractors, respectively. All these classifications have been defined and
compared in [19].

Theorem 3.1. [19] Every CA (AZ, F ) falls exactly in one of the following classes:
L1 (AZ, F ) is bounded periodic.
L2 (AZ, F ) is regular not bounded periodic.
L3 (AZ, F ) is not regular.

Theorem 3.2. [19] Every CA (AZ, F ) falls exactly in one of the following classes:
E1 (AZ, F ) is equicontinuous;
E2 (AZ, F ) is almost equicontinuous but not equicontinuous;
E3 (AZ, F ) is sensitive but not positively expansive;
E4 (AZ, F ) is positively expansive.

Factor languages of equicontinuous and positively expansive CA have been studied in
deep. Here we just recall some results that will be useful later.

Theorem 3.3. [19] L1 = E1.

Theorem 3.4. [19, 29] Let (AZ, F ) be a positively expansive CA with memory and antici-
pation m < 0 < a. Then, it is conjugated to (Σa−m+1(F ), σ) which is a mixing SFT.

In particular, Nasu proved that (Σa−m+1(F ), σ) is conjugated to a full shift [29].
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Theorem 3.5. [3] Let (AN, F ) be a positively expansive CA with anticipation a > 0. Then,
it is conjugated to (Σa(F ), σ) which is a mixing SFT.

Theorem 3.6. [19] Every CA (AZ, F ) falls exactly in one of the following classes.
A1 There exist two disjoint attractors.
A2 There exists a unique minimal quasi-attractor.
A3 There exists a unique minimal attractor different from ω(AZ).
A4 There exists a unique attractor ω(AZ) 6= AZ.
A5 There exists a unique attractor ω(AZ) = AZ.

We report some results concerning attractors of CA. They will be useful in the sequel.

Theorem 3.7. [20] An equicontinuous CA has either a pair of disjoint attractors or a
unique attractor which is a singleton.

If an equicontinuous CA is surjective then it must have two disjoint attractors. CA
with a unique attractor which is a singleton are called nilpotent.

Theorem 3.8. [19] A transitive CA has a unique attractor.

Theorem 3.9. [1] Let (AZ, F ) be a surjective CA with memory m and anticipation a. If
either m > 0 or a < 0, then F is mixing.

Since transitive CA are surjective and mixing CA are transitive (see [20], for example),
from Theorem 3.7 and Theorem 3.9 it follows that surjective CA with either memory m > 0
or anticipation a < 0 have a unique attractor.

A recent classification concerns the directional dynamics of a CA F . In order to illus-
trate it, we introduce the following notation.

Definition 3.10. The equicontinuous, almost equicontinuous, expansive and left-or-right
expansive direction sets of a CA (AZ, F ) are defined as follows

• EF = {k/h | k ∈ Z, h ∈ N+ : σkF h is equicontinuous}.
• AF = {k/h | k ∈ Z, h ∈ N+ : σkF h is almost equicontinuous}.
• X−F = {k/h | k ∈ Z, h ∈ N+ : σkF h is left expansive}.
• X+

F = {k/h | k ∈ Z, h ∈ N+ : σkF h is right expansive}.
• XF = {k/h | k ∈ Z, h ∈ N+ : σkF h is expansive}.

Note that the sets EF ,AF ,X
−
F and X+

F are convex (in Q or in R). Moreover, note that
the set of positively expansive directions is X+

F ∩ X−F .

Theorem 3.11. [32] Let (AZ, F ) be a CA with memory m and anticipation a.
• If |EF | > 1 then EF = Q and (AZ, F ) is nilpotent.
• If EF 6= ∅ and EF 6= Q then ∃!α ∈ [−a,−m],EF = {α} and X−F = (−∞, α),

X+
F = (α,∞). In particular, (AZ, F ) is injective.

Theorem 3.12. [32] Every (AZ, F ) CA with memory m and anticipation a falls exactly in
one of the following classes:

C1. EF = AF = Q and X−F = X+
F = ∅. This happens iff (AZ, F ) is nilpotent.

C2. There exists α ∈ [−a,−m], EF = AF = {α}. Moreover, if (AZ, F ) is surjective,
X−F = (−∞, α) and X+

F = (α,∞).
C3. There exists α ∈ [−a,−m], EF = ∅,AF = {α}.
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C4. There exist α1 < α2 such that (α1, α2) ⊆ AF ⊆ [α1, α2] ⊆ [−a,−m] and EF = X−F =
X+
F = ∅.

C5. X−F ∩ X+
F 6= ∅. This implies EF = AF = ∅.

C6. EF = AF = ∅ and X−F ∩ X+
F = ∅.

3.2. Main properties of ACA

The dynamical behavior of ACA has been extensively studied. We briefly report the
main results which characterize the most important dynamical and set theoretical properties
for ACA.

Theorem 3.13. [15, 25, 27, 7, 6] Let (ZZ
s , F ) be an ACA with local rule f(xm, . . . , xa) =[∑a

j=−m λjxj
]
s

and with s = pn1
1 · pn2

2 · ... · pnl
l where p1, .., pl are primes. Then,

• (ZZ
s , F ) is surjective iff gcd(s, λ−m, ..., λa) = 1

• (ZZ
s , F ) is injective iff ∀pi,∃!λj , pi - λj

• (ZZ
s , F ) is equicontinuous iff ∀pi, pi | gcd(λ−m, ..., λ−1, λ1, ..., λa)

• (ZZ
s , F ) is sensitive iff ∃pi, pi - gcd(λ−m, ..., λ−1, λ1, ..., λa)

• (ZZ
s , F ) is transitive iff it is mixing iff gcd(s, λ−m, ...λ−1, λ1, ..., λa) = 1

• (ZZ
s , F ) is pos. expansive iff gcd(s, λ−m, ..., λ−1) = gcd(s, λ1, ..., λa) = 1

• (ZZ
s , F ) is expansive iff gcd(s, λ−m, ..., λ−1, λ1, ..., λa) = 1

Remark that, as immediate consequence of Theorem 3.13, E2 = ∅ for ACA. Moreover,
all the characterizations are given in terms of coefficients of the local rule and hence they
are decidable.

In the sequel, we are going to recall two fundamental tools. The former states that any
ACA has a canonical decomposition into simple basic ACA. The latter tells us that in order
to study ACA one can focus on the surjective ones. This is possible since ACA are stable
and the class of possible dynamics on their limit sets is equivalent to the class of dynamics
of surjective ACA.

Theorem 3.14. [10] Consider an ACA (ZZ
pq, F ) with gcd(p, q) = 1. Then (ZZ

pq, F ) is
conjugated to the ACA (ZZ

p × ZZ
q , [F ]p × [F ]q).

On the basis of this theorem, if s = pn1
1 · · · pnl

l is the prime factor decomposition of s,
an ACA on Zs is conjugated to the product of ACA on Zpni

i
. So all the properties which

are preserved under product and under topological conjugacy are lifted from ACA on Zpk

to Zs.

Theorem 3.15. [26] Let (ZZ
s , F ) be an ACA. Then ∀h ≥ blog2 sc, F h(ZZ

s ) = F blog2 sc(ZZ
s ) =

ω(ZZ
s ). Moreover, (F h(ZZ

s ), F ) is conjugated to some surjective ACA (ZZ
s∗, F∗).

Remark that the conjugacy map involved in the proof of Theorem 3.15 preserves factor
languages complexities, i.e., for k > 0, the column factor of width k of (F h(ZZ

s ), F ) is a
SFT if and only if the column factor of width k of (ZZ

s∗, F∗) is SFT. This property will be
useful in the sequel.
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4. Surjective ACA

Thanks to Theorem 3.14 and Theorem 3.15, most of the properties of general ACA can
be deduced from undecomposable ACA, namely surjective ACA over Zpk for some prime
number p. In this section we restrict our attention to the class of surjective ACA and,
in particular, we classify the possible dynamics of undecomposable surjective ACA. The
results contained in this section will be useful later to understand the directional dynamics
of general ACA.

One useful property of undecomposable ACA is that there always exist powers of the un-
decomposable maps which are permutive in both their leftmost and rightmost positions.

Lemma 4.1. Let (ZZ
pk , F ) be a surjective ACA with p prime whose local rule has memory

m and anticipation a. Then there exists i ∈ [m, a] such that gcd(λi, p) = 1.

Lemma 4.2. [10] Let (ZZ
pk , F ) be a surjective ACA with p prime. Set

L = min{j : gcd(λj , p) = 1} and R = max{j : gcd(λj , p) = 1}.
Then there exists h ≥ 1 such that the local rule fh associated to F h has the form

fh(xhm, ..., xha) =
[
ΣhR
i=hLµixi

]
pk
with gcd(µhL, p) = gcd(µhR, p) = 1.

Recall that the condition gcd(µhL, p) = gcd(µhR, p) = 1 implies permutivity in hL and
hR. The following proposition characterizes the possible dynamics of undecomposable CA.

Proposition 4.3. Consider a surjective ACA (ZZ
pk , F ) with p prime. Then, exactly one of

the following cases occurs:
1. (ZZ

pk , F ) is equicontinuous.
2. (ZZ

pk , F ) is positively expansive.
3. (ZZ

pk , F ) is either left or right expansive.

Remark 4.4. By the same property used in the previous proof, one can show that right/left
expansive ACA on Zpni

i
are mixing.

The following theorem classifies the directional dynamics of undecomposable surjective
ACA: any undecomposable ACA either contains exactly one equicontinuous direction (and
it is injective) or contains a positively expansive direction (and it is not injective).

Theorem 4.5. Let (ZZ
pk , F ) be a surjective ACA with p prime. Then exactly one of the

following cases can occur
1. (ZZ

pk , F ) is injective. Then,

X−F ∩ X+
F = ∅, |EF | = 1 and XF = X−F ∪ X+

F = Q \ EF .
2. (ZZ

pk , F ) is not injective. Then,

X−F ∩ X+
F 6= ∅ and EF = XF = ∅.

Remark 4.6. Since the openness property is preserved in every direction and it is preserved
also under product, by Theorem 3.14 and Theorem 4.5 it follows that any surjective ACA
is open. For proofs of this property in a more general setting see, for example, [33] and [18].
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5. Directional dynamics of ACA according to regularity

In this section we show that all ACA are regular. This fact implies that the dynamics
of ACA is regular in all rational directions.

Theorem 5.1. [30] A subshift Σ ⊆ AN is a SFT if and only if σ : Σ→ Σ is open.

Lemma 5.2. Let Σ ⊆ AN be a subshift. Then the following conditions are equivalent:
1. (Σ, σ) is open
2. ∀n > 0, (Σ, σn) is open.
3. ∃n > 1 such that (Σ, σn) is open.

A proof of Lemma 5.2 in a more general setting can be found in [2].

Lemma 5.3. Let (ZZ
pn , F ) be a right (left) expansive ACA with p prime. Then for all

sufficiently large k, (Σk(F ), σ) is a SFT.

Note that the condition that for all sufficiently large k > 0,Σk(F ) is a SFT is sufficient
to conclude that (ZZ

pn , F ) is regular.

Theorem 5.4. Any ACA is regular.

Actually, since the conjugacy of Theorem 3.15, preserves factor languages, we can obtain
the following more strong property.

Corollary 5.5. Let (ZZ
s , F ) be an ACA. Then for all sufficiently large k > 0,Σk(F ) is a

SFT.

Question 1. Is there any ACA having a strictly sofic column factor Σk(F )?

6. Directional dynamics of ACA according to attractors

In this section we study the class of attractors of ACA according to rational directions.
In [26], Manzini and Margara show that any ACA can have either a unique attractor or a
pair of disjoint attractors. Here we show some properties of disjoint attractor directions of
ACA. We will need the two following results.

Lemma 6.1. Let (ZZ
s , F ) be a surjective ACA and let s = pn1

1 · pn2
2 · ... · pnl

l be the prime
factor decomposition of s. Then the following conditions are equivalent:

1. (ZZ
s , F ) has two disjoint attractors,

2. (ZZ
s , F ) is not mixing,

3. (ZZ
p

ni
i

, [F ]pni
i

) is equicontinuous for some pni
i .

We can easily characterize the class of attractors of ACA from the class of attractors
of surjective undecomposable ACA.

Theorem 6.2. [26] Any ACA has either a unique attractor or a pair of disjoint attractors.

We can now study the set of disjoint attractor directions of ACA.

Definition 6.3. Let (ZZ
s , F ) be an ACA. The disjoint attractors direction set of (ZZ

s , F ) is
DF = {k/h | k ∈ Z, h ∈ N+ : σkF h has two disjoint attractors}.
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The following proposition shows some properties of the set DF . In particular, we have
that DF is finite and that between two disjoint attractors directions α1, α2 ∈ DF there
cannot exist left/right expansive directions.

Proposition 6.4. Let (ZZ
s , F ) be an ACA with memory m and anticipation a. Then the

following conditions hold.
1. If |EF | > 1 then DF = ∅.
2. If EF = {α} then DF = {α}.
3. If |DF | > 1 then EF = ∅.
4. DF ⊂ [−a,−m] is finite.
5. If DF = {α1, ..., αn} then ∀αi ≤ αj , [αi, αj ] 6⊂ X−F ∪ X+

F .

To conclude we enumerate some classes of ACA for which DF is easy to characterize.

Corollary 6.5. Let (ZZ
s , F ) be an ACA.

• If (ZZ
s , F ) is nilpotent then DF = ∅.

• If (ZZ
s , F ) is equicontinuous and not nilpotent then DF = {0}.

• If (ZZ
s , F ) is positively expansive then DF = ∅.

• If (ZZ
s , F ) is expansive then DF 6= ∅

In the case of ACA, the presence of a direction with two disjoint attractors is tightly
linked to the presence of some form of equicontinuity. Indeed, such an ACA is either
equicontinuous (not nilpotent) or it is the product of an ACA having an equicontinuous
direction with some other ACA (see Lemma 6.1). It is not known if the same holds for
general CA.

7. Directional dynamics of ACA

In this section we classify the directional dynamics of ACA according to equicontinuous,
left/right expansive, expansive and disjoint attractor directions. We do not consider explic-
itly factor languages directions since, by Theorem 5.4, for ACA all language directions are
regular, and, by Theorem 3.3, directions which have bounded periodic languages coincide
exactly with equicontinuous directions. To have a more clear picture we introduce explicitly
the class of strictly sensitive nonexpansive directions.

Definition 7.1. The strictly sensitive direction sets of the ACA (ZZ
s , F ) is defined by

SF = Q \ (EF ∪ X−F ∪ X+
F ∪ XF ).

We consider separately the directional dynamics of non surjective, strictly surjective
and injective ACA. Note that, since there are no almost equicontinuous ACA, classes C3
and C4 of Theorem 3.12 are empty for ACA. By Theorem 4.5, it follows that surjective ACA
always have left and right expansive directions. In particular, it is not difficult to see that for
any surjective ACA of memory m and anticipation a it happens that (−∞,−a) ⊆ X−F and
(−m,∞) ⊆ X+

F . This implies that surjective ACA can only belong to classes C2,C5,C6.
In particular, injective ACA are contained in class C2 ∪ C6 and strictly surjective ACA
are contained in C5∪C6. Obviously, in the strictly surjective case there are not expansive
directions which arise uniquely in the injective case. For injective ACA it happens also that
DF 6= ∅ and that expansive directions are always the complement in Q of DF .

Theorem 7.2. Let (ZZ
s , F ) be an injective ACA with memory m and anticipation a. Then

XF = Q \DF . Moreover, exactly one of the following cases can occur:
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1. EF 6= ∅. Then DF = EF = {α} ⊂ [−a,−m], X+
F = (α,∞), X−F = (−∞, α).

2. EF = ∅. Then DF = {α1, .., αn} ⊂ [−a,−m], with α1 < .. < αn, n > 1 and
X−F = (−∞, α1),X+

F = (αn,∞).

Strictly surjective ACA trivially cannot contain equicontinuous directions but they can
have disjoint attractors directions.

Theorem 7.3. Let (ZZ
s , F ) be a surjective but non injective ACA with memory m and

anticipation a. Then EF = ∅. Moreover, exactly one of the following cases occurs.
1. DF = ∅ and X−F ∩X+

F = ∅. Then ∃α1, α2 ∈ [−a,−m], α1 < α2,X
−
F = (−∞, α1),

X+
F = (α2,∞), SF = [α1, α2].

2. DF = ∅ and X−F ∩X+
F 6= ∅. Then ∃α1, α2 ∈ [−a,−m], α2 ≤ α1, X−F = (−∞, α1),

X+
F = (α2,∞), SF = ∅.

3. DF 6= ∅. Then ∃ − a ≤ α1 ≤ β1 ≤ .. ≤ βn ≤ α2 ≤ −m,DF = {β1, .., βn},
X−F = (−∞, α1),X+

F = (α2,∞),SF = [α1, α2].

For any non surjective CA trivially X−F = X+
F = XF = ∅.

Theorem 7.4. Let (ZZ
s , F ) be a non surjective ACA. Then exactly one of the following

cases can occur.
1. EF = Q and DF = SF = ∅.
2. EF = DF = {α} ⊆ [−a,−m] and SF = Q \ {α}.
3. SF = Q,EF = ∅ (with either DF = ∅ or DF 6= ∅).
As requested by one of the referee, in the next theorem we summarise all our results

and we express them in terms of the coefficients of the local rule. We beg the reader pardon
for its unreadable form.

Theorem 7.5. Let (ZZ
s , F ) be an ACA with local rule f(xm, . . . , xa) =

[∑a
j=m λjxj

]
s

and

with s = pn1
1 · pn2

2 · ... · pnl
l where p1, .., pl are primes. Then,

1.1 (ZZ
s , F ) is in class 1. of Theorem 7.2 iff

∃!λj ,∀pi, pi - λj
1.2 (ZZ

s , F ) is in class 2. of Theorem 7.2 iff
∀pi,∃!λj , pi - λj and @!λj ,∀pi, pi - λj

2.1 (ZZ
s , F ) is in class 1. of Theorem 7.3 iff
∀pi,∃λj′ 6= λj′′ , pi - λj′ , pi - λj′′ and @k ∈ [m, a],∀pi,∃λj′ < k ≤ λj′′ , pi - λj′ , pi - λj′′

2.2 (ZZ
s , F ) is in class 2. of Theorem 7.3 iff

∃k ∈ [m, a], ∀pi, ∃λj′ < k ≤ λj′′ , pi - λj′ , pi - λj′′
2.3 (ZZ

s , F ) is in class 3. of Theorem 7.3 iff
∀pi,∃λj , pi - λj and ∃pi,∃!λj , pi - λj and ∃pi′ ,∃λj′ 6= λj′′ , pi′ - λj′ , pi′ - λj′′

3.1 (ZZ
s , F ) is in class 1. of Theorem 7.4 iff it is nilpotent iff

∀pi,∀λj , pi | λj
3.2 (ZZ

s , F ) is in class 2. of Theorem 7.4 iff
gcd(s, λm, ..., λa) 6= 1 and ∃pi,∃λj , pi - λj and
∃k ∈ [m, a], ∀pi, pi | gcd(λm, ..., λk−1, λk+1, ..., λa)

3.3 (ZZ
s , F ) is in class 3. of Theorem 7.4 iff



CLASSIFICATION OF DIRECTIONAL DYNAMICS FOR ACA 51

gcd(s, λm, ..., λa) 6= 1 and ∃pi, ∃λj , pi - λj and
@k ∈ [m, a],∀pi, pi | gcd(λm, ..., λk−1, λk+1, ..., λa)

8. Conclusions

In this paper we have completely characterized the directional dynamics of ACA, not
only w.r.t. equicontinuity or expansivity (as in the Sablik’s approach) but also w.r.t. attrac-
tors and factor languages. Figures 1 to 3 summarize all the possibles scenarios.

Looking at the pictures, one immediately sees that the algebraic nature of ACA has
greatly reduced the number and complexity of the possible dynamics. For example, we have
proved that the factor languages of any ACA are regular along any direction. Of course,
this is not true for the general case but it would be very interesting to investigate which is
the largest class of CA with such a property.

The directional classification proposed by Sablik [32] sheds some light on how informa-
tion propagates space-time diagrams of CA. For instance, there is no exchange of informa-
tion between zones delimited by two directions of equicontinuity (almost equicontinuity)
and the rest of phase space. In this paper, we showed that this is also the case for CA
having directions with two disjoint attractors (see Figure 2 right or Figure 3). Remark that
in the case of ACA, directions with two disjoint attractors are always tightly linked to the
presence of equicontinuity (see Lemma 6.1). We wonder if this happens also in the general
case where the situation is much more complicated, since one must take into account also
almost equicontinuity and other types of attractors.

Figure 1: Directional dynamics for injective ACA. Green area depicts expansive directions.
Lightblue line is a direction of equicontinuity. Magenta dotted lines are directions
presenting two disjoint attractors.

Figure 2: Directional dynamics for surjective ACA. Red (resp., blue) area depicts left (resp.,
right) expansive directions. Gold area indicates directions presenting sensitivity.
Red/blue checkered area gives the positively expansive directions. Magenta dot-
ted lines are directions presenting two disjoint attractors.
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Figure 3: Directional dynamics for non-surjective ACA. Lightblue (resp., gold) area in-
dicates equicontinuity (resp. sensitivity) directions. Magenta dotted lines are
directions presenting two disjoint attractors.

To conclude we remark that, from Theorem 7.5, it follows that our classification is
completely decidable.
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Departamento de Ingenieŕıa Matemática, Universidad de Concepción,
Casilla 160-C, Concepción, Chile
E-mail address: anahi@ing-mat.udec.cl

URL: http://www.ing-mat.udec.cl/~anahi

Abstract. There are several systems consisting in an object that moves on the plane
by following a given rule. It is frequently observed that these systems eventually fall
into an unexplained repetitive movement. The general framework of k-dimensional Turing
machines with only one head is adopted. A subshift is associated to each Turing machine,
and its properties are studied. The subshift consists in the set of sequences of symbols that
the machine reads together with the states that it has through each evolution. The focus
is placed on the machines whose associated subshift is sofic. These machines cannot make
long tours, i.e., the time between two consecutive visits to a given cell is bounded, and this
property characterises them. It is proved that all of these machines eventually fall into
a repetitive movement when starting over an initially periodic coloration. Nevertheless,
it seems that the machines with a sofic subshift are too simple. Many known machines
remain out of scope. As an example, the 0,1 and 2 pebble automata with 1 symbol are
studied.

Introduction

We call “One Head Machine” an automaton that lives in a discrete space. It can walk,
read and write symbols, and its behaviour is governed, at discrete time, by a deterministic
and finitely described rule. Examples of this kind of dynamical systems are the Langton’s
Ant [9, 8, 6], the Pebble Automata [2], the one head Turing Machines [3, 7] and the Lorentz
Lattice Gas [1, 10]. Such an object can represent a particle that collides with obstacles; a
living being that interacts with its environment; an automaton that performs a task, etc.

All of these systems are more or less comprised by the following definition.

Definition 0.1. A One Head Machine over Zk is a 4-tuple (S,Q, k, δ) where:
• S is a finite set, representing the state of the environment at each lattice point, and

called symbol set,
• Q is a finite set, representing the internal state of the machine, called state set,
• k ∈ N represents the dimension of the lattice,

Key words and phrases: Multidimensional Turing Machine, Formal Language, Symbolic System.
This work has been supported by CONICYT FONDECYT #1061036.
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• δ = (δS , δQ, δD) is the transition function, where δi : S × Q → i, for each i = S,
Q or D, and D = {±ej}kj=1 are the k canonical vectors in Zk together with their
opposites.

The elements of Zk are called cells. A configuration of the system is given by an
assignment of symbols to each cell, c : Zk → S, called coloration; a position g ∈ Zk; and a
state q ∈ Q, i.e., the phase space is X = SZk × Zk ×Q.

The global transition function T : X → X is defined by T ((c, g, q)) = (c′, g′, q′), where
• q′ = δQ(c(g), q),
• g′ = g + δD(c(g), q),
• c′(g) = δS(c(g), q) and c′(u) = c(u) for all u 6= g.

This system can be fruitfully studied by projecting it into a symbolic system [4, 5, 7],
as we precise in the next definition. This method works well due to a relevant feature of
this system: all the changes happen only on the machine position, the rest of the coloration
remaining static. Thus, if we register the sequence of symbols that the machine reads
together with its state, we describe the entire evolution of the system without ambiguity.

Definition 0.2. Given a one head machine M = (S,Q, k, δ) and its associated dynamical
system (X,T ), let π : X → S×Q be defined by π(c, g, q) = (c(g), q) and let ψ : X → (S×Q)N

be defined by ψ(x) = (π(Tn(x)))n∈N. The t-shift of (X,T ) is ST = ψ(X).

The set ψ(X) represents all the possible sequences of pairs (symbol, state) that the
machine can produce when considering all the possible initial configurations. Given an
infinite sequence y =

(
α1α2···
q1q2···

) ∈ ST , we can deduce the machine itinerary. In fact, if we
suppose that the initial position is 0, its position at iteration j must be:

I(y)j =
j−1∑
i=1

δD(αi, qi) (∀2 ≤ j) , I(y)1 = 0

and the set of visited cells is given by

V (y) = {I(y)j |1 ≤ j}
The initial symbol of the visited cells can be deduced from y and it is given by the

following formula

cy(g) = αi where i = min{j|I(y)j = g} (∀g ∈ V (y))
The partial function cy is a kind of pre-image of y by ψ in the following sense: if c is

an extension of cy to Zk then ψ(c, 0, q1) = y. This means that the sequence ψ(x) contains
information about the visited cells and discards the symbols of the other cells. Moreover,
it is invariant under translations.

Remark 0.3. I(y), V (y) and cy can be defined also if y is a finite word. In this context
the following properties hold for every u, v ∈ (S ×Q)∗:

(1) I(uv)j = I(u)j , if j ≤ |u|+ 1.
(2) I(uv)j = I(u)|u|+1 + I(v)j−|u|, if j ≥ |u|+ 1.

The set ST is sensitive to many of the machine properties. For example, if ψ(x) is
periodic we can deduce that the sequence of movements of the machine is periodic, i.e.,
that the machine is making a regular movement (which can be propagative or cyclic).
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Next section recall some concepts from symbolic dynamics and presents basic properties
of ST . In Section 2, we characterise the machines having a sofic t-shift and we prove an
important feature of these systems: starting over a periodic coloration with a finite number
of perturbations the machine always finishes by falling in a periodic movement. The last
section shows how to adapt the this theory to a particular type of pebble automaton, we
obtain two results already proved by Delorme and Mazoyer [2].

1. Basic notions and previous results

Given a finite set Σ, the set ΣN denotes the set of infinite sequences of elements of Σ.
A function σ is defined on ΣN by: σ(y1y2y3...) = y2y3y4..., it is called the shift function.
A metric can be defined on ΣN by: d(y, z) = 2−n, where n is the smallest index such that
yn 6= zn. This metric makes ΣN compact and σ continuous. Closed and σ invariant sets are
called subshifts.

The finite sequences of elements of Σ are called words. The set of words is denoted by
Σ∗. If a word v ∈ Σ∗ appears as a subsequence of an infinite sequence y ∈ ΣN, it is called a
factor of y, and this is denoted by v v y. A language is any subset of Σ∗.

Any subshift Y ⊂ ΣN has an associated language L(Y ) ⊂ Σ∗, defined by:

L(Y ) = {w ∈ Σ∗ : (∃y ∈ Y ) w v y}.
This is the factors language of Y . The factors language characterises Y because

Y = {y ∈ AN : (∀u v y) u ∈ L(Y )}.
Another way to characterise a subshift is through a set of forbidden words. A language

P is a set of forbidden words for Y if

Y = {y ∈ AN : (∀u v y) u 6∈ P}.
If Y has a finite set of forbidden words, Y is said to be a shift of finite type (SFT).
The complexity of Y is defined with reference to the complexity of its language L(Y ).

For instance, Y is said to be sofic if L(Y ) is regular. It is easy to see that if Y is a SFT, Y
is also sofic.

Let us come back to the shift associated to a one head machine: ST . It is a subshift.
Moreover, functions T , σ and ψ satisfy ψ ◦ T = σ ◦ ψ. The following result characterises
the words in L(ST ). This property can be easily proved by induction.

Lemma 1.1. [7] If w =
(
α1..αn

q1..qn

) ∈ L(ST ), then for all i ∈ {1, .., n}:

qi+1 = δQ(αi, qi) (state coherence) (1.1)
and for any pair 1 ≤ i < j ≤ n, such that I(w)i = I(w)j (say = g) and for every k

between i and j, I(w)k 6= g, one has that

αj = δS(αi, qi). (writing coherence) (1.2)

Moreover, these are sufficient conditions for w to belong to L(ST ).

Equation (1.1) expresses that the sequence of states must be coherent with the transition
rule of the machine. Equation (1.2) expresses that when the machine visits a cell a second
time, it must find the symbol that it wrote there when it visited it the first time. A set of
forbidden words for ST can be obtained from these two equations. From Equation (1.1) we
obtain the following set:
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P1 =
{(

αβ

qp

)
: p 6= δQ(α, q)

}
Equation (1.2) refers to trajectories that visit two times the same cell.

Definition 1.2. A word w ∈ L(ST ) whose itinerary starts and finishes in the same cell
and does not visit that cell in between, is called a cycle, i.e., w is a cycle if it satisfies:
I(w)1 = I(w)|w|+1 = 0 and I(w)j 6= 0, for all j ∈ {2, .., |w|}. When saying “the cycle w” we
will being making reference to either the word w, the itinerary I(w) or the set V (w); the
interpretation will be clear from the context.

There is a set of forbidden words for each cycle w =
(
α1..αn

q1..qn

)
: the word

(
α1..αnβ
q1..qnq

)
is

forbidden for every β 6= δS(α1, q1). Thus, we obtain the following set of forbidden words:

P2 =
{(

α1..αnβ

q1..qnq

)
:
(
α1..αn
q1..qn

)
is a cycle and β 6= δS(α1, q1)

}
.

ST is defined by the set of forbidden words P = P1 ∪ P2. P1 is finite but P2 may be
infinite, depending on the behaviour of the machine. For example, if the machine never
visits a cell more than once, P2 is empty. If the number of cycles is finite, P2 is finite. In
both cases, the set of forbidden words of ST is finite and therefore ST is a SFT. With some
work it is possible to prove the converse [7], i.e., if ST is a SFT, then the number of cycles
is finite. If ST is a SFT, the machine has significant movement restrictions that prevent
it from making long cycles. What happens when ST is sofic? In [7] the one dimensional
case was studied and it was established that if ST is sofic, then it is of finite type too. Is
this also true in Zk? What is the relation between the complexity of ST and the machine
behaviour? In order to answer these questions we need more information about the relation
between ST , T and the automaton that recognises ST . Let us recall some definitions.

Definition 1.3. A Deterministic Finite Automaton (DFA) is a 5-tuple M = (A,Ω, λ, o0, F )
where A is the input alphabet, Ω is the states set, λ : A×Ω→ Ω is a partial function called
transition function, o0 ∈ Ω is the initial state and F is the set of final states.

A labelled graph, GM , is associated to M . Its set of vertices is Ω, and the label of an
edge (e, f) is ‘a’ if and only if f = λ(a, e).

The language recognised by M consists of all words w in A∗ such that there exists a
path in GM with label w, starting on vertex o0 and finishing on a vertex f ∈ F .

If a language L is the factors language of some subshift, then it is closed for the factor
relation, i.e., if w ∈ L and u is a subword of w, then u ∈ L. Consequently, the automaton
M = (S×Q,Ω, λ, o0, F ) that recognises it can be chosen such that F = Ω. In the following
we will omit the set F from the automata definition.

Definition 1.4. A language is said to be regular if it is recognised by some DFA.

Remark 1.5. Given a vertex ν ∈ Ω, it holds that:
(1) If ν has an input edge labelled by (α, q), then all the exiting edges of ν have a

label of the form (β, δQ(α, q)), with β ∈ S, because the next state of the machine is
uniquely determined by α and q and it is δQ(α, q).

(2) Since every word in L(ST ) defines a unique path in GM , Equation (1.2) implies that
ν has only one exiting edge if and only if every path from o0 to ν corresponds to an
itinerary that has already visited its last cell. Otherwise, ν has exactly |S| exiting
edges.
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(3) The last assertion is not valid when |S| = 1. But, in this case, ST is of finite type,
more precisely, it is a finite set composed by eventually periodic sequences. The
cycles exist in a finite quantity. The vertices of the automaton that recognises it
have degree 1 (except for o0)

This remark allows us to characterise the one head machines whose t-shift is sofic.

2. When ST is sofic

Let us consider a metric in Zk as follows. Given two points: p = (p1, p2, .., pk) and
g = (g1, g2, .., gk), the distance between p and g is

d(p, g) =
k∑
i=1

|pi − gi|.

Thus the set B(p, n) = {g ∈ Zk : d(p, g) ≤ n} represents the ball of radius n and
centre p.

Lemma 2.1. The number of cycles of L(ST ) is finite if and only if the distance that a cycle
can attain form the origin is bounded.

Proof. Let us suppose that every cycle is contained in a ball of radius n. The number of
configurations defined in this ball is |S|2nk × 2nk × |Q|. Each configuration corresponds to
at most one cycle, hence there is a finite number of cycles.

The following theorem has already been proved for k = 1 in [7].

Theorem 2.2. ST is sofic if and only if the number of cycles of L(ST ) is finite.

Proof. In one direction, the result is trivial since every SFT is sofic.
Let us suppose that ST is sofic. Therefore, there exists a DFA M = (S × Q,Ω, λ, o0)

that recognises it and satisfies the conditions given in Remark 1.5. Let us suppose that the
length of the cycles is arbitrary large. Lemma 2.1 implies that for every natural n there
is a cycle that attains a distance bigger than n from its initial cell: 0. Let us consider the
set of cycles that makes this for n = |Ω|. Let us choose from this set the shortest cycle
w = w1..wm =

(
α1..αm

q1..qm

)
.

Given r < m, we can use Remark 0.3, with u = w1..wr−1 and v = wr..wm and the fact
that I(w)|w|+1 = 0 to obtain that:

I(w)r = −I(wr..wm)m−r+1 6= 0. (2.1)
The cycle w corresponds to a unique path in the graph GM : o0o1, .., om. From Re-

mark 1.5, the vertex om has an exit degree equal to 1, because the last cell of w (cell 0) has
already been visited.

Let l ≤ m be such that d(I(w)l, 0) > n. Since for every j, d(I(w)j , 0) ≤ j − 1, we can
assert that l−1 > n. In consequence, there must exist two repeated vertices between o1 and
ol−1: oi = oj . Thus o0o1..oioj+1..om is also a path in GM , its label is u = w1w2..wiwj+1..wm,
its length is t = m − j + i, and I(u)t+1 has already been visited. This implies that there
exists r such that I(u)r = I(u)t+1. By using Remark 0.3 over u decomposed by u1..rr−1

and ur..ut, we obtain that I(ur..ut)t−r+2 = 0, i.e., ur..ut is a cycle of length t− r + 1.
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If r > i, ur..ut = wr+j−i..wm which, from Equation (2.1), is not a cycle, therefore r ≤ i.
In summary, 1 ≤ r ≤ i < j < l < m. Now, we use Remark 0.3 again over ur..uk−1 and
uk..ut, with k = l − j + i, and we obtain

I(ur..uk−1)k−r+1 = −I(uk..ut)t−k+1

= −I(wl..wm)m−l+1, since k > i,
= I(w)l, due to Equation (2.1).

Hence d(I(ur..ut)k−r+1, 0) = d(I(w)l, 0) > n. We conclude that ur..ut is a cycle that
attains a distance bigger than n and is shorter than w, which is a contradiction.

This implies that the machines whose t-shift is sofic are very simple: they cannot revisit
far cells; the diversity of cycles they can do is finite; its t-shift is also a SFT; and all the
closed itineraries can be putted inside a finite ball. Since the state of the visited cells can be
interpreted as the external “remembers” of the machine, this ball represents its attainable
memory. Sofic machines have in fact a finite memory.

Corollary 2.3. If ST is sofic and V (ψ(c, g, q)) is infinite, then the number of times that the
machine visits each cell is bounded by a finite constant which only depends on the machine.

Proof. Let r be the radius of a ball containing all the closed trajectories. The number of
configurations defined on this ball is finite, say N . Let x = (c, g, q) be an initial configura-
tion. If some cell p is visited more than N times during the evolution of T on x, we can
assert that the machine remained inside the ball of radius r and centre p from the first to
the last time that it visited p. Within this time, some configuration of the ball has appeared
two or more times. Which means that the system has fallen in a periodic point and that
its complete itinerary is contained in a finite set.

When a sofic machine starts over a periodic coloration, its behaviour is particularly
simple, as the following theorem establishes. This theorem is proved in [7] for k = 1.

Theorem 2.4. If ST is sofic and c is periodic except for a finite number of cells, then
ψ(c, g, q) is eventually periodic for every g ∈ Zk and q ∈ Q.

Proof. We can suppose, without loss of generality, that the initial position of the machine
is 0. Let q0 be its initial internal state, and c : Zk → S a periodic coloration except for a
finite number of cells. This means that c is equal to some periodic coloration d except for
a finite set of cells E.

Now, let us study y =
(
αi
qi

)
i∈N = ψ(c, 0, q0). Two possibilities appear: V (y) can be finite

or not. If it is finite, (T i(c, 0, q0))i∈N is eventually periodic, and so is y.
Let us analyse the case when V (y) is infinite. Let n be the last iteration in which a

cell of E is visited. This means that after iteration n every cell g either has been already
visited or its state is given by d(g).

Coloration d consists in the repetition of a pattern defined on a rectangle R. Let us
assume that R = {0, .., r1} × {0, .., r2} × · · · × {0, .., rk}, where ri ∈ N for all i. This means
that the value of d at cell g = (g1, g2, .., gk) is equal to d(g1mod r1, g2mod r2, .., gkmod rk).

Now let M = (S×Q,Ω, λ : (S×Q)×Ω→ Ω, o0) be the automaton that recognises ST .
We define M = (S ×Q,Ω×R, λ, (o0, 0)) where λ : (S ×Q)× (Ω×R)→ (Ω×R) is defined
by:

λ(
(
α
q

)
,
(
µ
f

)
) =

(
ν
g

)⇔ λ(
(
α
q

)
, µ) = ν and (∀i) fi = (gi + δD(α, q)i) mod ri.
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M recognises the same language than M . Moreover, it registers the position of the
machine modulo R, i.e., if ((oi, gi))i∈N is the sequence of vertices in GM whose label is y,
then, for every j ∈ N, I(y)j+1 = gj modulo R.

From Remark 1.5, we distinguish two kinds of vertices in GM : either deg((oi, gi)) = 1
or deg((oi, gi)) = |S|. If deg((oi, gi)) = |S|, we know that I(y)i+1 is being visited by
the first time at iteration i + 1. If in addition i > n, we can assert that c(I(y)i+1) =
d(I(y)i+1) = d(gi). Consequently, the label of the arc ((oi, gi), (oi+1, g

i+1)) is d(gi), this
means that (oi+1, g

i+1) is uniquely determined by (oi, gi). Thus starting from (on, gn) only
one sequence of vertices of GM can be taken, hence ((oi, gi))i∈N is ultimately periodic and
so is y.

These two theorems can be easily proved for other regular grids than Zk, for example,
Cayley graphs of groups.

3. Pebble automata with one symbol

Pebble automata are two dimensional one head machines that cannot write but are
provided with a set of “pebbles” that they can drop and recover in order to mark their way.
They could be seen as a particular kind of one head machine by assimilating the pebbles as
part of the internal state and space symbols. The following definition is adapted from [2]
for the particular case where the space has only one symbol.

Definition 3.1. A Pebble Automata is a 3-tuple (Q, δ, l) where:
• Q is a finite set, representing the internal state of the machine,
• l represents the number of pebbles, and
• δ = (δP , δQ, δD) is the transition function, where

– δP : Q×{0, 1}l×{0, 1}l → {0, 1}l determines the pebbles that will be taken or
dropped,

– δQ : Q× {0, 1}l × {0, 1}l → Q determines the new machine state, and
– δD : Q×{0, 1}l×{0, 1}l → D determines the moving direction of the machine.

Moreover, δP satisfies that for every q ∈ Q and p, r ∈ {0, 1}l, δP (q, p, r) ≤ p + r; this
assures that the machine can only act over pebbles that the machine is carrying or that are
on the current machine position.

The configuration of the system is given by an assignment of pebbles to each cell
c : Z2 → {0, 1}l, a position g ∈ Z2, a state q ∈ Q, and the pebbles reserve of the machine
p ∈ {0, 1}l. Thus, the phase space is X = ({0, 1}l)Z2 × Z2 ×Q× {0, 1}l.

The global transition function A : X → X is defined by A((c, g, q, p)) = (c′, g′, q′, p′),
where

• q′ = δQ(q, c(g), p),
• p′ = (p+ δP (q, c(g), p)) mod 2,
• g′ = g + δD(q, c(g), p),
• c′(g) = (c(g) + δP (q, c(g), p)) mod 2 and for all u 6= g, c′(u) = c(u).1

The system starts with the empty configuration c(u) = (0, 0, .., 0) and all the pebbles
on the machine: p = (1, 1, .., 1).

1let us remark that c(g) + p = c′(g) + p′.
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In [2], the behaviour of these automata is studied for the case in which the number
of symbols is 1. The object of doing this is to analyse the ability of the automaton to
explore the plane without external help. They prove that this task is impossible when the
automaton has less than 3 pebbles. Delorme and Mazoyer prove this by showing that the
d-pebble automata have serious restrictions on their movements when d ≤ 2. This can be
illustrated within the present theory too. 0-pebble automata are a trivial case. Since they
have no pebble, they are actually one head machines where |S| = 1, and k = 2. Thus the
number of cycles is bounded and, independently from the initial state q0 ∈ Q, the machine
will always finish by making repetitive movements.

3.1. 1-pebble automata

As we said before, pebble automata can be seen as a particular case of one head machine
by assimilating the pebbles as part of the internal state of the machine and symbols of the
space. This means to define a one head machine M = (S,Q, 2, δ) where Q = Q × {0, 1},
S = {0, 1} and δ is defined appropriately. The second component of the state represents
the pebble reserve of the machine. The symbol represents the pebble content of the cells.

The difference between pebble automata and one head machines is that in the pebble
automata the total number of pebbles in the system is fixed and constant. A 1-pebble
automaton is a one head machine that works over a particular set of configurations: those
with exactly one pebble in the whole space.

Thus the shift of a pebble automata is smaller than the shift of its corresponding one-
head machine. In the pebble automata, not only cycles define forbidden words. If the
pebble automata put the pebble somewhere, it cannot find it elsewhere. This fact induces
additional forbidden words. First, P0 forbids to find the pebble in the plane when the
pebble is on the machine.

P0 =
{(

α

q

)
: q = (q, 1) ∧ α = 1

}
.

Second, let w =
(
α1..αn

q1..qn

) ∈ ({0, 1} × Q)∗ be such that I(w)i 6= 0 for every i ≥ 2. In
this case, we know that if at the beginning of w the initial cell contains the pebble, i.e.,
α1 = 1, and the machine does not take it (δP (α1, q1) = 0), then αi = 0 for all i ≥ 2.
The same happens if the machine has the pebble and drops it at the beginning, i.e., if
α1 = 0 ∧ δP (α1, q1) = 1. In these cases, we can add the forbidden word

(
α1..αn1

q1..qnqn+1

)
. This

defines the following set of forbidden words:

P ′3 =
{
w =

(
α1..αn1
q1..qnqn+1

)
: α1 + δP (α1, q1) = 1 ∧ (∀i ≥ 2) I(w)i 6= 0

}
.

We only need to consider a finite part of P ′3, because if the machine has no pebble, it
behaves like a 0-pebble automaton where the length of cycles is bounded, say by M , and
therefore longer trajectories do not visit 0. Thus forbidden words longer than M can be
replaced by the word

(
00..01
q1..qM

)
. We obtain a new set of forbidden words:
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P3 =
{
w =

(
α1..αn1
q1..qnqn+1

)
: α1 + δP (α1, q1) = 1 ∧ (∀i ≥ 2) I(w)i 6= 0 ∧ n ≤M

}
⋃{(

00..01
q1..qM

)
: q1 = (q1, 0)

}
.

Finally, each time we have a word w =
(

0..01
q1..qn

)
where q1 = (q1, 0), we know that this

pebble must have been dropped by the automaton at some past iteration, then w is a suffix
of a cycle that begins by leaving the pebble on the plane. We thus obtain the forbidden set
P ′4.

P ′4 =
{(

0..01
q1..qn

)
: q1 = (q1, 0) ∧ (∀v ∈ C0)

(
0..0

q1..qn−1

)
64 v
}
.

Where C0 denotes the set of cycles that begins by leaving the pebble and 4 is the suffix
relation. Again, only a finite part of P ′4 is enough, because we know that every word longer
than M is not suffix of some cycle. Hence, we consider the set P4:

P4 =
{(

0..01
q1..qn

)
: q1 = (q1, 0) ∧ (∀v ∈ C0)

(
0..0

q1..qn−1

)
64 v ∧ n ≤M

}
By avoiding these words, we assure that the pebble is always found exactly where it

was dropped.
Let us recall now the definition of the set P2:

P2 =
{(

α1..αnβ

q1..qnq

)
:
(
α1..αn
q1..qn

)
is a cycle and β 6= α1 + δP (α1, q1)mod 2

}
We distinguish three types of cycles, depending on the position of the pebble at the

beginning of the itinerary: a) the pebble is left at 0 (α1 + δP (α1, q1) = 1), b) the pebble is
not at 0 nor on the machine (α1 = 0 and q1 = (q, 0), q ∈ Q), c) the pebble is carried by the
machine ((α1 + δP (α1, q1) = 0 ∧ q1 = (q, 1)) ∨ α1 + δP (α1, q1) = 2).

There is only a finite number of cycles of type a). If the cycle is of type b), there are two
cases. First, the pebble does not appear in the cycle, it behaves like a 0-pebble automaton,
therefore there is only a finite quantity of these cycles. Second, the pebble is found during
the cycle. In this case, by avoiding the forbidden words of P3 and P0 we prevent from
finding the pebble at position 0. Finally, if the cycle is of type c), two cases appear again.
First, the pebble is over the machine during the whole cycle; in this case, the set P0 assures
that the pebble will not be found at the initial cell. Second, the machine drops the pebble
somewhere; in this case, by avoiding the words of P3 we preclude the possibility of finding
the pebble at 0. It follows that, only a finite number of words of P2 are necessary. The
union of P0, P1, P3, P4 and a finite part of P2 is a forbidden set for SA. We conclude that
SA is of finite type.

Remark 1.5 is not valid in this case because we are using information that is not available
for general one head machines. But Remark 1.5 is used in Theorem 2.4 to have vertices
with exit degree equal to one. In L(SA) only short words that do not contain the pebble
can be enlarged in two different ways, because words longer than M that has no the pebble
will never have it; and if a word contain the pebble, its future is uniquely determined. This
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means that after iteration M , all the attainable vertices has degree 1. Thus the proof of
Theorem 2.4 applies to the present case and we can conclude that the automaton will always
finish by making a repetitive movement.

3.2. 2-pebble automata

In these automata, trajectories as those of Figure 1 can occur, as it is shown in [2].
Theorem 2.2 can be used to assert that, in this case, SA is not sofic. We can wonder about
the complexity of SA. Delorme-Mazoyer proved that these automata cannot explore the
plane, this suggest that its complexity cannot be very high.

Figure 1: A trajectory that may contain cycles of arbitrary length. The automaton comes
from below, it finds the pebble on top and comes back.

4. Discussion

The results of this paper apply to very simple machines. Sometimes, proving the
hypothesis of our theorems is not easy. Nevertheless, we think that the present paper is
a first step in the construction of effective tools to understand the dynamics of one head
machines.

The study of pebble automaton was not easy, the principal reason is that pebble au-
tomaton do not feet with the definition of one head machine. Delorme and Mazoyer obtained
the same results through an analysis of similar complexity

The next step may be to study machines with a context free language. In such a
machine, the cycles may be very long, but they probably have a simple structure. Maybe
the 2-pebble automata with one symbol is in this class. It would be important to study the
dynamical properties of these machines.

Langton’s Ant is a one head machine that, apparently, always falls in a periodic move-
ment when it starts with a coloration with a finite number of black cells. Unhappily the
cycles that Langton’s Ant can do can be very complicated and arbitrarily long, hence our
results do not apply. But maybe the ideas presented in the proofs may help to understand
Langton’s Ant behaviour.
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Abstract. The problem of describing the dynamics of a conserved energy in a cellular
automaton in terms of local movements of “particles” (quanta of that energy) has attracted
some people’s attention. The one-dimensional case was already solved by Fukś (2000) and
Pivato (2002). For the two-dimensional cellular automata, we show that every (context-
free) conservation law can be expressed in terms of such particle displacements.

Introduction

Let L = Zd be the d-dimensional square lattice, and S a finite set of states. Every
cellular automaton (CA for short) F : SL → SL maps the uniform configurations into the
uniform configurations. Two configurations x, y : L→ S are asymptotic if they agree on all
but finitely many cells of the lattice. The image of asymptotic configurations under every
cellular automaton remain asymptotic.

A (context-free) energy assignment is a function µ : S → R. The µ-content of a finite
pattern p : A→ S (A ⊆ L finite) is the sum M(p) ,

∑
i∈A µ (p[i]). For every two asymptotic

configurations x, y ∈ SL, the corresponding energy difference is

δM(x, y) ,
∑
i∈L

[µ(y[i])− µ(x[i])] (0.1)

which is clearly well-defined (only a finite number of terms are non-zero). The energy µ is
conserved by a cellular automaton F : SL → SL, if

δM(Fx, Fy) = δM(x, y) (0.2)

Key words and phrases: Conservation Laws, Flows, Particles.
Research supported by the Academy of Finland grant 211967.
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for every two asymptotic configurations x and y. This is equivalent to the formulations in
terms of finite or periodic configurations [7, 3]. In particular, one can show that, if F maps
an a-uniform configuration to a b-uniform configuration, we must have µ(a) = µ(b).

For a conserved energy µ, it is desirable to find a local rule that explains the microscopic
dynamics of µ under the iteration of F , in terms of “flows” of energy from one cell to another.
More specifically, a flow for µ is a mapping x, i, j 7→ Φi→j(x) ∈ R for x ∈ SL and i, j ∈ L
that satisfies the following conditions:
a) For every configuration x and every cell a,

µ (x[a]) =
∑
j∈L

Φa→j(x) , (0.3)

b) For every configuration x and every cell a,∑
i∈L

Φi→a(x) = µ ((Fx)[a]) , (0.4)

c) There exist finite sets K, I ⊆ L, and a rule ϕ : SK × I → R such that,

Φi→j(x) =
{
ϕ (x[j +K], i− j) if i− j ∈ I,
0 otherwise, (0.5)

for every x ∈ SL and i, j ∈ L.
Here, f [A] denotes the restriction of a function f to a subset A of its domain. Equations (0.4)
and (0.3) are called the continuity equations. Equation (0.5) states that the amount of the
flows toward each cell is decided locally, by looking at a finite neighborhood K of that cell.
The set I is the set of directions from which energy flows into a cell. The local rule ϕ is
called an inflow. An energy µ is locally conserved by F , if it has an inflow.

Proposition 0.1 (Hattori and Takesue [7]). In cellular automata, conserved energies are
locally conserved.

We remark that the third condition in the above definition could equivalently be for-
mulated in terms of an outflow.

Recently a number of people have shown interest in flows that can be interpreted as
displacement of “particles” (see e.g. [6, 10, 9, 1]). In such a case, the µ-content of a pattern
p is seen as the sum of the energies (or masses) of the particles in p.

Recall that every finitely generated subgroup of R is isomorphic to Zm for some m ≥ 0.
If an energy µ : S → Zm is conserved by a cellular automaton F , each of its m components
must be conserved independently. If we are able to find “particle flows” for each component,
we can extend our interpretation for µ by assuming m different types of particles which flow
independently. So, without loss of generality, we can concentrate on the case µ : S → Z
or µ : S → Q. Now, if the particles are indistinguishable and each have the same energy
ε ∈ R, for every state s ∈ S we must have µ(s) = ν(s) ·ε, where ν(s) ∈ Z≥0 is the number of
particles in s. Thus, it makes sense to assume µ is everywhere non-negative (or everywhere
non-positive).

Formally, let µ : S → Q≥0 be a conserved energy for a cellular automaton F . A particle
flow for µ is a flow Φ whose values are from non-negative rationals Q≥0. Let Φ be a particle
flow which is defined by an inflow ϕ : SK×I → Q≥0. Let ε > 0 be such that ϕ(p, i)/ε ∈ Z≥0

for every p and i. Then ε is the µ-content of a particle and the function ρ(·, ·) , ϕ(·, ·)/ε



PARTICLE REPRESENTATION 67

is called a particle displacement rule. For every state s ∈ S, ν(s) , µ(s)/ε is the number of
particles in s.

Proposition 0.2 (Fukś [6] and Pivato [10]). Let F : SZ → SZ be a one-dimensional cellular
automaton, and µ : S → N an energy conserved by F . Then, µ has a particle flow.

We extend this result to the two-dimensional CA. In Section 1, we show how to construct
a particle flow for a conserved energy in a two-dimensional radius-1

2 CA. In Section 2, we
give a sketch of how this can be exploited in the case of arbitrary neighborhoods. Some
open problems are proposed in Section 3.

1. Particle Flows in Radius One Half CA

Let F : SZ2 → SZ2
be a two-dimensional CA with neighborhood

N = {(0, 0), (0, 1), (1, 1), (1, 0)} (1.1)

and local rule f : SN → S. The neighbors (0, 0), (0, 1), (1, 1) and (1, 0) are interpreted,
respectively, as the down-left (dl), up-left (ul), up-right (ur) and down-right (dr) neighbors.
Such a neighborhood is often called radius-1

2 .
To simplify our exposition, let us distinguish between neighbors of a cell i, and the cells

adjacent to it. The former are the cells i+dl, i+ul, i+ur and i+dr one step before, while
the latter are the cells i+ r, i+ u, i+ l and i+ d at the same time step, where r = (1, 0),
u = (0, 1), l = (−1, 0) and d = (0,−1).

Let µ : S → Q≥0 be a conserved energy. Without loss of generality, we can assume that
µ(�) = 0 for a state � ∈ S which we call blank. For every state x ∈ S we define the free
flows going out of x by looking at the configurations

� � �
� x �
� � �

F−→
x2 x3

x1 x4
(1.2)

That is, ϕ ←(x) , µ(f(� •
x

� �)), ϕ ↑ (x) , µ(f(� • �� x
)), ϕ →(x) , µ(f(� • �

x �)) and ϕ ↓ (x) ,

µ(f(x • �� �)). By the conservation of µ, we have

ϕ ←(x) + ϕ ↑ (x) + ϕ →(x) + ϕ ↓ (x) = µ(x) . (1.3)

When two states are put next to each other, their touching out-going flows interfere
and as a result we have a flow deflection from one cell toward another.

� � � �
� x y �
� � � �

F−→
x2 a y3

x1 b y4
(1.4)

Specifically, for every x, y ∈ S, define

ψ↑(x y) , max
{

0, µ(f(� • �
x y))− ϕ →(x)− ϕ ↑ (y)

}
, (1.5)

and
ψ↓(x y) , max

{
0, µ(f(x •

y

� �))− ϕ ↓ (x)− ϕ ←(y)
}
. (1.6)
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By the conservation of µ we have

µ(f(� • �
x y)) = ϕ →(x) + ϕ ↑ (y) + ψ↑(x y)− ψ↓(x y) , (1.7)

µ(f(x •
y

� �)) = ϕ ↓ (x) + ϕ ←(y) + ψ↓(x y)− ψ↑(x y) , (1.8)

and either ψ↓(x y) or ψ↑(x y) is zero. The deflections ψ→(xy) and ψ←(xy) are defined simi-
larly, and in the same way we have

µ(f(x • �
y �)) = ϕ ↓ (x) + ϕ →(y) + ψ→(xy)− ψ←(xy) , (1.9)

µ(f(� •
x

� y)) = ϕ ←(x) + ϕ ↑ (y) + ψ←(xy)− ψ→(xy) , (1.10)

and either ψ←(xy) or ψ→(xy) is zero. The deflections summarize all the interactions between
the free flows:

Lemma 1.1. For every x, y, z, t ∈ S we have

µ(f(
y
•
z

x t
)) = ϕ →(x) + ϕ ↓ (y) + ϕ ←(z) + ϕ ↑ (t)

+ ψ→(
y

x
) + ψ↓(y z) + ψ←(

z

t
) + ψ↑(x t )

− ψ←(
y

x
)− ψ↑(y z)− ψ→(

z

t
)− ψ↓(x t ) . (1.11)

We shall think of the free flows and the flow deflections as weighted arrows from one
cell (in the space-time) to another. For example, in the consecutive configurations

p
!!BBB y
}}||| !!BBB z

}}|||
a b

q

==|||
x

aaBBB ==|||
t

aaBBB

F−→
p y z

a // b

q x t

(1.12)

the free flow ϕ ↓ (p) determines an arrow toward the cell with state a from its up-left neighbor
in the previous time step, and so forth. Similarly, there is a deflection arrow from a to b

with weight ψ→(
y

x
) ≥ 0 and one in the opposite direction with weight ψ←(

y

x
) ≥ 0, even

though at least one of them is zero. For two consecutive configurations x and y = F (x),
let us write Φ →[i] for the free flow arrow with value ϕ → (x[i+ dl]) from the cell i+ dl (on
x), to the cell i (on y), and so forth. Similarly, let Ψ↑[i], Ψ→[i], Ψ↓[i] and Ψ←[i] be the
deflection arrows going out from i (on y) to the cells i + u, i + r, i + d and i + l (on y),
respectively.

Deflections represent the deviation of an actual flow from the free flows. If we split each
deflection ψ↑ (resp. ψ→, ψ↓, ψ←) into two parts ψ� and ψ� (resp. ψ⇀ and ψ⇁, ψ� and ψ�,
ψ↽ and ψ↼) and use these parts to correct the free flows, we obtain an actual flow for µ.
To be precise, at each cell i, the arrow Φ →[i] is corrected to

Φ′→[i] , Φ →[i]−Ψ�[i] + Ψ�[i+ u]−Ψ⇀[i] + Ψ↼[i+ r] (1.13)

and so forth (Figure 1). We require the splits ψ�, ψ�, . . . to be non-negative and rational.
Otherwise, the splitting can be arbitrary and may depend on the local neighborhood pattern.
The main challenge here is to do the splitting in such a way that the corrected flow has
only non-negative rational values.
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Figure 1: Correcting the flows.

Let us say that a cell i on y is balanced, if
a) Φ ↓ [i] + Φ ←[i] ≥ Ψ↑[i] (and its rotations),
b) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] ≥ Ψ↑[i] + Ψ→[i] (and its rotations), and
c) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] + Φ →[i] ≥ Ψ↑[i] + Ψ→[i] + Ψ↓[i] + Ψ←[i].

Observation 1.2. For every a, b, c ∈ S we have
a) ϕ ↓ (a) + ϕ ←(b) ≥ ψ↑(a b).

b) ϕ ↓ (a) + ϕ ←(b) + ϕ ↑ (c) ≥ ψ↑(a b) + ψ→(b
c
).

Lemma 1.3. If a cell is balanced, we can split its out-going deflections properly, so that its
corrected in-coming flows remain non-negative and rational.

Proof. Let i be a balanced cell. Let us do the splitting in such a way that (the splits are
non-negative and rational, and) when the flows are corrected, the total amount of negative
flows coming into i (let us call it M) is minimal. We claim that the corrected in-coming
flows of i are non-negative.

Suppose the contrary. Without loss of generality, assume that Φ′→ < 0. Since the sum
of the corrected in-coming flows of i is non-negative (requirement (c) of balancedness), at
least one of the other in-coming flows is strictly positive.

First assume that all the splits are strictly positive. If Φ′ ↑ > 0, we could get a splitting
with smaller M , by choosing

Ψ′� = Ψ� − ε (1.14)

Ψ′� = Ψ� + ε (1.15)

(see Figure 2.a) for a sufficiently small ε > 0.
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Figure 2: Proper splitting of the deflections.

By symmetry, Φ′ ↓ > 0 cannot happen either. So let Φ′ ↑ ,Φ
′
↓ ≤ 0 and Φ′← > 0. Again,

this is not possible, because if (for a sufficiently small ε > 0) we chose

Ψ′� = Ψ� − ε (1.16)

Ψ′� = Ψ� + ε (1.17)

Ψ′⇁ = Ψ⇁ − ε (1.18)
Ψ′⇀ = Ψ⇀ + ε (1.19)

(see Figure 2.b) we would get a smaller M .
If Ψ� = 0, then Φ → < Ψ↽ and by requirement (a) of balancedness Φ ↓ > Ψ↼ ≥ 0. If

Φ′ ↓ > 0, by choosing a different splitting like before, we could get a smaller M . So Φ′ ↓ ≤ 0
and Ψ� > 0. Now, by requirement (b) of balancedness Φ ← > Ψ� ≥ 0. Again, if Φ′← > 0, by
choosing a different splitting like before, leads us to a smaller M . So Φ′← ≤ 0 and Ψ⇀ > 0.

At this point, since Φ′→ < 0 and Φ′ ↓ ,Φ
′
← ≤ 0, we must have Φ′ ↑ > 0. But again, by

taking a sufficiently small ε > 0 and choosing the splitting

Ψ′↽ = Ψ↽ − ε (1.20)
Ψ′↼ = Ψ↼ + ε (1.21)
Ψ′� = Ψ� − ε (1.22)

Ψ′� = Ψ� + ε (1.23)

Ψ′⇀ = Ψ⇀ − ε (1.24)
Ψ′⇁ = Ψ⇁ + ε (1.25)

(see Figure 2.c) we would get a smaller M .
Finally, let Ψ�,Ψ↽ > 0. If either Φ′ ↑ > 0 or Φ′ ↓ > 0 we could make M smaller like

before. So Φ′ ↑ ,Φ
′
↓ ≤ 0 and Φ′← > 0. Now, by the requirement (b) of balancedness, either

Ψ⇁ > 0 or Ψ� > 0. So, again we could get a smaller M as before.
Hence, in any case Φ′→ < 0 leads to a contradiction, which by symmetry means the

corrected in-coming flows of i must all be non-negative.
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Figure 3: The situations that may happen around a cell.
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Figure 4: Doubly problematic cell.

Figure 3 shows a cell and the various situations that may happen, based on the direction
of the deflection arrows around it. The other possibility are all symmetrically identical to
these five case. According to the Lemma 1.3, Observation 1.2 guarantees that, unless there
is exactly one deflection directing toward a cell (i.e., the cases (1-4)), one can correct the
in-coming free flows of that cell to satisfy its out-going deflections, in such a way that the
corrected flows remain non-negative. Let us call a cell problematic (P in symbol) if the
situation around it is as in case (5) (or its symmetrically identical variants). We call a cell
doubly problematic (~P in symbol) if it is problematic, and furthermore, the endpoints of its
out-going deflection arrows are also problematic (Figure 4). For two adjacent cells i and j,
let us say j follows i, if there is a deflection arrow from i to j.

Observation 1.4. If j follows i, both of i and j cannot be doubly problematic at the same
time.

Theorem 1.5. Let F : SZ2 → SZ2
be a two-dimensional radius-1

2 cellular automaton.
Then, every conserved energy µ : S → Q≥0 has a particle flow, with flows entering each cell
only from its four neighbors.

Proof. Let x and y be two consecutive configurations in SZ2
. Let us set the free flows as

an initial approximation of the desired flow. That is, let Φ(0)
d , Φd (d ∈ { →, ↓ , ←, ↑ }).

We construct a non-negative rational flow for µ, by correcting this approximation in three
steps. At each step a number of deflections are split and redistributed into the affected
flows.

Step 1.
Splitting. For every cell i which is in either cases (1-4) of Figure 3 we split the out-
going deflections as suggested in Lemma 1.3. If the cell is doubly problematic, we leave the
splitting of its out-going deflections for the next step. If the cell is problematic, but not
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doubly problematic, we leave one of its out-going deflections that leads to a non-problematic
cell for the next step, and split the other two, as described in Lemma 1.3.
Correcting. We use the already split deflections to correct the flows. Let Φ(1)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

Step 2.
Splitting. Let i be a problematic cell. Notice that unless i follows a doubly problematic
cell, its in-coming deflection is already resolved in the previous step. So, in this case i is no
more problematic, and we can split its out-going deflections as explained in Lemma 1.3. In
particular, all the out-going deflections of (formerly) doubly problematic cells are split in
this step (Observation 1.4).
Correcting. We correct the flows using the newly split deflections. Let Φ(2)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

Step 3.
Splitting. The only unresolved deflections are those leaving a problematic cell (such as
i) which follows an initially doubly problematic cell. But the out-going deflections of the
doubly problematic cells are already resolved. So i is no further problematic. We split its
unresolved out-going deflection using Lemma 1.3.
Correcting. We correct the flows using the newly split deflections. Let Φ(3)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

At this point, all the deflections are resolved. The corrected arrows Φ(3)
d define a flow

Φ by

Φi→j ,



Φ(3)

→ [j] if i = j + dl,

Φ(3)

↓ [j] if i = j + ul,

Φ(3)

← [j] if i = j + ur,

Φ(3)

↑ [j] if i = j + dr,
0 otherwise,

(1.26)

for µ, which satisfies the continuity equations, and its values are locally determined. Also,
by construction, the values of Φ are all non-negative and rational. Therefore, Φ is a particle
flow.

2. Particle Flows in CA with Arbitrary Neighborhood

Every CA can be transformed into a radius-1
2 one, using a combination of a translation

and moving to a higher block representation. A conserved energy µ : S → Q≥0 gives a
conserved energy µ̂ : Ŝ → Q≥0 for the new CA, which simply measures the collective energy
of the super-cells of this new CA. By the discussion of the previous chapter, we can find a
particle flow for µ̂. This can be turned into a particle flow for µ in the following way.

Let x and y = F (x) be two consecutive configurations in the original CA. For each
super-cell î on x let us order its out-going flow arrows using, for example, the lexicographic
ordering of their end points, and distribute them properly into its constituent cells, so that
each cell with state s gives out exactly µ(s). Now for each cell i on x and each super-
cell ĵ on y, we have a flow arrow from i to ĵ. Then, for each super-cell on y order its
in-coming flow arrows according to the lexicographic ordering of their starting points, and
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distribute them properly into its constituent cells, so that each cell with state s receives
exactly µ(s). Clearly, this can be done locally, but the obtained flow may not be translation-
invariant. However, if we translate the partitioning of the cells and take the average of the
flows obtained from each partitioning, we obtain a translation-invariant flow which is still
non-negative and rational-valued.

3. Open Problems

With enough patience, one should be able to find a particle representation for the
conservation laws of the three-dimensional CA, or the CA on the hexagonal or triangular
lattices, using similar analysis. Is there a unified approach that works for any lattice, in
any number of dimensions?

A drawback of our solution is the arbitrariness involved. There are infinite number of
ways one can assign a flow to a given conservation law. Can we (possibly by putting some
extra constraints, or by formalizing the concept of the flows in a different way) obtain a
“natural” flow for each conservation law, which is unique? One criterion for naturalness is
that for a reversible CA, the flows in the backward direction of time should be obtained
from the flows in the forward direction, only by reversing the direction of the arrows. Such a
concept of flow would definitely give a better understanding of the dynamics of the conserved
energy.
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Abstract. We investigate the frontline of Gödel’s incompleteness theorems’ proofs and
the links with computability.

The Gödel incompleteness phenomenon

Gödel’s incompleteness theorems [Göd31, SFKM+86] are milestones in the subject of
mathematical logic.

Apart from Gödel’s original syntactical proof, many other proofs have been presented.
Kreisel’s proof [Kre68] was the first with a model-theoretical flavor. Most of these proofs
are attempts to get rid of any form of self-referential reasoning, even if there remains
diagonalization arguments in each of these proofs. The reason for this quest holds in the
fact that the diagonalization lemma, when used as a method of constructing an independent
statement, is intuitively unclear. Boolos’ proof [Boo89b] was the first attempt in this
direction and gave rise to many other attempts. Sometimes, it unfortunately sounds a bit
like finding a way to sweep self-reference under the mathematical rug.

One of these attempts has been to prove the incompleteness theorems using another
paradox than the Richard and the Liar paradoxes. It is interesting to note that, in his
famous paper announcing the incompleteness theorem, Gödel remarked that, though his
argument is analogous to the Liar paradox, “Any epistemological antinomy could be used
for a similar proof of the existence of undecidable propositions”. G. Boolos has proved quite
recently (1989) a form of the first incompleteness theorem using Berry’s paradox consisting
in the fact that “the least integer not nameable in fewer than seventy characters” has just
now been named in sixty-three characters. G. Boolos thought the interest of such proofs is
that they provide a different sort of reason for incompleteness. It is true that each of these
new arguments gives us a better understanding of the incompleteness phenomenon.

When studying proofs and provability, there are two different points of view: the proof-
theoretical one (axioms and inference rules) and the model-theoretical one (axioms, models,
consequences). The former one tends to be quite syntactical and the latter one more seman-
tical. We have tried to present both points of view and linger over the model-theoretical side
because, at least from the author’s point of view, model-theoretic arguments are intuitively
clearer than proof-theoretic ones.

c
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Gödel’s argumentation was heavily based not only on the arithmetization of syntax,
but on the arithmetization of all mathematical objects (sentences, proofs, theories) and the
fact that all this arithmetization is primitive recursive. In fact, it has opened the way for
the notions of computation and computability to arise.

The goal of this paper is twofold: a survey of incompleteness proofs and to precise links
with computability.

Computability and incompleteness are inherently linked. For instance, one can obtain
a first form of the first incompleteness theorem by considering propositions of the form
n 6∈ X, where X is a non-recursive but recursively enumerable set, e.g., the diagonal halting
set K. Even if the language of the considered theory does not contain ∈, there is a simple
algorithm that generates given n the proposition “n 6∈ X”. Given a sound (every provable
statement is true) recursively enumerable theory T , there is a number n0 such that n0 6∈ X
but T does not prove it. The proof is direct: Suppose that there is no such n0, then we
would have that T proves “n 6∈ X” if and only n 6∈ X, and X would be recursive (generate
the theorems of T and at the same time enumerate X; if n ∈ X then n will eventually show
up in the enumeration; otherwise, “n 6∈ X” will eventually show up in the theorems of T
and be true by the soundness assumption). We thus have a true sentence, “n0 6∈ X”, which
is not provable in T .

Incompleteness is also famously linked to computability via Chaitin’s incompleteness
theorem. Chaitin’s result, showing that there are unprovable statements on Kolmogorov-
Chaitin complexity1, is a form of Gödel’s first incompleteness theorem. Actually, Kol-
mogorov showed in the sixties that the set of non-random (or incompressible) numbers, i.e.,
{x : K(x) > x}, is recursively enumerable but not recursive, and, by the above argument,
this is already a version of Gödel’s first incompleteness theorem. Moreover, Kolmogorov’s
proof can be seen as an application of Berry’s paradox. Following Boolos, it is thus no
wonder that we can get proofs using this Kolmogorov complexity function (or other similar
computability-related functions) of both incompleteness theorems.

One of the reason of the existence of the quest of better understanding the incomplete-
ness phenomenon holds in the peculiarity of Gödel’s unprovable statements. They are not
natural mathematical statements: no mathematician has ever stumbled on them (or should
we say over them ?). And thus, it seems to many that normal mathematical practice is not
concerned with the incompleteness phenomenon. More and more results show however the
contrary. In particular, Harvey Friedman’s Π0

1 statements, that are unprovable in Zermelo-
Fraenkel (ZF) set theory and need the 1-consistency of strong set-theoretical unprovable
statements, going way beyond ZF, to be proved, are examples of such results.

Nevertheless, incompleteness theorems only provide unprovable statements like the con-
sistency of a theory, that are of an unclear nature. What combinatorial properties does the
consistency statement bring to a theory? Feferman [Fef62, Her88] has shown that a cer-
tain reflection principle, an unprovable statement, has to be added ωω

ω+1
times to Peano

arithmetic in order to cover all true arithmetical statements. Adding the 1-consistency, a
soundness assumption, of strong set-theoretical unprovable statements, e.g., large cardinal
axioms, to a given arithmetical theory amounts to asserting that “every Π0

2 consequence of
these strong statements is true”. In this case, the combinatorial properties that are added
are the combinatorial Π0

2 consequences of these strong statements. Having a link between
consistency (or soundness) and computability, in particular Kolmogorov complexity, would

1Loosely speaking, the Kolmogorov-Chaitin complexity of a natural number n, denoted by K(n), is the
smallest size of a program which generates n.
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make possible an understanding of what properties consistency adds to a theory. Adding
consistency as an axiom would then yield new combinatorial properties because of the ex-
isting links between combinatorics and Kolmogorov complexity. This could be one reason
behind the stir surrounding Chaitin’s incompleteness result.

This paper is organized as follows. We start by recalling the basic notions behind
formulæ, proofs, theories and arithmetization. Then we present Gödel’s original proofs.
We continue by presenting a survey of existing incompleteness proofs, of both first and
second incompleteness theorems. We finish with incompleteness results and proofs that are
computability-related and discuss the interpretation of Chaitin’s incompleteness theorem.

1. Objects to play with

1.1. What are the basic objects?

On top of the usual logical connectives (∧, ∨ and ¬), we will respectively denote the
logical connectives of implication and equivalence by 3 and ≡.
LPA will designate the first order language on the signature of arithmetic {S,+,×,6,0}.

S, +, × designate respectively the successor, addition and multiplication functions. 6
designates the lower-or-equal relation and 0 designates the constant zero.

The Turing machines indexed by their codes, for any appropriate coding which we will
later on make to coincide with the Gödel numbering, are denoted by {Ti}i∈N. A computation
(of a Turing machine, or any equivalent computation model) either diverges, denoted by ↑,
or converges, denoted by ↓. The partial recursive functions computed by Turing machines,
following a fixed convention, are denoted by {ϕi}i∈N (agreeing with the Turing machines’
coding). The sets {Wi}i∈N denote the recursively enumerable sets, i.e., the domains of
partial recursive functions. A central set in computability theory is the diagonal halting set
K = {x : ϕx(x) ↓} = {x : Tx(x) ↓} = {x : x ∈ Wx}. The set K is recursively enumerable
but not recursive; it is the archetypal creative set.

Concerning computability, the reader is referred to [Odi89, Odi99, Rog67, Rog58,
Smu93, VS03].

1.2. What is a proof?

A formal theory T is determined by a first order2 language LT and a set of axioms AT ,
which are formulæ in that language. The set ThmsT of theorems consists of those formulæ
φ for which there is a proof in T .

There are two different points of view concerning proofs: the proof-theoretical one
(axioms and inference rules) and the model-theoretical one (axioms, models, consequences).

2All our reasoning also works for theories on second order languages. For simplicity and brevity, we will
only consider first order theories in this article.



GÖDEL INCOMPLETENESS REVISITED 77

1.2.1. Proof theoretical. Proofs are most commonly seen as a deduction sequence from a set
of axioms.

In proof theory, we can for example take the following deduction rules:

Γ⇒ φ if φ ∈ Γ Γ⇒ φ ∧ ψ iff Γ⇒ and Γ⇒ ψ
If Γ⇒ φ or Γ⇒ ψ, then Γ⇒ φ ∨ ψ If Γ ∪ {φ} ⇒ ψ, then Γ⇒ φ3 ψ

If Γ⇒ φ and Γ⇒ φ3 ψ, then Γ⇒ ψ If Γ⇒ (s = t) and Γ⇒ φ(s)x, then Γ⇒ φ(t)x
If Γ⇒ ψ and Γ⇒ ¬ψ, then Γ⇒ φ Γ⇒ ∀x (x = x)

If Γ ∪ {¬φ} ⇒ ψ and Γ ∪ {¬φ} ⇒ ¬ψ, then Γ⇒ φ
If Γ ∪ {φ} ⇒ ψ and Γ ∪ {φ} ⇒ ¬ψ, then Γ⇒ ¬φ

If Γ ∪ {φ} ⇒ θ and Γ ∪ {ψ} ⇒ θ, then Γ ∪ {φ ∨ ψ} ⇒ θ
If Γ⇒ φ and x does not occur free in Γ, then Γ ∪∆⇒ ∀x φ
If Γ⇒ ∀x φ, then Γ⇒ φ(s)x for any term s free for x in φ
If Γ⇒ φ(s)x, then Γ⇒ ∃x φ, for any term s free for x in φ

If Γ ∪ {φ(y)x} ⇒ ψ and y is not free in Γ or ψ, then Γ ∪∆ ∪ {∃x φ} ⇒ ψ
If Γ⇒ ∀x (x ∈ X ≡ x ∈ Y ), then Γ⇒ X = Y

∆ ⇒ φ holds if and only if there is a derivation showing this in the form of a finite
sequence 〈Γ1, φ1〉, . . . , 〈Γn, φn〉, where 〈Γn, φn〉 is 〈∆, φ〉 and each 〈Γi, φi〉 follows by one
of the above rules from previous pairs in the sequence. A derivation is a sequence number
〈s0, . . . , sn〉 where each si is a pair 〈ti, φi〉 with ti a sequence number of formulæ and si is
related as indicated in the rules to zero, one or two previous pairs in the sequence. s is a
derivation of φ from Γ if sn is 〈tn, φ〉 where every formula in the sequence tn is a member
of Γ. A proof in a theory T is a derivation from AT .

1.2.2. Model theoretical. Another way to consider provability is through models. A sentence
φ is provable in an axiomatic theory T if all models of T satisfy φ.

Leon Henkin gave in 1949 a non-constructive but easier (than Gödel’s original) proof of
Gödel’s completeness theorem. It consists in reducing the consistency of a set of sentences
in a language L to that of a set of quantifier-free sentences in an extended language. This
process can be arithmetized to build a partial order, called the Henkin tree. It gives an
arithmetical ∆n+1 model for any consistent Σn or ∆n theory. For a complete description,
the reader is referred to [Kay91].

Through Henkin’s method, we can obtain a more model-theoretical notion of proof. If
φ and ψ are sentences, to say that ψ is a consequence of φ is to say that the set {φ,¬ψ} is
inconsistent. The consistency of {φ,¬ψ} can be determined by Henkin’s method. We get
a proof that ψ is a consequence of φ as soon as we reach a natural number p at which the
branches of Henkin’s tree all end at a contradiction. This natural number p can take the
place of a proof.

If a theory T is a Σn fragment of arithmetic, then consistency can be expressed by a
Πn sentence: it is enough to express that 0 = S0 is not a consequence of the axioms of T
or else to express that the Henkin tree associated with T is infinite.

For more on model theory, see [Hod93].
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1.3. What is an arithmetical-able theory?

Throughout this paper, T will be some fixed, but unspecified, consistent formal theory.
The properties that a theory T should meet to satisfy the clauses of incompleteness

theorems are for it to contain arithmetic. There are several ways to precise these properties.
These properties are encodability conditions and, as Gödel showed, one can do a great deal
of encoding on natural numbers.

To follow classical expositions of the incompleteness theorems, we assume that the
encoding is done in some fixed formal theory S and that T contains S. S is usually not
specified but it is commonly taken to be a formal system of arithmetic, although a weak
set theory3 is often more convenient. If S is a formal system of arithmetic, e.g., PA (Peano
Arithmetic), and T is ZF (Zermelo-Fraenkel set theory), then T contains S in the sense
that there is a well-known embedding of S in T .

S needs to be able to represent primitive recursive functions. It should be primitive
recursive-able. A more model-theoretical way to require these properties is to require of the
theory to have Σ1-induction.

To each formula φ of the language of T is assigned a closed term, pφq, called the code
of φ. For any natural number n, pnq designates a closed term, the numeral for n, in the
language S that represents n, e.g., σ(σ(. . . (0) . . . )). n is called the value of this numeral
pnq.

To avoid any ambiguity, we define a function called var. An ambiguity arises in the
following example. There are two possible meanings for pxq: the code for the value for the
variable x or the code for the variable x. var(x) designates the latter case, i.e., the code for
the variable x.

S will have certain function symbols corresponding to the logical connectives and
quantifiers : neg, implies, etc., such that, for all formulæ φ, ψ, S ` neg(pφq) = p¬φq,
S ` implies(pφq, pψq) = pφ3 ψq, etc.

The substitution operator, represented in S by the function symbol sub, is of particular
importance. For any codes c1 and c2 for terms t1 and t2 and a variable x, subx(c1, c2)
is the code of the term that results from substituting t1 for every occurrence of x in t2 :
S ` subx(ptq, pφ(x)q) = pφ(t)xq.

For readability, we will use the same names for functions and predicates in formulæ and
in the running text. All the functions previously defined are actually primitive recursive.

From the previous discussion on proofs, we have a binary relation, whose symbol in S
is Proof, such that for closed t1 and t2: S ` ProofT (t1, t2) iff t1 is the code of a proof in T
of the formula with code t2. It follows that T ` φ iff S ` ProofT (t, pφq) for some closed
term t.

We then define a predicate, whose symbol in S is Prov, asserting provability :

ProvT (y) ≡ ∃x ProofT (x, y)

One must be careful and understand that we do not always have : T ` φ iff S `
ProvT (pϕq). It depends on the soundness properties of our theory. Soundness is linked to
consistency as summarized in section 1.4.

We will use a special notation for formalizations of provability statements. If φ is a sen-
tence, we write �φ for the sentence ProvT (pφq), where the theory T is implicit. Accordingly,�� φ is the formula ProvT (pψq) where ψ is ProvT (pφq).

3See [Dev84, Jec78].
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This encoding (of S in T ) can be carried out in such a way that the following important
conditions, the deducibility (or derivability) conditions, are met for all sentences φ:

T ` φ implies S ` ProvT (pφq), for every sentence φ. (1.1)
S ` ProvT (pφq) 3 ProvT (pProvT (pφq)q), for every sentence φ. (1.2)

S ` ProvT (pφq) ∧ ProvT (pφ3 ψq) 3 ProvT (pψq), for all sentences φ, ψ. (1.3)

Much of the intricacy of Gödel’s incompleteness theorems’ proofs lies in the scarcely
illuminating details of setting up and checking the properties of a coding system representing
the syntax of LPA within that same language. For this reason a number of efforts have
been made to present the essentials of the proofs of Gödel’s theorems without getting
entangled in syntactic details. One of the most important of these efforts was made by Löb
[Löb55] and Hilbert and Bernays [HB39]. They formulated these three conditions on the
provability predicate in a formal system which are jointly sufficient to yield Gödel’s second
incompleteness theorem.

Given that the axioms of T are defined using a Σ-formula, these deducibility conditions
all hold: the first two conditions are corollaries of the Σ-completeness theorem and the third
condition is a formalization of an obvious argument.

1.4. What are consistency statements?

A theory T is inconsistent if there exists φ such that φ and ¬φ are theorems of T , and
otherwise consistent.

A theory T is complete if for every sentence φ in the language of T , φ or ¬φ is a theorem
of T , and otherwise incomplete.

Gödel introduced a stronger form of consistency, coined ω-consistency. In a w-consistent
theory T , we cannot have at the same time T ` ∃x φ(x) and T ` ¬φ(p0q), T ` ¬φ(p1q), . . .
(having for all natural number i, T ` ¬φ(piq)).

More formally: T is ω-consistent if for any formula φ

ProvT (p∃x φ(x)q) implies ∃x ¬ProvT (p¬φ(x)q) (1.4)

ω-consistency is a restriction of another property, reflection:

ReflT : ProvT (pφq) implies φ for closed φ

For φ ∈ ∆0, (1.4) is called 1-consistency. It can be shown that 1-consistency means
that all Σ1 provable statements are true. It is actually ReflT for Σ1 statements, denoted by
ReflΣ1

T . Reflection is also called soundness. Σ-soundness is 1-consistency
Nevertheless, every arithmetical-able theory T has the following property.

Theorem 1.1 (Σ1-completeness). If φ is a Σ1 statement, then S ` φ3 ProvT (pφq).
Hence, in T , ConsT , the statement expressing that there is no proof in T of 0 = S0, is

equivalent to reflection of Π1 statements, denoted by ReflΠ1
T .

Consistency statements play a major role in the incompleteness theorems. Each incom-
pleteness result necessitates a consistency statement assumption on the considered theory.
Plain consistency is the weakest of these statements. Gödel introduced ω-consistency to
be able to obtain an independent statement. The weaker assumption, 1-consistency, gen-
erally suffices. In all our incompleteness theorems and proofs, the strongest assumption
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is 1-consistency. For more details on consistency and reflection statements, the reader is
referred to [Smo77].

2. Original and model-theoretical proofs

For various descriptions of mathematical logic in general and Gödel’s incompleteness
theorems in particular, see [Smo77, Kle52, Fef60, Kre50, Kot94, Kot96, Kot98, Kot04,
Ros36, Boo95, End72, Hen57].

2.1. Original (syntactical) proof

The original proof of Gödel’s incompleteness theorems goes necessarily through proving
the diagonalization lemma.

Lemma 2.1 (Diagonalization lemma). For every formula ψ with a single free variable x
there is a sentence φ such that S ` φ ≡ ψ(pφq)x.

Proof. Given ψ, let θx be ψ(subx(var(x), x))x, the diagonalization of ψ. Let m = pθxq and
φ = θ(m)x. Then we have

S ` φ ≡ ψ(pφq)x
In S, we have that

φ ≡ θ(m)x ≡ ψ(subx(var(m),m))x ≡ ψ(subx(var(m), pθxq))x ≡ ψ(pθ(m)xq)x ≡ ψ(pφq)x

The4 Gödel sentence GT for T consists in diagonalizing ¬ProofT (·). By the diagonal-
ization lemma, we have a sentence GT such that GT ≡ ¬�GT is provable in S.

Theorem 2.2 (Gödel’s first incompleteness theorem). If T is consistent, GT is not provable
in T , and if T is Σ-sound, then GT is independent of T .

Proof. If GT is provable in T , then �GT is also provable by the first deducibility condition.
By definition of GT , we thus have that ¬GT is provable in T , so T is inconsistent.

If ¬GT is provable in T , either T is inconsistent and thus not Σ-sound, or if T is
consistent, ¬GT is false (since GT is true: we have just proved that ”GT is not provable”,
which is equivalent in S to GT ) and again T is not Σ-sound, since ¬GT is equivalent in S
(and thus in T ) to �GT , which is equivalent in S to a Σ-formula.

4There is no uniquely defined Gödel sentence for a theory T , because the sentences depend on the Σ-
formula used to define the axioms of T . It is an abuse of language.
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This proof is formalizable in T : �(GT 3 ¬�GT ) is provable in T by definition of GT
and 1.1, so �GT 3�¬�GT is provable in T by 1.3, and �GT 3��GT is provable in T
by 1.2, so �GT 3 (��GT ∧�¬�GT ) is provable in T . Hence, �GT 3¬ConsT is provable
in T .

Thus, ConsT implies ¬�GT (and also GT ) in T .
This yields the second incompleteness theorem:

Theorem 2.3 (Gödel’s second incompleteness theorem). If T is consistent, ConsT is not
provable in T .

Proof. The formalization of theorem 2.2 shows that ConsT implies GT in T and by the same
theorem 2.2, GT cannot be provable in T , and thus in T neither can ConsT .

The implication GT 3 ConsT is also provable in T , since ”if T is inconsistent, every
formula is provable in T” is provable in T . Thus, GT and ConsT are in fact equivalent in
T .

The second incompleteness theorem can also be strengthened:

Theorem 2.4 (Löb’s theorem). If φ is a sentence for which �φ3 φ is provable in T , then
φ is provable in T .

Kreisel’s proof. If �φ 3 φ is provable in T , then T + ¬φ ` ¬ � φ, which is equivalent in
T to ConsT+¬φ. Thereby, T + ¬φ proves its own consistency, and so by theorem 2.3 is
inconsistent. Thus φ is a theorem of T .

Löb’s original proof. Suppose that �φ3φ is provable in T and let ψ be the diagonalization
of �x3 φ: the diagonal lemma gives ψ such that ψ ≡ (�ψ 3 φ) is provable in T . Thus we
have by 1.1 and two applications of 1.3 that�ψ 3 (�� ψ 3�φ) is provable in T .

By 1.2, we obtain that �ψ 3�φ is provable in T and also by the assumption on φ,�ψ 3 φ is provable in T . (2.1)

By definition of ψ, it follows that ψ is provable in T . All of this has been proven in T , thus�ψ is provable in T , and by 2.1, φ is provable in T .

Rosser’s theorem is a variant of Gödel first incompleteness theorem dropping the sound-
ness condition on T to obtain an independent statement. It uses a modification of ProofT .

ProofRT (x, pyq) iff ProofT (x, pyq) ∧ ∀z, pwq 6 x, (ProvT (z, pwq)3 y 6= ¬w)

From ProofRT , one defines ProvRT and ConsRT .

Theorem 2.5 (Rosser’s theorem). Let φ be a sentence by the diagonalization lemma such
that S ` φ ≡ ¬ProvRT (pφq). Then

(1) T 0 φ;
(2) T 0 ¬φ;
(3) T ` ConsRT .

2.2. Semantical proofs

By semantical proofs, we mean “more model-theoretical” proofs.
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2.2.1. GT ≡ ConsT . From the first syntactical incompleteness theorem, one can obtain a
model theoretical proof of the second incompleteness theorem: a model theoretical way
to prove the equivalence of GT and ConsT . It is a forerunner of the ideas underlying the
subsequent model-theoretical proofs of both incompleteness theorems.

Model-theoretical proof of GT ≡ ConsT . Suppose that we have a model M of T + ConsT
such that M |= ¬GT .

Since M |= ConsT , Henkin’s completeness theorem gives a ∆2 model M′ such that
M′ |= T .
M |= ¬GT , thus M |= �GT and by Henkin’s construction, M′ |= GT .
In M, we define a function which to x ∈ M gives xM′ , the x-th successor of 0 in the

sense of M′. Let M′′ be the image of M by this function; it is an initial segment of M′.
GT is Π1 and M′ |= GT , thus so does M′′ and M. Contradiction with M |= ¬GT .

2.2.2. Chaitin’s proofs of theorem 2.2. Let {ϕi}i∈N designate a recursive enumeration of all
partial recursive functions. We work with an acceptable enumeration ϕ, in which all classical
computability results hold (enumeration, s-m-n, fixed point, etc.).

For the purpose of proving Chaitin’s incompleteness theorem, the following simple def-
inition of Kolmogorov complexity is sufficient.

Kϕ(x|y) = smallest e such that ϕe(y) = x, and Kϕ(x) = Kϕ(x|0)
A more classical definition of Kolmogorov complexity goes as follows. A complexity

is defined according to a decompressor, giving the length of a smallest input to the de-
compressor yielding the sought string. The Kolmogorov complexity is then the complexity
according to an optimal decompressor; optimal in the sense that it differs only by an ad-
ditive constant from other decompressors. For more on classical Kolmogorov complexity,
see [LV90]. Our definition is merely a change of scale from the classical one. Both share
the same basic computability properties: a computable function which is a lower bound for
them is necessarily bounded and their graphs are Turing-complete. We call these functions
the Kolmogorov functions.

Theorem 2.6 (Chaitin’s theorem). Let T be a arithmetical-able sound theory. There is a
constant cT such that T does not prove “Kϕ(x) > cT” for any x.

Proof. Let f be the recursive function assigning to c the code m of a the Turing machine M ,
such that M enumerates the theorems of T , searches for a theorem of the form “Kϕ(x) > c”
and in case of success, outputs x.

By Kleene’s recursion theorem there is an e such that ϕe = ϕf(e). Suppose that Te halts
when started with input 0. Te outputs x such that Kϕ(x) > e because of the soundness
assumption. On the other hand, if Te outputs x with input 0, then Kϕ(x) 6 e by the
definition of Kϕ. Contradiction.

Hence, Te does not halt and thus there is no proof of “Kϕ(x) > e” for any x. Thereby
cT = e works.
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Chaitin has given many other variants of this proof. Another proof goes by the observa-
tion that if no such cT existed, then there would exist an unbounded lower bound function
of the Kolmogorov complexity function.

2.2.3. Other proofs. Many other model-theoretical proofs of the incompleteness theorems
have appeared.

In [Vop66], Vopěnka proved theorem 2.3 for Bernays-Gödel axiomatic set theory using
Richard’s paradox: “the least number not definable in 1000 words”. More recently, in
[Jec94], Jech gave a short proof of theorem 2.3 for set theory.

In [Kre68], Kreisel gave the first proof of theorem 2.3 using Henkin’s arithmetized
completeness theorem.

In [Boo89b, Boo89a], Boolos proved both theorems 2.2 and 2.3 using both model-
theoretical techniques and Berry’s paradox.

3. Incompleteness revisited

From Henkin’s proof of the completeness theorem, one can derive the arithmetized
completeness theorem. It is an important result that is essential for constructing arithmetical
models and thus for proving Gödel’s second incompleteness theorem.

The arithmetized completeness theorem asserts that any recursively axiomatizable
consistent theory has an arithmetically definable model. We say that a formula φ in
LPA defines a model of T in a theory S in LPA if we can prove within S that the set
{σ : σ is a sentence in LT ∪ C that satisfies φ(pσq)}, where C is a set of new constants,
forms an elementary diagram of a model of T with a universe from C.

Theorem 3.1 (Hilbert-Bernays arithmetized completeness theorem). There exists a ∆2

formula TrT in LPA that defines a model of T in PA+ ConsT .

The following is a corollary of this theorem: if M0 is a model of PA+ ConsT , then
there exists a model M1 of T such that

(1) for any sentence φ in LPA, M1 |= φ if and only if M0 |= TrT (pφq),
(2) for any Σ1 sentence φ in LPA, if M0 |= φ, then M1 |= φ.

We then say thatM1 is a model of T definable in a model ofM0 of PA+ ConsT and write
M1 ≺dM0.

3.1. Incompleteness in computability

3.1.1. From K = {x : ϕx(x) ↓} or similar. Using the same basic arguments we have used in
the introduction, if we consider any non-recursive recursively enumerable set L, then given
a Π1-sound (≡ consistent) theory T , there is an nLT 6∈ L such that T does not prove it. This
is a form of the first incompleteness theorem.

Using the arithmetized completeness theorem 3.1, the second incompleteness theorem
(T ` 1- ConsT 3¬ProvT (ConsT )) can be proved as follows:
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K-related proof of a variant of theorem 2.3. We assume that ConsT is derivable from T .
Then by the completeness theorem, there exists a model M0 of T .

IfM0 |= ProvT (p0 ∈ Lq), then letM1 =M0. OtherwiseM0 |= ¬ProvT (p0 ∈ Lq) and
thusM0 |= ConsT+06∈L. Hence, by the Hilbert-Bernays arithmetized completeness theorem,
there exists M1 ≺dM0 such that

either M1 |= ProvT (p0 ∈ Lq) (in case M1 =M0) or M1 |= ProvT (p0 6∈ Lq).
We iterate this construction.

Consider the final model MnLT
, it satisfies ¬ConsT by the previous form of the first

incompleteness theorem: If we have MnLT
|= ProvT (pnLT ∈ Lq), then the 1-consistency of

T is contradicted by the fact that nLT 6∈ L, since it is a Σ1 statement. Hence, MnLT
|=

ProvT (pnLT 6∈ Lq) which implies the non-consistency of T , since nLT is such that nLT 6∈ L is
not provable in T .

3.1.2. From computability functions. In the sixties, Tibor Radó, a professor at the Ohio
State University, thought of a simple non-computable function besides the standard halting
problem for Turing machines. Given a fixed finite number of symbols and states, select
those Turing machines which eventually halt when run with a blank tape. Among these
programs, find the maximum number of non-blank symbols left on the tape when they halt.
Alternatively, find the maximum number of time steps before halting. These functions are
well-defined but uncomputable. Tibor Radó called them the Busy Beaver functions. For
more on the Busy Beaver problem, read [Rad62, Lin63, LR65, Bra66, Bra83, Dew84, Dew85,
Her88, MS90, MB90, LP07].

Alternative functions can be defined that are close in nature to these Busy Beaver
functions. Let σsteps be the function which to i gives the maximum number of steps for
which a Turing machine with code 6 i will keep running before halting starting with a blank
tape. For a Turing machine M , tM denotes the time complexity function of M : tM (x) = s
if M(x) halts after s steps. Following the Busy Beaver functions’ definitions, we define
σvalue to be the function which to i gives the maximum number which a Turing machine
with code 6 i will output, following a fixed convention, after halting starting with an input
6 i. These functions are in a sense inverses of the Kϕ function.

Other functions can be defined following classical Kolmogorov complexity, e.g., the
function which to n gives the biggest number with Kolmogorov complexity lower than n.

We call these functions the σ functions. For each variant, we can define a function
focusing on maximizing the number of steps, e.g., σsteps, or the outputed values, e.g., σvalue.
The value of one of the functions on a certain x is computable from x and the value of the
other function on input x+ c for a certain constant c.

A result similar to Chaitin’s result (see section 2.2.2) can be obtained concerning the
σ functions:

Theorem 3.2 (Chaitin-like incompleteness theorem for σ functions). Let σ be one of the
σ functions. Let T be an arithmetical-able consistent theory. There is a constant nσT such
that

T ` ConsT 3 ∀s¬ProvT (pσ(nσT ) < sq). (3.1)

Proof. Consider a Π1 formula φσ in the language of T such that φσ(x, s) expresses that
σ(x) < s.
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Working in T , for a given x, take the smallest s such that ProvT (pφσ(x, s)q) holds. T
being consistent and φσ Π1, φσ(x, s) also holds.

ProvT (pφσ(x, s)q) is a Σ1 formula and thus can be seen as ∃yψ(x, s, y) or equivalently
∃〈s, y〉ψ(x, s, y) where ψ is ∆0.

Thus there is a Turing machine computing ψ. Consider its code iψ (or its number of
states or transitions, depending on the choice of σ). For large enough x, i.e., x > iψ + c,
knowing that φσ(x, s) holds (using the computation through shifting, i.e., the constant c,
between both types of σ functions), we know that σ(x) < s and thus there is an s′ =
〈s′1, s′2〉 < s such that ψ(x, s′1, s′2) holds. But for each s′ = 〈s′1, s′2〉 smaller than s, the
statement ¬ψ(x, s′1, s′2) is true by the minimality of s, and provable (being ∆0). Thus we
have ¬ConsT .

It is also possible to go through the same proof but using Kolmogorov functions (classical
Kolmogorov complexity function C, Kϕ, . . . ) and a variant of Chaitin’s theorem 2.6,
following closely the proof of theorem 3.2: Let K be a Kolmogorov function. If T is
consistent, then there exists nKT such that for all x, T 0 K(x) > nKT . Moreover, if T is
ω-consistent, then for all x, if K(x) > nKT , then T 0 K(x) 6 nKT .

From there, we can show Gödel’s second incompleteness theorem in a model-theoretical
way.

Model-theoretical proof of theorem 2.3 using σ functions. We have supposed that T is con-
sistent. So, let M0 be a model of T .

If M0 |= ProvT (p∀x ¬tT0(0) = xq), then let M1 =M0. Otherwise,

M0 |= ¬ProvT (p¬∃x tT0(0) = xq)
Thereby, M0 |= ConsT+∃x tT0

(0)=x. Hence there exists, by theorem 3.1, M1 ≺d
M0 such that either M1 |= ProvT (p¬∃x tT0(0) = xq) (when M1 = M0), or M1 |=
∃xProvT (ptT0(0) = xq) (because {(i, x) : tTi(0) = x} is ∆0, in other words primitive re-
cursive, and thus its truth in M1 implies its provability).

We iterate this construction (consider now M1 and “tT1(0) = x”, instead of M0 and
“tT0(0) = x”; in i-th iteration, consider Mi and “tTi(0) = x”).

Consider the last model MnσT
, the model constructed after the nσT -th iteration. This

model satisfies ∀i 6 nσT ProvT (p¬∃x tTi(i) = xq) ∨ ∃xProvT (ptTi(i) = xq) by theorem 3.1.
In this model, for each i 6 nσT such that the second case holds (∃xProvT (ptTi(i) = xq)), we
take the smallest appropriate x and choose s to be greater than all these x’s. Thus, this
model satisfies the provability in T of σ(nσT ) < s and thus satisfies ¬ConsT by (3.1).

This argument can be carried out for other functions than σ. In particular for the
variants of the Busy Beaver functions.

The second incompleteness theorem 2.3 can also be proved in this manner from the
above Kolmogorov function variant of theorem 3.2.

It is an open question to carry out this type of argument (for proving both incom-
pleteness theorems) for bizarre functions derived from the Busy Beaver functions, defined
in [LP07], e.g., consider the function giving the parity of one of the Busy Beaver functions.
One of the obvious missing properties of these functions is unboundedness.
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3.1.3. Giving its own relative consistency. We say that a statement φ is a revelation for T
if φ is unprovable in T and its consistency relative to T (if T is consistent, so is T + φ) is
provable from itself in T :

T ` φ3 ConsT (φ)
The links between incompleteness and computability functions described above in sec-

tion 3.1.2 have yielded the following serendipitous result.

Theorem 3.3 (Serendipitous incompleteness theorem for σ functions). Let σ be one of the
σ functions. If T is consistent, then there exists a natural number rσT such that for all x,
σ(rσT ) < x is a revelation for T .

Proof. Consider the Π1 statement ∀x ψ(x)x equivalent to ConsT+φ.
ψ ∈ ∆0 and thus there is a machine Mψ with code iψ such that Mψ decides {x : ψ(x)x}:

Mψ on input x eventually enters an acceptance state if ψ(x)x, or a rejection state otherwise.
Consider another Turing machine M ′ψ which runs Mψ successively on each natural

number starting from 0 and stops and writes the counter example of ψ if the simulation of
Mψ enters a rejection state.

Let i′ψ be the code of Turing machine M ′ψ. σ(i′ψ) makes the verification of ∀x ψ(x)x a
∆0 property.

By using Kleene’s recursion theorem on this previous construction, we find rσT such
that knowing (or bounding) the value of σ(rσT ) makes the verification of ConsT+σ(rσT )6x
a ∆0 property. Knowing that T is consistent and assuming σ(rσT ) 6 x, T thus proves
ConsT (σ(rσT ) 6 x).

By Gödel second incompleteness theorem, σ(rσT ) 6 x is an unprovable statement in T .

3.2. Interpretations of Chaitin’s theorem

Chaitin’s famous version of Gödel’s first incompleteness theorem (see section 2.2.2) is
compelling for various obvious reasons. Firstly a statement of the type “the Kolmogorov
complexity of this integer is greater than that integer” looks more mathematically natural
than a consistency statement and secondly it gives a bound on the provable complexity
of objects in a given theory. The question that arises forthrightly is the relevance of this
bound to measure the complexity, the power, or information content of a theory.

We will now discuss the validity of the common way of interpreting Chaitin’s theorem.
Many people have addressed criticisms towards this interpretation. In particular see [Fal96,
Raa98]. We try to sum up these criticisms here.

Chaitin’s result, theorem 2.6, has been interpreted to show that in a formalized theory
one cannot prove an object to be more complex than the complexity of the theory itself. This
received interpretation claims that the limiting constant cT is determined by the complexity
of the theory T itself and is a good measure of the strength of the theory.

As Chaitin puts it in [Cha82]: “I would like to measure the power of a set of axioms
and rules of inference. I would like to be able to say that if one has ten pounds of axioms
and a twenty-pound theorem, then that theorem cannot be derived from those axioms.”

It is assumed here that the algorithmic complexity of the axioms gives a good measure
of the power, or information content, of the theory. The constant cT is assumed to depend
on the complexity of the axioms of T . The finite bound given by the constant cT is hence
thought to reflect the power, or information content, of the theory.
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By playing with Kleene’s fixed point theorem, for any suitable theory T , one can con-
struct acceptable enumerations of partial recursive functions yielding constants cT equal to
0 or arbitrarily large, whatever the theory T .

A closer inspection shows that the value of cT is actually determined simply by the
smallest (by its code) Turing machine which does not halt, but for which this cannot be
proved in T . It is really hard to see why the code of such a Turing machine would reveal
anything interesting about the power or information content of T .

Considering a strong theory like ZFC, Zermelo-Fraenkel set theory with the axiom
of choice, we could compare its constant cZFC to the constant of a weak theory, say PA,
Peano Arithmetic. The constants depend on our acceptable enumeration of partial recursive
functions. Thus, suppose we have cZFC > cPA. We can then add to PA all true sentences
of the form ¬∃x ϕe(0) = x which are provable in ZFC, for all e < cZFC. It follows from a
result of Kreisel and Levy [KL68] that this new theory cannot possibly come even close to
the power of ZFC. But the constants of this new theory and ZFC are now equal, and hence,
they should, according to the received interpretation, have the same power. Furthermore,
we may still add to our new theory one more true sentence ¬∃x ϕcZFC(0) = x. Now the
constant of this theory is bigger than the one of ZFC. This whole argumentation shows
that one has to be careful on the interpretation given to the constants cT ’s.

As mentioned in [Fal96], the only thing that these constants could at most tell of a
theory is what propositions of the form “K(·) > ·” it can prove. Therefore, withstanding all
the above arguments, one could wonder whether adding as an axiom a sentence of the form
“K(x) > c” could not be equivalent to the relative 1-consistency of a strong (consistency-
wise) unprovable statement or even to the 1-consistency of a theory. For example, the
1-consistency of a large cardinal axiom5 would also only add “information” about some of
the propositions and be incredibly weaker than the large cardinal axiom itself. This would
give credit to Chaitin’s interpretation of his theorem and present the constant cT as a partial
measure of the power of a theory T .

Having a link between consistency (or soundness) and computability (K, Busy beaver
functions or Kolmogorov complexity) would make possible an understanding of what prop-
erties consistency adds to a theory. Adding consistency as an axiom would then yield new
combinatorial properties. Until now, consistency has been seen as a strange statement, only
considered because of Gödel’s second incompleteness theorem. It is true that even if one can
construct stronger theories by adding as a new axiom its consistency, it is not clear in what
way the obtained theory is stronger. It could well be that the only additional information
this new theory has is this consistency statement and that nothing else is added because of
this additional axiom. In fact, as mentioned in the introduction of this paper, one would
need to add 6 ωω

ω+1
times a reflection principle to our theory to cover all true arithmetic

statements.
Taking into account the above arguments, we see that the only total measure one

could get of a theory through Chaitin’s theorem 2.6 would not be a constant cT but a
set CT of constants for which Chaitin’s proposition is unprovable in T . If we want the
above objections not to apply (in particular modifying by Kleene’s fixed point theorem the

5See [KM78, Kan94].
6For any uniform reflection progression {Ta}a∈O, there is a branch B in an ordinal notation system O,

such that there is, for any true arithmetical sentence φ, an a in B with |a| < ωω
ω+1

for which φ is provable
in Ta. For details, see [Fef62, FS62].
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acceptable enumeration with which we work), CT should necessarily be infinite and non-
recursive. This set could not then be used to form an additional axiom if we want our
theory to stay recursively axiomatizable.
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[Rog58] Rogers (H.), « Gödel numberings of partial recursive functions », Journal of Symbolic Logic,

vol. 23, 1958, p. 331–341.
[Rog67] Rogers (H.), The Theory of Recursive Functions and Effective Computability. MIT Press, 1967.
[Ros36] Rosser (J. B.), « Extensions of some theorems of Gödel and Church », Journal of Symbolic
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Abstract. We consider simulations of graph automata. We introduce two local trans-
formations on the neighborhood: splitting and merging. We explain how to use such
transformations, and their consequences on the topology of the simulated graph, the speed
of the simulation and the memory size of simulating automata in some cases. As an ex-
ample, we apply these transformations to graph automata embedded on surfaces and we
link our results with some simulation results between cellular automata on Cayley graphs.

1. Introduction

In this paper, we consider simulations between networks of automata arranged on graphs
which are embedded on surfaces. The way to draw graphs on surfaces comes from combina-
torial topology, an older name for algebraic topology which was addressed by Kuratowski [4].

Combinatorial topology (see [3]) was developed at first as a branch of geometry. The
work of Euler and a number of nineteenth-century geometers on polyhedra is part of the
development. Under the scope of this theory is also the study of surfaces. Surfaces are
topological spaces in which every point has a neighborhood that is topologically equivalent
to an open disk. The simplest example of a surface is the plane. Other objects can be
constructed in a combinatorial way by gluing disks together. With this kind of operation
one gets a cylinder, a surface with boundary, or the torus which is the surface that results
when both pairs of opposite sides of a rectangle are identified.

This kind of networks of automata has to be compared with cellular automata on
Cayley graphs. Both models share the same underlying networks but are described in a
completely different fashion. Instead of drawing the graph of the network on a surface, it is
defined by the Cayley graph of a finitely presented group. The approach, more algebraic,
brings more constraints. Some authors already considered simulations between cellular
automata on Cayley graphs: Róka [10, 11, 12, 13] proposed different simulations extended
by Martin [5, 6, 7].

Key words and phrases: Graph automata, Cellular automata on Cayley graphs, algorithmics, topology.
(This work has been supported by the Interlink/MIUR project “Cellular Automata: Topological Prop-

erties, Chaos and Associated Formal Languages” and by the french ANR programme Sycomore.)
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Some results can be imported from the Cayley graphs approach to the combinatorial
topology approach and we will discuss their similarities and differences.

The paper is organized as follows. We introduce our model of computation in Section 2.
Section 3 presents our local transformations on the neighborhood and gives some examples.
Section 4 uses the local transformations to simulate finite graph automata embedded on
surfaces.

2. Notation and definitions

We start with two surfaces with boundary: the cylinder and the Moebius strip (see
Fig. 1). The cylinder which can be described as a square in which top and bottom edges

Figure 1: Two surfaces with boundary; a cylinder (left) and a Mœbius strip (right).

are given parallel orientations and the left and right edges are joined to place the arrow heads
and tails into coincidence. The Möbius strip is a one-sided non-orientable surface obtained
by cutting a closed band into a single strip, giving one of the two ends thus produced a half
twist, and then reattaching the two ends.
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Figure 2: Drawing of orientable surface (left) and non-orientable surface (right).

We then consider “classical” surfaces for drawing a picture of a graph (cf. section 2.1).
There are two types of surfaces: orientable and non-orientable. The orientable surface of
genus 0 and 1 are respectively called a plane and a torus. When we increase the genus g
of the orientable surface for g ≥ 2, we obtain

−→
Sg a g-handled torus. The non-orientable

surfaces of genus 1 and 2 are respectively a projective plane and a Klein bottle. Fig. 2 left
describes an orientable surface of genus g in which each pair of edges sharing the same label
are joined together. Fig. 2 right describes Sg, an non-orientable surface of genus g.

In the rest of the paper we will keep the notations of combinatorial topology for the
surfaces we consider. Thus, the usual ring becomes a cylinder (abbreviated by Cyl), a
“usual” torus remains a torus (abbreviated by

−→
S 1).
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2.1. Embedding graphs on surfaces

A graph G is an ordered pair G = (V,E) where V is a set of vertices (or nodes) and E
is a set of edges which are pairs of distinct vertices. A path is a sequence of vertices, each
adjacent to the next. A cycle is a path with at least 3 vertices such that the last vertex is
adjacent to the first. Given x and y two vertices of G, the distance between them is the
length of a minimal path from x to y.

Since our goal is to embed regular graphs (i.e. isomorphic to Cayley Graphs) on surfaces
and to associate a finite state machine to each vertex of the graph, we need some further
definitions on graphs.

A graph is planar if it can be drawn in the plane so that no edges intersect or, equiv-
alently, if it can be embedded in the plane. A nonplanar graph cannot be drawn without
edge intersections. More generally, we consider in this paper graphs which are embeddable
on an orientable surface

−→
Sg, that is which can be drawn on

−→
Sg without crossing edges.

When a graph is drawn without any crossing, any cycle that surrounds a region without
any edge reaching from the cycle inside to such region forms a face, including the outer,
infinitely large regions (when existing). Observe that the notion of face is independent from
the embedding [2].

The dual of a given planar graph G has a vertex for each face of the graph and an
edge for each edge joining two neighboring regions. Fig. 3 illustrates the embedding of an
hexagonal grid on a torus and the embedding of its dual on a torus. Vertices with the same
number have to be identified as well as edges joining identical vertices.
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Figure 3: Dual embeddings of an hexagonal graph on a torus. On the left, vertices with
the same number are identified like on the right, the dotted edges with the same
numbers.

2.2. Graph automata

A partitioned graph automaton (PGA for short) over a graph G is a 4-tuple A =
(Q,G,N, δ) for which we associate a finite state machine called a cell to each vertex of
the graph G. The set Q denotes the finite set of the states, G = (V,E) is a graph, N
the neighborhood (including the cell itself and nodes at distance 1 together with a local
numbering as described by Fig. 4; the numbering gives an ordering of the neighbors that will
be used by the local transition function) and δ : Q]N → Q]N is the local transition function
which updates the state of cell i at time t according to the states of (copies of) its neighbors
at time t − 1, analogously with the partitioned CA (PCA for short) introduced in [8]. In
a PGA (as well as in a PCA), the states are partitioned according to the neighborhood
and only the relevant pieces of states are available to any state. Sub-states are gathered
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to form only one state to be updated. That is, each state of a PGA is a ]N -tuple, each
tuple contains information for a specific neighbor. This model simplifies the simulations we
are considering in section 2.3. We define a distinguished state q, the quiescent state that
verifies δ(q, . . . , q) = q]N . Note that we only consider the radius 1 neighborhood (of one
cell) defined as the set of vertices at distance at most one from the cell (thus including the
cell itself) that we depict on Fig 4. The k-neighborhood (of a cell) is the set of vertices at
distance at most k from the cell. Hence, as we need to know the neighborhood of a cell to
compute one transition step, we need to know the k-neighborhood to compute k transition
steps. We define a configuration of the PGA as an application c which attributes a state to
each cell. The set of all the configurations of a PGA is denoted by C = Q]N]V on which the
global function ∆ of the PGA is defined by applying globally the local transition function.

1

1
1 1

2

2

2

2

3

3

3

4

4

5

6

Figure 4: Different kinds of neighborhoods; from left to right: N2, N3, N4 and N6.

Definition 2.1 gives the formal statement of a simple PGA embedded on a cylinder and
the behavior of the transition function is depicted on Fig. 5.

Definition 2.1. A 2-neighbor PGA on a cylinder is A = (Q,G,N2, δ) with set of states
Q = L×C×R. L,C and R are all non-empty subsets of the same set of states Q′ with L the
set of left internal states, C the set of center internal states and R the set of right internal
states, G = Cn (the cycle graph with n vertices), N2 the von Neumann neighborhood, and
δ the local transition function:

δ : R× C × L→ L× C ×R
A configuration of A is a mapping Zn → L×C×R. The set of all configurations is denoted
by C. We denote by left (center, right resp.) the projection function which picks
out the left (resp. center, right) element of a triple in L × C × R. The global function
is ∆(c)(i) = δ (right(c(i− 1)),center(c(i)), left(c(i+ 1))) where i, i − 1 and i + 1 are
integers modulo n.

Definition 2.1 can be easily adapted to the neighborhoods depicted on Fig. 4.

In the sequel, we will consider some particular drawings of graphs on surfaces for which
we introduce some notation. The first letter(s) denotes the surface on which the graph will
be embedded with the subscript denoting its genus (if relevant). The second letter gives
the neighborhood of the graph according to Fig. 4. Last parameter gives the number of
vertices of the graph. The simplest one is the embedding of a cycle graph with n vertices
on a cylinder (Fig. 5). It will be denoted by CylN2(n). Next is the toroidal mesh which
is the embedding of the cartesian sum1 of two cycle graphs with respectively m and n

vertices on a torus. It will be denoted by
−→
S1N4(m,n). We also consider the embedding

of an hexagonal graph (resp. triangle, its dual graph) on a torus denoted by
−→
S1N6(m,n)

(resp.
−→
S1N3(m,n)). Observe that, for simplicity reason, the parameters of

−→
S1N3(m,n) are

the same than
−→
S1N6(m,n). Indeed, we count the number of hexagons in each principal

1The cartesian sum is often called cartesian product but the definitions differ [2].



94 B. MARTIN AND C. PAPAZIAN

tim
e

Figure 5: Two configurations of a 2-neighbor 3 cells PGA embedded on a cylinder CylN2(3).

n

m

k

Figure 6: S3N6: embedding of an hexagonal graph in a 3-handled torus.

direction. We will also consider a generalization as represented in Fig. 6: the embedding
of an hexagonal graph (resp. triangle, its dual graph) on S3 (the non-oriented surface of
genus 3) denoted by S3N6(m,n, k) (resp. S3N3(m,n, k)). The regularity and extendability
of S3N6(m,n, k) comes from its group representation and was considered by Róka in her
work on cellular automata on Cayley graphs.

Since we are dealing with graphs which are (cellularly) embedded into surfaces, there is
no need here to fully define the interconnection pattern. All the graphs we consider being
regular, the way they are connected is defined by the neighborhood (cf. Fig. 4).

2.3. Simulation

Below, we propose the definition of a step by step simulation between two PGAs. It
expresses that if a PGA A simulates each step of PGA B in τ units of time, there must
exist effective applications between the corresponding configurations:

Definition 2.2. Let CA and CB be the two sets of PGA configurations A and B. We say
that A simulates each step of B in time τ (and we note B

τ≺ A) if there exists a constant
τ ∈ N and two recursive functions κ : CB → CA and ρ : CA → CB such that κ ◦ ρ = Id
and for all c, c′ ∈ CB, there exists c′′ ∈ CA such that if c′ = ∆B(c), c′′ = ∆τ

A(κ(c)) with
ρ(c′′) = c′, where ∆M denotes a global transition of PGA M and ∆t

M the t-th iterate of a
global transition of PGA M .

Depending upon the value of τ , we say that the simulation is elementary if τ = 1,
simple if τ = O(1) and general for τ = O(f(c)) with f denoting any given time-complexity
function on c, the size of the input.

3. Neighborhood transformations

Neighborhood transformations can be seen as local transformations. Such transfor-
mations allow to handle the same computation with slightly different automata, without
changing the major topological properties of the GA. We present two local transformations:
splitting and merging and we give some consequences on the computations.
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3.1. Homogeneous GAs and splittings

Homogeneous GAs are networks where all the vertices have the same number of neigh-
bors. No other assumption is made. We first introduce the splitting.

Definition 3.1. A splitting sG is a local transformation that replaces simultaneously each
single vertex by a subgraph G with the same number of outgoing edges (edges that do not
belong to the subgraph but that link it to the network). The splitting is regular if the GA
remains homogeneous (if G is homogeneous).
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Figure 7: 2-split and multisplit.

Fig. 7 shows two simple regular splits. The 2-split transforming a 2n-node into two
n+ 1-nodes and the multisplit transforming a n-node into n 3-nodes.

If we consider simulations, we obtain Lemma 3.2.

Lemma 3.2. Any GA N can be simulated by any other GA sG(N ) obtained by application
of a split. The bound on the factor of deceleration equals one plus the diameter of the

subgraph G; with our notation, N d+1≺ sG(N ).

Proof. The diameter of a graph is the maximum length of shortest paths between any two
vertices of the graph. Obviously, each subgraph G needs one step of computation to “read”
the states of neighbor subgraphs. Then, d steps are required to obtain, in each nodes of
the subgraphs the complete information on the neighborhood to compute the simulated
transition. Hence one can compute a simple simulation with a slowdown factor of d+ 1.

Hence, we can simulate complex homogeneous GAs with a high degree of connectivity
with bigger but less connected GAs.

3.2. Example of a 2-split

Lemma 3.3 explains the simulation of any 6-neighbor PGA by a 4-neighbor PGA.

Lemma 3.3. N6-PGA
2≺ N4-PGA.

The idea is to cut the hexagon using a 2-split for transforming a 6 node into two 4
nodes and by adding a new part state called a layer (R for the left part and L for the right
part). The simulation depicted on Fig. 9 is as follows:

(1) gather the missing neighbors information; pack it in the layer (Fig. 9 left);
(2) simulate one step of h according to the new neighborhood (Fig. 9 right).
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Figure 8: Transition of a N6-PGA (left) and of a N4-PGA (right).
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Figure 9: Simulating N6-PGA by N4-PGA: gather neighbor informations (left) and simulate
one transition step (right).

Proof. A N6-PGA [9] is (Q,G6, N6, h) with Q = C ×N ×NE × SE × S × SW ×NW sets
of center, north, north-east, south-east, south, south-west and north-west part states. G6

is the graph of hexagons which is embedded on a surface, N6 is as depicted on Fig 4. The
local function h is a mapping (see Fig. 8):

h : C × S × SW ×NW ×N ×NE × SE → C ×N ×NE × SE × S × SW ×NW
A N4-PGA is (Q,G4, N4, σ) with Q = (C,U,R,L,D) sets of center, up, right, left and

down part states. G4 is a toroidal mesh, N4 as on Fig 4. The local function σ is a mapping:
σ : C ×D × L× U ×R→ C × U ×R×D × L (Fig. 8 right).

To simulate a N6-PGA by a N4-PGA, we distinguish periodically two cells: one which
gathers the contents of the right part of the hexagon and, respectively, one which gathers
the left part of the hexagon. The first rule of σ is:

(1) (C,D,L, U,R) 7→ (C,U,R = (D,U,R), D, L) gathering left part
(2) (C,D,L, U,R) 7→ (C,U,R,D,L = (D,L,U)) gathering right part

After these rules, the contents of the R part is for (1) (D,U,R) which contains a copy of
(SE,N,NE) and for the L part, (S, SW,NW ). After that, the part C has all the necessary
information to simulate one transition step of h (Fig. 9). The factor of deceleration is 2 as
stated in Lemma 3.2.

Below, we also recall Lemma 3.4 which states that a 6 neighbors PGA can be simulated
by a 3 neighbors PGA (and conversely). It was proved by Róka by using Cayley graphs.
But, since it is a local transformation, it will be used later.

Lemma 3.4 (Róka [13]). N6-PGA
1≺ N3-PGA (and conversely).
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3.3. Homogeneous GAs and merging

Merging, the converse operation of splitting is more difficult. It is due to the fact that
we need some special property of the GA for merging. Actually, merging is only possible if
one of the graphs can be obtained by splitting from the other one (finding if a graph can
be obtained by splitting seems to be a complex NP problem). But what is the acceleration
factor?

Lemma 3.5. Any GA N can be simulated by any other GA mG(N ) obtained by application
of a merge. The factor of acceleration equals one: in the worst case, there is no speedup.

Proof. As we consider only radius 1 neighborhoods, the k-neighborhood of a node v is the
set of all vertices at distance at most k from v. To simulate k steps of computation, an
automaton needs to know the states of all vertices of the k-neighborhood of the simulated
vertex.

Fig. 10 shows how such pieces of information about k-neighborhood can be difficult to
gather in arbitrary networks. The subgraph on the left is G, our merging pattern. When
we apply the merge on the large GA, we obtain a four vertices GA. But one can remark
that the 2-neighborhood of the circled vertex is not contained in the 1-neighborhood of the
macro-vertex in the resulting GA. Hence, we cannot really apply a simple speed-ud, as we
need two steps to gather the 2-neighborhood of all vertices in each subgraph G. This is
due to the size 4 of the grey face. On the right, there is a n-face, where the speed-up will
be even more difficult. In arbitrary networks, arbitrary large faces occur. Hence there are
arbitrary long paths that are not shrinked by the merge, preventing any acceleration (due
to the “speed of light” limit inherently present in any automata network). Obviously, in
some finite case, we can use more complex acceleration techniques, but the worst case can
possibly occur.

Figure 10: Acceleration problem.

However, many networks can be simulated with a good speedup factor by merging
vertices. Hence, we must remember that we use some regular property of those networks
and not only merging to obtain an acceleration. The theorem 3.7 is a refinement of the
lemma 3.5. We obtain a more precise bound using the internal path length.

Definition 3.6. The internal path length of a subgraph with outgoing edges is the shortest
path between two different outgoing edges. If there is a vertex with two outgoing edges,
the internal path length is zero.

Theorem 3.7. Any GA N can be simulated by any other GA mG(N ) obtained by applica-
tion of a merge. The factor of acceleration is at least one plus the internal path length of
the subgraph G.
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Proof. Let i be the internal path length of G. In mG(N ), the neighborhood of any vertex
v contains the (1 + i)-neighborhood of any vertex of N simulated by v. This is due to the
fact that any path of length 1 + i cannot reach outgoing edges of neighborhood subgraph
G.

Figure 11: An efficient merging.

The figure 11 shows a merge with a subgraph G with an internal path length of 1.

3.4. Some efficient merges

Theorem 3.7 only gives a lower bound. We show now several ways to use regularity to
find efficient merges to speed-up the simulations.

3.4.1. n-ary tree. In a infinite regular n-ary tree Tn, one can merge using any finite tree t.
We consider oriented trees, each vertex having one father, and n sons.

The acceleration factor only depends upon the smallest path from the root of t to a
descendant not in t. Hence we only consider complete n-ary tree of height h as t, that we
note thn.

mthn
(Tn) = Tnh+1 , and the k-neighborhood in the merged tree contains the simulted

(1 + (k − 1)h)-neighborhood. Hence, for any ε > 0, we can simulate Tn by Tnh+1 , with
an acceleration factor of h − ε. Each automaton reads its k-neighborhood (with k ≥ h−1

ε )
using k time steps, and simulates 1 + (k − 1)h time steps of Tn. The factor of acceleration
is 1+(k−1)h

k = h− h−1
k ≥ h− ε.

3.4.2. Memory usage. Hence, when one wants to simulate Tn at speed s, one can choose
any h > s to merge using thn, and then k = dh−1

h−se will be the size of the neighborhood in the
new network that we read before simulating several steps of computation. But which is the
size of the simulating automaton? tnh contains nh+1−1

n−1 vertices. And the k-neighborhood of

a vertex in Tn contains 1 + (n+ 1)n
k−1
n−1 vertices (only 1 vertex if k = 0). Let s be the speed

we want to obtain, and h the height of thn that we used for merging, the new automaton
must contain at least:

m =
nh+1 − 1
n− 1

(
1 + (nh+1 + 1)

n(h+1)(dh−1
h−se−1) − 1

nh+1 − 1

)
copies of simulated automata. It means that a simulating automaton must remember the
states of m different simulated automata to compute the simulation. By minimizing this
formula, we obtain the best height to achieve the simulation at given speed with a minimum
memory size for the new automaton. The minimal height h does not depend on n, and the
height h that minimizes the memory size is obtained for k-neighborhood k = 2 then h =
2s− 1. This is the best way to simulate merged infinite regular trees. In this case, memory
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Figure 12: Simple (left) and optimal (right) merges of the grid for 4-vertices patterns.

usage grows as n4s, which is quite fast. Hence merging is better than waiting (intuitively,
merging allows several vertices to be merged and they can share memory, whereas waiting
needs to copy on each vertex redondant pieces of information).

3.4.3. Grids and toroidal meshes. Merging grids is more complex, as any tiling pattern can
be used to merge a grid, and it is an open question to know if a pattern tiles a grid [1]. Some
tilings are surprisingly more efficient than others. Consider Fig. 12; on the left, we merge
with squares, and as for trees, we can achieve any speed 2−ε (ε is expensive to minimize as
in trees). On the right we merge using a pattern whose shape resembles a bottom symbol,
and we achieve a speed of 2 with k = 2 which is optimal for a pattern of 4 vertices.

The results on trees hold on grids: merging is better than waiting. For example, when
merging grids using squares, it is better to use big squares and read the 2-neighborhood
than using smaller squares and read a larger neighborhood. The optimal memory usage
(for a simulation at speed s) grows as 4s.

4. Application to the simulations of GA on surfaces

We apply the neighborhood transformations introduced in section 3 to PGA embedded
on surfaces. The simulations we construct have tight relations with some results on cellular
automata on Cayley graphs recalled in the next section.

4.1. Related results

The results we present here come from the Cayley graph approach. Except for the
definition of a local transition function (which is equivalent), they describe exactly the
same objects but from a more algebraic point of view. We give here a statement of the
results for finite PGAs embedded on surfaces as defined in Section 2.1.

Theorem 4.1 (Róka [11]). S3N6(r, p, q)
1≺ −→S1N4(m,n) with m = |α1(p + r − 1) − β1p|,

n = |α2(p−1)−β2(p+q−1)|, (p−1)α1 = lcm(p−1, p+q−1), (p+r−1)α2 = lcm(p+r−1, p),
(p+ q − 1)β1 = lcm(p− 1, p+ q − 1) and pβ2 = lcm(p+ r − 1, p).

Theorem 4.2 (Martin [5]).
−→
S1N4(m,n)

3.min{m,n}+O(1)≺ CylN2(mn).
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Figure 13: Simulating a PGA on a torus by a PGA on a cylinder (even and odd m).

And, by combining Theorem 4.1 and Theorem 4.2, we get:

Corollary 4.3. S3N6(r, p, q)
3.min{m,n}+O(1))≺ CylN2(mn) where m and n are those of The-

orem 4.1.

Theorem 4.4 (Martin-Peyrat [7]).
−→
S1N4(m,n)

Θ(n+m)≺ CylN2(mn) if and only if n ≡ 2
mod m; in this case the number of copies of each cell is minimal.

Theorem 4.4 improves the time-complexity of Theorem 4.2. We have minimized the
number of copies requested to simulate the behavior of a torus of n × m automata by a
cylinder of n ·m automata. Observe that this number of copies cannot be further improved.
It is thus the minimal number of copies requested to complete this task. Theorem 4.4 forbids
some values of n and m. However, for those prohibited values, one can use Theorem 4.2.

4.2. New simulation results

Below, we propose a series of finite simulation results. The first (Lemma 4.5) proposes
a simulation of a N4-PGA embedded on a torus by a N4-PGA embedded on a cylinder. To
do this, we need to cut the torus along one of its Jordan curves.

Lemma 4.5.
−→
S 1N4(n,m)

1≺ CylN4(n,
⌈
m
2

⌉
).

(Proof sketch). We consider a N4-PGA with (m,n) nodes embedded on the torus with m
beeing the height and n the width. We “cut” all the connections along the width and we
fold the resulting cells on the middle. This construction is analogous with the simulation
of a Turing machine with a bi-infinite tape by a Turing machine with an (simply) infinite
tape. We add a “dummy” cell (with symbol ]) on the top depending upon the parity of m
(see Fig. 13). It is not difficult to design the local transition function of the new PGA.

Theorem 4.6 proposes two simulations of a N6-PGA embedded on a torus. The first one
by a N4-PGA embedded on a torus and the other by a N4-PGA embedded on a cylinder.
The results are easily obtained from the previous lemmas.

Theorem 4.6.
−→
S 1N6(n,m)

2≺ −→S 1N4(2n,m), and
−→
S 1N6(n,m)

2≺ CylN4(n,m).
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Conclusion

This paper proposed two graph transformations: splitting and merging. Both can be
used for simulating graph automata in order to make local transformations on the neigh-
borhood. When used on regular graphs, the results we obtain can be compared with those
for cellular automata on Cayley graphs. In particular, they can be used in this formalism
and, conversely, local transformations on Cayley graphs can be applied to graph automata.
We have given some examples of this kind in the paper. Only Lemma 4.5 cannot be related
to cellular automata on Cayley graph since the PGA on a cylinder we have built for the
simulation is not regular. The results of this paper can be combined with results from the
Cayley graph approach to give other results as, for instance, one can replace N6 by N3 in
Theorem 4.6. This study of the relationships –and differences– between both approaches
would be interesting to pursue.
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Abstract. This reading guide aims to provide the reader with an easy access to the study
of universality in the field of cellular automata. To fulfill this goal, the approach taken here
is organized in three parts: a detailled chronology of seminal papers, a discussion of the
definition and main properties of universal cellular automata, and a broad bibliography.

Introduction

The idea and construction of a universal cellular automaton is as old as the formal study
of the object itself, starting with the work of von Neumann [82] on self-reproduction in the
1940s, using cellular automata under suggestions by Ulam. Following the work of Turing,
a Turing-universal cellular automaton is an automaton encompassing the whole computa-
tional power of the class of Turing machines, or by so-called Church-Turing thesis the class
of recursive functions. To encode complex behaviors in a cellular automaton’s dynamics, one
can describe how to encode any computing device of a universal class of machines (Turing
machine, tag systems, etc) and use classical tools of computability theory to shape wanted
behaviors of the object. This is basically what von Neumann did. He designed a cellular
automaton able to encode any Turing machine, the machine being moreover equipped with
a construction arm controlled by the machine’s head.

But Turing-universality is not the only reasonable kind of universality one might expect
from cellular automata. It is quite unnatural to consider a universality of highly parallel
potentially infinite devices as cellular automata by simulation of the dynamics of sequential
finite machines — indeed, as we will discuss, to give a both widely acceptable yet precise
definition of Turing-universality is a very difficult and unfulfilled challenge. As the study
of cellular automata shifted both to dimension 1 and to the study of its dynamics, another
kind of universality emerged. An intrinsically universal cellular automaton is an automaton
able to properly simulate the behavior of any other cellular automaton on any type of
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Figure 1: Partial space-time diagram of the (Z2,+) rule

configuration (might it be infinite). It turns out that most of the historical constructions
in dimension 2 and more, whereas designed as Turing-universal are Intrinsically Universal
by the simple fact that they are designed to encode any boolean circuit.

A formal definition of universality might not seem so important. In fact, when building
a precise cellular automaton from scratch to be universal, a definition is often implicit: the
obtained behavior is the one engineered by the designer. The definition turns out to be
more required when proceeding by analysis: given a cellular automaton rule, is it universal?

The present reading guide is constructed as follows. Section 1 Cellular Automata (p.
103) gives the definitions and notations used for cellular automata, configurations, and
dynamics. Section 2 Chronology (p. 105) is an annotated chronology of seminal papers
preparing to and concerning universality and universal cellular automata. Section 3 To-
wards Formal Definitions (p. 108) discusses the right definition of universalities in cellular
automata. Section 4 Higher Dimensions (p. 110) discusses the construction and analy-
sis of universal cellular automata in dimensions 2 and more, mostly using boolean circuits
simulation. Section 5 Turing Universality (p. 111) discusses Turing universality, its links
with universal Turing machines and the main technics of construction. Section 6 Intrinsic
Universality (p. 113) discusses Intrinsic universality and the main technics of construc-
tion. Section 7 Reversiblity and Universality (p. 115) discusses universality in the special
restricted case of reversible cellular automata.

1. Cellular Automata

A cellular automaton A is a tuple (d, S,N, f) where d is the dimension of space, S is a
finite set of states, N a finite subset of Zd is the neighborhood and f : SN → S is the local
rule, or transition function, of the automaton. A configuration of a cellular automaton is a
coloring of the space by S, an element of SZd

. The global rule G : SZd → SZd
of a cellular

automaton maps a configuration c ∈ SZd
to the configuration G(c) obtained by applying

f uniformly in each cell: for all position z ∈ Zd, G(c)(z) = f(c(z + ν1), . . . , c(z + νk))
where N = {ν1, . . . , νk}. A space-time diagram of a given cellular automaton is a mapping
∆ ∈ SN×Zd

such that for all time step t ∈ N, ∆(t+ 1) = G(∆(t)).

Example 1.1. Fig. 1 is a partial representation of a space-time diagram of the cellular
automaton (1,Z2, {0, 1} , f) where f(x, y) = x + y. State 0 is represented by the white
color, state 1 by the black color. Time goes from bottom to top.

In this paper, we consider for the most part cellular automata of dimension 1 and 2 with
the typical neighborhoods depicted on Fig. 2: von Neumann {(−1, 0), (1, 0), (0,−1), (0, 1)}
and Moore {−1, 0, 1}2 in dimension 2, first neighbors {−1, 0, 1} and one way {−1, 0} in
dimension 1.
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(a) von Neumann (b) Moore (c) first neighbors (d) one way

Figure 2: Typical neighborhoods

Several subsets of the space of configurations are considered. Given a quiescent state q
satisfying f(q, . . . , q) = q, a q-finite configuration c is a configuration equal to q in all but
finitely many cells: there exists α such that for all position z ∈ Zd, ‖z‖∞ > α→ c(z) = q. A
configuration c admits p as a periodicity vector if for all position z ∈ Zd, c(z+ p) = c(z). A
configuration c in dimension d is periodic if it admits a family of d non-colinear periodicity
vectors: there exists p ∈ Nd such that (p1, 0, . . . , 0), (0, p2, 0, . . . , 0), . . . , and (0, . . . , 0, pd)
are periodicity vectors of c. A configuration c in dimension d is ultimately periodic if there
exists α and d non-colinear vectors vi such that for all position z ∈ Zd and all vector
vi, ‖z‖∞ > α → c(z + vi) = c(z). Notice that in dimension 1, an ultimately periodic
configuration can have two different ultimately periodic pattern on each side.

Constraints can also be added to the local rule. Symmetries are usually considered to
obtain more natural rules mimicking physical systems. A symmetry rule can be seen as a
one-to-one mapping ρ : Zd → Zd: the image of a configuration c ∈ SZd

by the symmetry rule
ρ is the configuration ρ(c) satisfying for all position z ∈ Zd, ρ(c)(z) = c(ρ(z)). A cellular
automaton A respects a symmetry rule ρ if ρ and G commute, i.e. ρ(G(c)) = G(ρ(c)).
Typical symmetries include reflections around point (ρ0(x, y) = (−x,−y)), around axes
(ρx(x, y) = (−x, y)) and rotations (θ(x, y) = (−y, x)). A cellular automaton is totalistic
if it’s set of states is a subset of N and the local rule f can be written as f(s1, . . . , sk) =
g(
∑k

i=1 si). Totalistic rules respect all symmetries that preserve the neighborhood (i.e. such
that the image of the neighborhood by the symmetry rule is equal to the neighborhood):
totalistic cellular automata with the von Neumann or Moore neighborhood are reflection
and rotation invariants.

A cellular automaton is injective (resp. surjective, one-to-one) if its global rule is
injective (resp. surjective, one-to-one). A cellular automaton A is reversible if there exists
a cellular automaton B that reverts it, that is such that GB ◦GA is the identity map.

Proposition 1.2 (Hedlund [31], Richardson [72]). A cellular automaton is reversible if and
only if it is injective.

Proposition 1.3 (Amoroso and Patt [2]). It is decidable given a one-dimensional cellular
automaton to decide whether it is reversible.

Proposition 1.4 (Kari [34, 35]). It is undecidable given a two-dimensional cellular au-
tomaton to decide whether it is reversible.

Whereas reversibility is an undecidable question, the construction of reversible cellular
automata is possible, provided that the backward rule is constructed at the same time as the
forward rule. Partitioned cellular automata provide a convenient way to construct reversible
cellular automata. A partitioned cellular automaton is a cellular automaton with state set
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S1 × S2 × · · · × Sk whose local rule can be rewritten as f((s11, . . . , s
k
1), . . . , (s1k, . . . , s

k
k)) =

ϕ(s11, s
2
2, . . . , s

k
k) where ϕ :

∏
Si →

∏
Si is the partitioned rule. As it is straightforward

to verify, a partitioned cellular automaton is reversible if and only if its partitioned rule is
one-to-one. As the partitioned rule is a mapping from a finite set to itself, any partially
defined injective rule can be completed to a reversible cellular automaton.

For a better and more complete introduction to the theory of cellular automata, see
Delorme [18] and/or Kari [36].

2. Chronology

It is a difficult task to give a fair and complete chronology of a research topic. In this
section, we propose an exploration of the history of the field in three main eras:

(1) the computation and machines era describes seminal papers outside the realm of
cellular automata that lead to the main tools necessary to consider computation in
the context of abstract machines;

(2) the universality and cellular automata era is the core part of the chronology: it
describes seminal papers along the path of universality study in the realm of cellular
automata, from the early work of von Neumann in the 50s to the end of the 90s;

(3) the recent trends era is a more subjective choice of some papers in the field in the
twenty-first century.

2.1. Computation and Machines

Gödel 1931 [30]: in his now classical paper describing incompleteness theorems, Gödel
introduces so-called Gödel numberings: the ability to encode and manipulate a for-
mal system inside itself if the system is complex enough. The concept of universal-
ity directly depends on such an encoding: a universal machine simulates a machine
through its encoding. For a precise analysis from a logic and computer science point
of view of Gödel’s paper, see Lafitte [38].

Turing 1936 [81]: while introducing Turing machines and proving the undecidability
of the halting problem by a diagonal argument, Turing also introduces its universal
machine. Fixing an enumeration of Turing machines and a recursive bijective pairing
function 〈., .〉 : N2 → N, he describes a machine U that, on input 〈m,n〉, computes
the same value as the machine encoded m on input n. Universality as a property
is not discussed: a unique universal Turing machine U is given. For a discussion of
the development of ideas from Leibniz to Turing results, see Davis [17].

Post 1943 [68]: at that time, many different models of computation where proposed
and proved equivalent, leading to the so-called Church-Turing thesis. Post intro-
duces tag systems, a combinatorial word-based system successfully used since to
construct size-efficient universal Turing machines. For a modern definition and dis-
cussion of tag systems, see Minsky [51].

Kleene 1956 [37]: finite state machines are at the hearth of many models of com-
putation. Kleene’s paper proves the equivalence between three different families
of objects: regular languages, finite automata, and boolean circuits. Boolean cir-
cuits are modeled after the formal study of abstract neurons by McCulloch and
Pitts [49]. This equivalence is fundamental both to concrete computer design and
discrete models of computation like cellular automata. For a modern discussion on
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this equivalence and its consequences from the point of view of computation and
machines, see Minsky [51]. Perrin [66] gives an history of this period and important
achievements with respect to the field of finite automata and formal languages.

Minsky 1967 [51]: In the spirit of the question from Shannon [73] about the size
of a smallest Turing machine, Minsky explains how to efficiently encode tag sys-
tems computations into Turing machines and describe a universal Turing machine
with four symbols and seven states. This marks the real start of a (still running)
competition.

Lecerf 1963 [40], Bennett 1973 [8]: Reversible computation is concerned with com-
puting devices that can unroll their computation, going back in time. In their inde-
pendent papers, Lecerf and Bennett prove that reversible Turing machines are able
to simulate just any Turing machine. Thus, there exists reversible Universal Turing
machines.

Fredkin and Toffoli 1982 [27]: To encode classical computations into discrete mod-
els, Kleene [37]’s theorem permits to go freely from circuits to finite state machine,
an essential ingredient for computation. Fredkin and Toffoli discuss an analogous for
reversible computation: elementary building blocks to encode any reversible finite
state machine as a reversible circuit. This paper also introduces the so-called billard
ball model of computation: a discrete cellular automata model to encode reversible
computations. The encoding of reversible finite state machines into circuits was
later improved by Morita [55].

2.2. Universality and Cellular Automata

von Neumann 1966 [82]: Introducing cellular automata in order to construct a self-
reproducing machine, participating to the reflexion on the nature of life, von Neu-
mann takes a fixed-point approach. His two-dimensional, 29 states, von Neumann
neighborhood cellular automaton is able to simulate a particular kind of Turing ma-
chine that can also control a construction arm. The power of the construction arm
is rich enough to construct with finitely many instructions a copy of the Turing ma-
chine itself. Whereas the machine is constructed with a form of Turing-universality
in mind, the simulation of the Turing machine is done with very simple components
wiring down a particular family of boolean circuits. As a consequence, the original
cellular automaton is also, a posteriori, intrinsically universal. The construction of
von Neumann leads to various improvements and discussions on the encoding of
boolean circuits, the different organs that compose the machine and the transmis-
sion of signals. A non exhaustive list of interesting following papers might be: Arbib
[3], Burks [10, 11, 12], Moore [52, 53], Thatcher [77, 76].

Codd 1968 [14]: Following the principle of von Neumann idea on self-reproduction,
Codd drastically reduces the complexity of the automaton. Codd’s two-dimensional
rule uses 8 states with the von Neumann neighboorhood. Signals are conveyed
by pairs of states (an oriented particle) moving between walls and reacting upon
collision. This cellular automaton is also universal for boolean circuits and so in-
trinsically universal. A latter construction by Langton [39], based on Codd ideas,
has fewer states and a very simple family of self-reproducing loops but looses its
computation universal capabilities.
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Banks 1970 [4, 5]: The work of Banks is noticeable with respect to several aspects
and also because of its relatively small diffusion in the cellular automata community.
Banks constructs a family of very small cellular automata (two-dimensional, von
Neumann neighborhood, very symmetric, four to two states) simulating boolean
circuits in a very simple and modern way (signals moving in wires, boolean gates on
collisions), he identified and used explicitly the property of intrinsic universality and
gave a transformation to construct relatively small universal one-dimensional cellular
automata with large neighborhoods starting from two-dimensional ones (reencoding
it into a one-dimensional first-neighbors automaton with 18 states). Construction
of a two-dimensional four state universal cellular automaton in the spirit of Banks
is provided by Noural and Kashef [61].

Conway 1970 [29, 9]: The Game of Life introduced by Conway is certainly among
the most famous cellular automata and the first rule to be proven universal by
analysis of a given rule rather than on purpose construction. A modern exposition
of the Game of Life universality and a proof of its intrinsic universality was latter
proposed by Durand and Róka [22].

Smith III 1971 [74]: The simulation of Turing machine by cellular automata to con-
struct one-dimensional Turing-universal cellular automata is studied by Smith III.
Among several results, he explains how to construct a one-dimensional Turing-
universal cellular automaton with first neighbors and 18 states.

Toffoli 1977 [80]: Any cellular automaton of dimension d can be simulated, in a
certain sense, by a cellular automaton of dimension d+1. Using this assertion, Toffoli
shows that two-dimensional reversible cellular automata can be Turing-universal.
The result was later improved by Hertling [32].

Margolus 1984 [42]: Whereas Toffoli transforms any Turing machine into a two-
dimensional cellular automaton by using a new spatial dimension to store compu-
tational choices, Margolus constructs a Turing-universal two-dimensional reversible
cellular automaton by simulation a bouncing billard ball, complex enough to com-
pute any reversible boolean function of conservative logic. The billard ball model
cellular automaton has 16 states defined as two-by-two blocks of binary cells and
von Neumann neighborhood.

Albert and Čulik 1987 [1]: Each cellular automaton can be simulated by a totalis-
tic cellular automaton with one-way neigborhood. With the help of the last propo-
sition, Albert and Čulik construct the first universal cellular automaton obtained by
simulation of any cellular automaton of the same dimension. The automaton works
along the following principle: each macro-cell copies the state of its left neighbor
and adds it to its state obtaining some n, then by copying the nth element of a
reference table, it selects its new state. Whereas the spirit of intrinsic universality
is definitely there, the technical implementation is less clear. The one-dimensional
first-neighbors automaton obtained has 14 states. The construction was later im-
proved by Martin [43, 44] with better transition time complexity and smn theorem.

Morita and Harao 1989 [57]: Introducing partitioned cellular automata, Morita and
Harao explicitely simulate any reversible Turing machine on a one-dimensional re-
versible cellular automaton, proving that one-dimensional reversible cellular au-
tomata can be Turing-universal. The construction was later improved by Dubacq
[21], simulating any Turing machine in real time (without loss of time).
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Lindgren and Nordahl 1990 [41]: The direct simulation of Turing machine on one-
dimensional cellular automata proposed by Smith III can be improved and any
m states n symbols machine can be simulated by a (m + n + 2)-states cellular
automaton following Lindgren and Nordhal. Applying this to Minsky’s 7 states
and 4 symbols machine and then transforming the simple simulation into a macro-
state signal based simulation, Lindgren and Nordhal obtain a one-dimensional first
neighbors 7 state Turing-universal cellular automaton. The intrinsic universality
status of this automaton is unknown.

Durand and Róka 1996 [22]: Revisiting the Game of Life and filling holes in the
universality proof, Durand and Róka publish the first discussion on the different
kinds of universality for cellular automata and the problem of formal definition.

Durand-Lose 1997 [25]: Using a modern definition of intrinsic universality, Durand-
Lose goes one step further than Morita and Harao by constructing a one-dimensional
cellular automata intrinsically simulating any cellular automaton.

2.3. Recent Trends

Imai and Morita 2000 [33]: The improvement in the construction of small and sim-
ple two-dimensional reversible cellular automata continues. Imai and Morita use
partitioned cellular automata to define an 8 state universal automaton.

Ollinger 2002 [64]: Using simulation technics between cellular automata, strong in-
trinsically universal cellular automata with few states can be constructed, here 6
states.

Cook 2004 [15]: Very small universal cellular automata cannot be constructed, they
have to be obtained by analysis. Realising a real tour de force, Cook was able
to prove the Turing-universality of the 2-states first-neighbors so-called rule 110 by
analysing signals generated by the rule and their collisions. The intrinsic universality
of this automaton remains open. The original construction, simulation of a variant
of tag system, was exponentially slow. For a proof of Cook’s result using signals,
see Richard [70].

Neary and Woods 2006 [60]: Recently, the prediction problem of rule 110 was proven
P -complete by Neary and Woods by a careful analysis and modification of Turing
machines simulation technics by tag systems. As P -completeness is required for
intrinsic universality, this is another hint of the potential strong universality of rule
110.

Richard 2008 [71]: The limits of constructed small intrinsically universal cellular
automata are converging towards analysed cellular automata. Using particles and
collisions, Richard was recently able to construct a 4 state intrinsically universal
first-neighbors one-dimensional cellular automaton.

3. Towards Formal Definitions

What is a universal cellular automaton? At first, the question might seem simple and
superficial: a universal cellular automaton is an automaton able to compute anything recur-
sive. In fact, a formal definition is both required and difficult to obtain. The requirement
for such a definition is needed to define a frontier between cellular automata of maximal
complexity and the others: in particular when considering the simplest cellular automata,
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to be able to identify the most complex. The difficulty arise from the fact that we both
want a definition broad enough to encapsulate all constructions of the literature and all fair
enough future constructions. For more details concerning this philosophical question, see
Durand and Róka [22] attempt to give formal definitions.

Turing-universality is the easiest form of universality one might think about, that is
with a computability culture: let the cellular automaton simulate a well known universal
model of computation, either simulating one universal object of the family or any object of
the family.

The first approach pushes back the problem to the following one: what is a universal
Turing machine? a universal tag system? In its original work, Turing did not define
universal machines but a unique universal machine. The definition of universality for Turing
machines was later discussed by Davis [16] who proposed to rely on recursive degrees,
defining universal machines as machines with maximal recursive degree. This definition
while formal lacks precise practical view of encoding problems: the issue continues to be
discussed in the world of Turing machines, becoming more important as smaller and smaller
universal machines are proposed. For a view on the universality of Turing machines and
pointers to literature related to the topic, see Woods [86].

The second approach leads to the problem of heterogeneous simulation: classical models
of computation have inputs, step function, halting condition and output. Cellular automata
have no halting condition and no output. As pointed out by Durand and Róka [22], this
leads to very tricky encoding problems: their own attempt of a Turing-universality based
on this criterium as encoding flaw permitting counter-intuitively to consider very simple
cellular automata as universal.

Turing-universality of dynamical systems in general and cellular automata in particular
has been further discussed by Delvenne, Kůrka, and Blondel [19], and Sutner [75]. None
of the proposed definition are completely convincing so forth, so we will choose on purpose
not to provide the reader with yet another weak formal definition.

Intrinsic universality, on the other hand, is easier to formalize, yet more robust notion
(in the sense that variations along the lines of the definition lead to the same set of universal
automata). Consider a homogenous type of simulation: cellular automata simulated by
cellular automata in a shift invariant, time invariant way. A natural type of universal
object exist in this context: cellular automata able to simulate each cellular automaton.
Following the ideas of grouping and bulking [69, 47, 63], we introduce a general notion of
simulation broad enough to scope all reasonable constructions of the literature.

Direct simulation between two cellular automata can be formalized as follows. A cellular
automaton B directly simulates a cellular automaton A, denoted GA ≺ GB, of the same
dimension according to a mapping ϕ : SA → 2SB if for any pair of states a, b ∈ SA,
ϕ(a) ∩ ϕ(b) = ∅ and for any configuration c ∈ SZd

A , GB(ϕ(c)) ⊆ ϕ(GA(c)).

For any state set S, let (m1, . . . ,md) be a tuple positive integers, the unpacking bijective

map o(m1,...,md) :
(
S

Q
mi
)Zd

→ SZd
is defined for any configuration c ∈ (SQ

mi
)Zd

and any
position z ∈ Zd and r ∈ ∏i Zmi as o(m1,...,md)(c)(m1z1 + r1, . . . ,mdzd + rd) = c(z)(r). The
translation of vector v ∈ Zd is defined for any configuration c ∈ SZd

and position z ∈ Zd as
σv(c)(z) = c(z − v).
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Simulation between two cellular automata is extended by considering packing, cutting
and shifting of the two cellular automata such that direct simulation occur between both
transformed objects. Universal objects are then maximum of the induced pre-order. In
fact, it can be proved that simulation on one side is sufficient for universal objects.

Definition 3.1 (intrinsic universality). A cellular automaton U is intrinsically universal if
for each cellular automaton A of the same dimension there exists an unpacking map om, a
positive integer n ∈ N and a translation vector v ∈ Zd such that GA ≺ o−1

m ◦GnU ◦ om ◦ σv.
Proposition 3.2 (Mazoyer and Rapaport [69, 47]). No cellular automaton is intrinsically
universal in real time (that is, when constraining cutting constant n to be equal to max(m)):
simulation cannot perform both information displacement and transition computation at the
same time.

Proposition 3.3 (Ollinger [65]). Given a cellular automaton, it is undecidable to determine
whether it is intrinsically universal.

Turing-universality and intrinsic universality notions are really different notions. Some
erroneous claims by Wolfram [83, 84] affirm for example that rule 110 is intrinsically uni-
versal. In fact, the question is yet open, Turing universality is the only proven thing.

Proposition 3.4 (Ollinger [63], Theyssier [78]). There exists Turing-universal cellular au-
tomata which are not intrinsically universal. Moreover, some of them are at the bottom of
an infinite increasing chain of equivalences classes of the preorder.

Universality can also be discussed when considering language recognition or computa-
tion on grids. This topic is out of scope of the present paper. For more on this topic, see
Mazoyer [45, 46].

4. Higher Dimensions

In two and more dimensions, an easy way to construct both intrinsically and Turing
universal cellular automata is to go through boolean circuit simulation. Boolean circuits
can encode any finite state machine and a cell of a cellular automaton or the control and
tape of a Turing machine can be described as finite state machines. The topic of boolean
circuit simulation with cellular automata is quite popular and a lot has been written on it,
see for example recreations around the wireworld cellular automaton designed by Silverman
and discussed in Dewdney [20]. Let us just here give technical hints and possible exotic
extensions without entering details.

To simulate boolean circuits, one typically needs to mix the following ingredients:
wires: boolean signals travel in piecewise straight line in space, their paths are the

wires. Several encoding of boolean signals with or without explicit wires are possible:
moving particles encoded as states with a direction vector, bouncing on walls to turn
as in game of life [29]; wire path encoded as wire cells with explicit direction vector
on each wire cell as in von Neumann [82]; undirected wire cells on which directed
signals travel; undirected wire cells on which pairs of two different signal cells travel,
the direction being given by the orientation of the pair as in wireworld [20]; pairs of
undirected wire paths in between which pairs of two different signal cells travel as
in Codd [14] or Banks [5].
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turn and delay: boolean signals should be able to turn in space and delay their
arrival to permit signal synchronization.

signal crossing: in order to encode all boolean circuits, crossing of signals has to
be encoded either explicitly (adding crossing states) or implicitly using delaying
technics (as in von Neumann [82]) or boolean logic tricks.

gates: signals must be combined using boolean gates at least taken in a boolean
universal family of gates. AND, OR, NOT is the classical one but NAND or NOR
is sufficient alone.

fan-out: signals must be duplicated in some way either with an explicit fan-out state
or using specific wire split rules.

Remarks and encoding tricks regarding boolean circuit simulation:
• Universal boolean functions families and their expressive power are described in Post

[67]. But, in cellular automata encoding, it is easy to use constants and multiple
wires encoding, thus the number of boolean classes depending on the implemented
gates is finite and small.
• Clocks are only needed when dealing with some form of synchronized logic simula-

tion. It is often used because boolean signals are encoded with two values: empty
wire or signal on wire. With such an encoding, NOT gate has to generate new signal
on wire and clock signal is used to determine at which time steps to do so. However,
a classical coding trick to avoid the use of clocks and diods is to only implement OR
and AND gates and use the two wires trick to gain boolean universality: a signal
is encoded as one signal on one wire, the second being empty (thus no signal is
encoded as no signal on both wires), then the NOT gate is just the wire crossing
(x, y) 7→ (y, x), the AND gate can be encoded as (x, y) 7→ (x∧ y, x∨ y) and the OR
gate as (x, y) 7→ (x ∨ y, x ∧ y). As both OR and AND produce signal only if there
is at least one signal in input, the need for clock vanishes.
• Wire crossing can be gained for free by using the XOR gate as planar crossing can

be implemented with XORs.
• Delays come for free if the wires can turn in all directions.
• In dimension 3, wire crossing is not needed, use the third dimension to route wires.
• Signal encoding can be done using signal constructions, in the spirit of Mazoyer and

Terrier [48], in order to reduce the number of states.
Of course, boolean circuit simulation is not restricted to square grids. As an example

of a more exotic lattice, Gajardo and Goles [28] encoded a boolean circuit simulator on a
hexagonal lattice (with proper cellular automata definition).

Small intrinsically universal cellular automata are quite simple to construct in dimension
two with few states: Banks does it with 2 states and von Neumann neighborhood with
reflection and rotation symmetry.

5. Turing Universality

In dimension one, boolean circuit encoding is more puzzling as wire crossing capabilities
is bounded by the local rule. Thus, historically, computation universality is achieved by
direct simulation of universal models of computations :

Turing machines: Turing machines are easy to encode on cellular automata (see
below) as an infinite tape really looks like a configuration of a cellular automaton.
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In fact, several variants of Turing machines exist and an important literature on
universality in the Turing world provide useful objects to build small universal
automaton based on this model. The question of existence of small universal Turing
machines was first raised by Shannon [73], different variants of Turing machines are
discussed by Fischer [26]. For a survey on small Turing machine construction, see
Woods and Neary [86].

Tag systems: Tag systems provide a better model to design very small universal
objects. In fact, very small universal Turing machines are constructed by simulation
of tag systems and their variants as originally proposed by Minsky [51, 13]. The
original drawback of tag system was its exponential slow-down when simulating
Turing machines, this drawback was removed recently by Woods and Neary [85,
86] achieving polynomial time simulation. The Turing-universality of rule 110 is
obtained by Cook [15] by direct simulation of a proper variant of tag systems.

The variant of Turing machine we use is the following. A Turing machine is a tuple
(S,Σ, B, s0, T ) where S is a finite set of states, Σ is a finite alphabet with a special blank
symbol B ∈ Σ, s0 ∈ S is the initial state and T : S × Σ → S × Σ × {←,→} is a partial
transition map. A transition rule T (s, a) = (s′, b, d) reads as follow: when reading a from
state s, write b on the tape, move in direction d, and enter state s′. A configuration of
the machine is a triple (s, z, c) where s ∈ S is the current state of the machine, z ∈ Z
is the position of the head, and c ∈ SZ is the content of the tape. The machines goes
in one step from a configuration (s, z, c) to a configuration (s′, z′, c′) if the transition rule
T (s, c(z)) = (s′′, d, b) is defined and verifies s′ = s′′, z′ − z = d, c′(z) = b and for all
position z′′ 6= z, c′(z) = c(z). Starting from a configuration c, an halting computation of
the machine in time t consists of a sequence of configurations (ci)

t
i=0 such that c0 = c, the

machine cannot reach any configuration from ct and for all i, the machine goes in one step
from ci to ci+1. The configuration ct is the output of the computation.

Following Smith III [74], a given Turing machine (S,Σ, B, s0, T ) can be simulated by
a cellular automaton (1, S′, {−1, 0, 1} , f) as follows. Let S′ = Σ ∪ S × Σ. A configuration
(s, z, c) of the Turing machine is encoded as a configuration c′ = τ(s, z, c) of the cellular
automaton in the following way: c′(z) = (s, c(z)) and for all positions z′ 6= z, c′(z′) = c(z).
The local rule encodes the transition function of the Turing machine. For each transition
T (s, a) = (s′, b,←), for all states x, y ∈ S, f(x, y, (s, a)) = (s′, y) and f(x, (s, a), y) = b.
Symmetrically, for each transition T (s, a) = (s′, b,→), for all states x, y ∈ S, f((s, a), y, x) =
(s′, y) and f(x, (s, a), y) = b. All undefined transitions apply identity: f(x, y, z) = y. With
this encoding, starting from an encoded configuration τ(c), the configuration evolves in one
step to a configuration τ(c′) where c′ is the next computation step of the Turing machine
if it exists, c′ = c otherwise. Using this simulation, a Turing machine with m states and
n symbols is simulated by a one-dimensional cellular automaton with first-neighbors and
(m+ 1)n states.

To lower the number of states, Lindgren and Nordahl [41] introduce a simulation scheme
where each step of the Turing machine computation is emulated by two time steps in the
cellular automaton. A given Turing machine (S,Σ, B, s0, T ) can be simulated by a cellular
automaton (1, S′, {−1, 0, 1} , f) as follows. Let S′ = Σ ∪ S ∪ {•,↔}. A configuration
(s, z, c) of the Turing machine is encoded as a configuration c′ = τ(s, z, c) of the cellular
automaton in the following way: for all z′ < z, c′(2z′) = •, c′(2z′ + 1) = c(z); for all z′ > z,
c′(2z′ + 1) = •, c′(2z′ + 2) = c(z); c′(2z) = • and either c′(2z + 1) = s, c′(2z + 2) = c(z)
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or c′(2z + 1) = c(z), c′(2z + 2) = s (two possible encodings). The local rule encode the
transition function of the Turing machine. Applying the rule: for each transition T (s, a) =
(s′, b,←), f(•, s, a) = s′, f(s, a, •) = b, f(•, a, s) = s′, f(a, s, •) = b, for each transition
T (s, a) = (s′, b,→), f(•, s, a) = b, f(s, a, •) = s′, f(•, a, s) = b, f(a, s, •) = s′. Moving:
for all s ∈ S, a, b ∈ Σ, f(↔, s, a) = •, f(a,↔, s) = s f(a, s,↔) = •, f(s,↔, a) = s.
All undefined transitions apply the identity rule but for • and ↔ that alternates: for all
states x, y ∈ S, f(x, •, y) =↔ and f(x,↔, y) = • With this encoding, starting from an
encoded configuration τ(c), the configuration evolves in two steps to a configuration τ(c′)
where c′ is the next computation step of the Turing machine if it exists, c′ = c otherwise.
Using this simulation, a Turing machine with m states and n symbols is simulated by a
one-dimensional cellular automaton with first-neighbors and m+ n+ 2 states.

Simulation of tag systems is more tricky due to the non-locality of one computation step
of the system. Following Cook [15], one can consider cyclic tag systems. A cyclic tag system
is given as a finite set of words (w0, . . . , wN−1) on the alphabet {◦, •}. A configuration of the
system is a word u ∈ {◦, •}∗. At time step t, the configuration u evolves to a configuraton
v according if either u0 = ◦ and u0v = u, either u0 = • and u0v = uwt mod N . Cyclic
tag systems can encode any recursive function. To encode all cyclic tag systems in a
same cellular automaton (1, S, {−1, 0, 1} , f), one can follow the following principle. Encode
each configuration u of a cyclic tag system (w0, . . . , wN−1) as a configuration of the kind
ω(T k) ·u ·�(w0N . . .NwN−1)ω where intuitively T is a clock signal, � is the frontier between
u and the rule and the rule is repeated on the right each word separated by a N. Giving
the complete local rule is tedious but let us sketch its principle: each time a clock signal
hits the first letter of u, it erases it and send a signal to the right transporting the value of
that letter; when the signal meets the � it removes it and begins to treat the w word on
the right, either erasing it or just crossing it; when the signal meets a N, it changes it into a
� and the signal disappears. This principle is used by Cook to simulate cyclic tag systems
with rule 110 particles and collisions.

A main point of discussion there is to decide which kind of configurations are accept-
able for encoding Turing-universal computation. Finite configurations are certainly not a
problem and using any, potentially non-recursive, configuration would permit trivial cel-
lular automata to be misleadingly called universal. The previous constructions involving
Turing machines use finite or ultimately periodic configurations with a same period on
both sides, the same one for all simulated machines, whereas the tag system encoding uses
ultimately periodic configurations with different periods, moreover these periodic parts de-
pend on the simulated tag system. The tag system really needs this ultimate information,
transforming the simulating cellular automaton into one working on finite configurations
would have a constant but large impact on the number of states. As pointed in Durand and
Róka [22], this configuration encoding problem adds difficulties to the formal definition of
Turing-universality.

6. Intrinsic Universality

Even if the concept of intrinsically universal cellular automata took some time to
emerge, intrinsic universality does not require more complex constructions to be achieved.
Several technics are used to construct them:
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Parallel Turing machines table lookup: A simple way to achieve intrinsic uni-
versality is to use synchronized parallel Turing heads (one copy of the same Turing
machine per encoded cell) to lookup in the transition table (one copy in each encoded
cell) of the encoded cellular automaton. Notice that the Turing machines used for
this are not the same ones that are Turing-universal. In fact, their computational
power is very small but they can carry precise information movement tasks.

One-way totalistic lookup: Another more cellular automata centric way to achieve
intrinsic universality is, following Albert and Čulik 1987 [1], to simplify the task of
the previous machine by simulating only one-way totalistic cellular automata which
are sufficient to simulate all cellular automata.

Signals: The previous models are complex because the information displacement in-
volved is still complex due to the sequential behavior of head-based machines. Fol-
lowing Ollinger [64] and Richard [71], particles and collisions, that is signals in the
style of Mazoyer and Terrier [48], can be used to encode the information and perform
the lookup task with parallel information displacement.

We explain here the parallel Turing machines table lookup technic, the other ones being
refinements based on it. The one-dimensional first-neighbors universal cellular automaton
U simulates a cellular automaton (1, S, {−1, 0, 1} , f) the following way. Each configuration
c is encoded as the concatenation of ψA(c(z)) for all z. For each state s ∈ S, ψA(s) is a
word of the kind �τ(f(1, 1, 1)) • τ(f(1, 1, 2)) • . . . • τ(f(N,N,N))N0kτ(s)0k0k where N is
the size of S, k is the number of bits needed to encode numbers from 1 to N and τ(s) is a
binary encoding of the state s. The simulation proceeds as follows so that the movement
of each head is the same, up to translation, on each well encoded configuration. First the
� letter is activated as a Turing head in initial state. The Turing head then moves to the
left and copies the state τ(sL) of the left neighbor in place of the first 0k block. Then it
symmetrically copies the state τ(sR) of the right neighbor in place of the second 0k block.
This being done, the head scans the entire transition table, incrementing a counter (for
example stored on top of the encoded states) at each step: if at some point the counter is
equal to the triple of states, the result is copied from the transition table to the third 0k

block. At the end of the scan, the counter information is cleared, the result of the transition
is copied in the τ(s) place and all three 0k blocks are restored. The head then goes back
to the �. Using this simulation, one step of the simulated cellular automaton is simulated
in a constant number of step for each cell by each Turing head. The universal automaton
does not depend on the simulated automaton and is so intrinsically universal. A careful
design can lead to less than 20 states. If the simulation uses the one-way totalistic technic,
encoding states in unary, then it is easy to go under 10 states.

Notice that general Turing-universal cellular automata construction schemes from pre-
vious section concerning Turing machines can be adapted to produce small intrinsically
universal cellular automata: apply the encoding schemes on machines performing the cell
simulation task. However, the tag system simulations do not provide direct way to obtain
intrinsic universality. Moreover, it is possible to design cellular automata Turing-universal
by tag system simulation and not intrinsically universal.

More exotic intrinsically universal cellular automata have been studied on constrained
rules. As an example, Moreira [54] constructed number conserving intrinsically universal
automata, Bartlett and Garzon [6, 7] and Ollinger [62] do the same for bilinear cellular
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automata, and Theyssier [79] for captive cellular automata for which he proves that almost
all captive automata are intrinsically universal.

7. Reversibility and Universality

Reversible cellular automata are special in the sense that they can achieve Turing-
universality as any Turing machine can be simulated by a reversible Turing machine but they
cannot achieve intrinsic universality: reversible cellular automata only simulate reversible
cellular automata. However, there exists reversible cellular automata which are universal
with respect to the class of reversible cellular automata.

Definition 7.1 (reversible intrinsic universality). A reversible cellular automaton U is in-
trinsically universal for reversible cellular automata if for each reversible cellular automaton
A of the same dimension there exists an unpacking map om, a positive integer n ∈ N and
a translation vector v ∈ Zd such that GA ≺ o−1

m ◦GnU ◦ om ◦ σv.
Turing-universality and weak form of intrinsic universality have been proposed by

Morita [56], Morita and Imai [58, 59], Durand-Lose [23, 24], Miller and Fredkin [50]. As for
classical cellular automata in higher dimension the simulation of reversible boolean circuits
automatically gives reversible intrinsic universality.

For one-dimensional cellular automata, reversible intrinsic universality can be achieved
by simulating any one-way reversible partitioned reversible cellular automaton with a first-
neigbors reversible partitioned reversible cellular automaton. We briefly sketch how to use
a scheme similar to parallel Turing machine table lookup with reversible Turing machines
to achieve this goal. The first adaptation is to remark that a the local partition rule of
a reversible automaton is a permutation, thus it can be encoded as a finite sequence of
permutation pairs. So, the table of transition is encoded as a finite sequence of pairs of
states. The reversible Turing machine task is to scan the transition table and for each pair it
contains to replace the actual state by the second element of the pair if the state appears in
the current pair. It is technical but straightforward to see that a reversible Turing machine
can achieve this. The information movement is reversible as in partitioned automata each
cell gives half its state to a neighbor and take half a state from the other without erasing
any information. Developing this simulation scheme, one constructs a reversible intrinsically
universal cellular automaton.

8. Conclusion

This brief reading guide has given the reader the keys both to further explore the
literature and to construct by itself conceptually simple Turing-universal and/or intrinsically
universal cellular automata in one and two dimensions. The following broad bibliography
can be explored with the help of the main text, all references being cited.
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64. , The quest for small universal cellular automata, International Colloquium on Automata, lan-

guages and programming (Málaga, Spain, 2002) (Berlin) (P. Widmayer, F. Triguero, R. Morales, M. Hen-
nessy, S. Eidenbenz, and R. Conejo, eds.), Lecture Notes in Computer Science, vol. 2380, Springer, 2002,
pp. 318–329.

65. , The intrinsic universality problem of one-dimensional cellular automata, Symposium on The-
oretical Aspects of Computer Science (Berlin, Germany, 2003), Lecture Notes in Computer Science,
Springer, Berlin, 2003, (to appear).
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Abstract. Recent work has shown that many cellular automata (CA) have configura-
tions whose orbit closures are isomorphic to odometers. We investigate the geometry of
the spacetime diagrams of these ‘odometer configurations’. For boolean linear CA, we
exactly determine the positions of the consecutive ‘gears’ of the odometer mechanism in
the configuration. Then we characterize and explain the self-similar structure visible in
the spacetime diagrams of odometer configurations for two classes of nonlinear CA: ratchet
CA and Coven CA.

1. Introduction

Let A be a finite alphabet. If Φ : AZ → AZ is a cellular automaton (CA), with left
radius 0, then Φ can also be treated as a one-sided CA ΦN : AN−→AN. In [CPY07], the
authors showed:

Theorem 1.1. Let Φ : AZ−→AZ be a left permutative CA with left radius 0. If z ∈ AN is
ΦN-periodic, x = y.z ∈ AZ and the Φ-orbit OΦ(x) := {Φt(x)}∞t=0 is infinite, then the orbit
closure (OΦ(x),Φ) is topologically conjugate to an odometer.

(See §2 for definitions and notation). In this article, we discuss which odometers can
be embedded in certain linear cellular automata, and the physical bounds on how these
odometers are embedded. We also investigate the self similarity of the spacetime diagrams
which display these odometers, in some linear and also non linear cellular automata. We
start by generalising a result in [CY07] concerning which odometers can be embedded in
the Ledrappier CA:

Proposition 1.2. Suppose that the set of infinite multiplicity prime divisors of the quotient
set Q are {q1, q2, . . . qn}, and let τ : Z(Q)→ Z(Q) be an odometer. Let N = Πn

j=1qj and let
A = Z/N . Then τ embeds in any linear CA Φ : AZ−→AZ with Φ(x) = x +

∑r
i=1 aiσ

i(x),
where for each j ∈ {1, . . . , n}, at least one of the ai’s does not divide qj. Furthermore no
other odometer can be embedded in Φ.

2000 ACM Subject Classification: F.1.1.
Key words and phrases: linear cellular automata; dynamics; Coven cellular automata; odometer; self-

similar; substitution.
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With the conditions on x in Theorem 1.1, left permutativity of Φ implied that the
columns of the Φ-spacetime diagram of x, STΦ(x), were all periodic, and the fact that x
had an infinite Φ-orbit meant that there was a sequence of columns Ckn in STΦ(x) whose
periodicities {pn} increased to infinity. A conjugacy was then constructed between OΦ(x)
and the odometer with quotient set Q := {. . . , p3p2 ,

p2
p1
, p1p , p}. For many Φ, and many initial

points x, STΦ(x) had a clear self-similar structure, reminiscent of the Sierpinski gasket -
this is of course known if Φ is linear, but it also turned out to be the case for many nonlinear
CA, such as some Coven CA. This fact led to interest in analysing these spacetime diagrams,
and the rigidity imposed on them by the odometers that (OΦ(x),Φ) are. One result in this
direction is

Theorem 1.3. Let Φ(x) = x+
∑L

p=1 σ
ap(x) be defined on Z/2Z, with 0 < a1 < a2 < . . . aL.

Suppose that x[0...∞) is ΦN-fixed, but x[−1...∞) is not ΦN-fixed. Then, letting STΦ(x) ∈ AZ×N

be the Φ-spacetime diagram of x, the sequence {Ckn}n≥1 of columns, where the periodicity
first jumps to 2n, are those where {kn} = {2na1 − a1 + 1}n≥1.

Theorem 1.3 implies that OΦ(x) is infinite; then Theorem 1.1 says that (OΦ(x),Φ) is
conjugate to any odometer that Theorem 1.2 allows. The columns {Ckn}n≥1 can be thought
of as the ‘gears’ of this odometer mechanism, and Theorem 1.3 says that the location of
these gears is determined entirely by Φ, and is independent of x. The odometer structures
of linear CA often exhibit self-similar spacetime diagrams (see §3); Theorem 1.3 forces the
‘scaling factor’ of this self-similarity to be independent of the initial point generating the
self similar diagram. Some version of this theorem may well be true for some linear Φ
defined on larger alphabets. However the condition that Φ(x) = x+ [something] cannot
be relaxed. For example, if Φ(x) = 2x + σx on (Z/3)Z, and if x[−1...∞) = [1, 0, 0, 0, . . .],
then Φ(x[0...∞)) = x[0...∞), the column C−1 in STΦ(x) has period 2, and C−2 has period 6,
irrespective of the choice of x−2. However, the choice of x−2 affects the periodicity of C−3:
if x−2 = 2, then C−3 has period 6; otherwise it has period 18.

In §3, self-similarity of STΦ(x) is defined in terms of two-dimensional substitution sys-
tems. We consider two classes of CA: the Z/n-ratchet CA, and the range-R Coven CA (both
nonlinear generalisations of the Ledrappier CA). We prove that for these CA, there exist
points x such that STΦ(x) is self-similar (Propositions 3.7 and 3.9). In addition to being in-
trinsically interesting, the self-similarity allows us to easily characterize the spatiotemporal
structure of these odometers. Finally, an Appendix contains most of the proofs.

2. Preliminaries

Cellular automata. Let A be a finite alphabet, and let AZ be the space of all doubly infinite
sequences with entries from A. Elements x ∈ AZ will sometimes be written as x = y.z,
where y, z ∈ AN+

, AN respectively. A cellular automaton (CA) is a continuous, shift-
commuting self-map Φ : AZ−→AZ. It is known that every CA Φ is given by a local rule
φ : A[−l...r]−→A, for some l, r ≥ 0 (the left and right radii of Φ), such that for all x ∈ AZ,
and all i ∈ Z,

[Φ(x)]i = φ(xi−l, xi−l+1, . . . , xi+r) .
If l or r are 0, then Φ can also act on sequences from AN. Φ is left permutative if for
every x1, . . . xr ∈ A, the map φ(•, x1, . . . , xr) is a permutation of A, similarly for right
permutative. Let Z/p be the cyclic group of p elements. The CA Φ is linear if Φ is a group
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endomorphism of (Z/p)Z, where the group operation is componentwise addition. Φ can then
be written as Φ(x) =

∑r
i=0 aiσ

i(x) where σ is the left shift map on (Z/p)Z. If x ∈ AZ, the
Φ-spacetime diagram of x, STΦ(x), is the element in AN×Z whose kth row is Φk(x). For
any integer n, we let Cn := {(Φk(x))n}k≥0.

Odometers. LetQ := (q1, q2, . . . qn) be an ordered set (or sequence, if n =∞) of integers ≥ 2
(the quotient set). Let Z(Q) :=

∏n
l=1 Zql be the Cartesian product set. (Z(Q),⊕) is a (com-

pact, abelian) group where “⊕” is defined as addition “with carry”: if x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . yn), then x⊕ y := (r1, r2, . . . rn) where x1 + y1 = k1q1 + r1, and induc-
tively,

∑n−1
l=1 kl + xn + yn = knqn + rn, kl + xn + yn = knqn + rn, for n > 1, with kn ≥ 0 and

0 ≤ rn < qn for each n.
g ∈ Z(Q) is a topological generator for Z(Q) if {ng}n∈N is dense in Z(Q). For such

g we define the g-odometer τg : Z(Q) → Z(Q) as τg(z) = z ⊕ g, ∀ z ∈ Z(Q). If
g = (g1, g2, . . .) ∈ Z(Q) then {ng}n∈N is dense in Z(Q) if and only if for each n, the
n-tuple (g1, g2, . . . , gn) is a generator for the finite cyclic group (Z({q1, q2, . . . , qn}),⊕). If g
and g∗ are both topological generators for Z(Q), then (Z(Q), τg) is topologically conjugate
to (Z(Q), τg∗). Thus we will assume that the generator is 1 = (1, 0, 0, . . .) and write the
odometer τg as τ .

If p is prime, then the multiplicity of p in Q is the sum number of times (possibly
infinite) that p occurs in the prime decomposition of the elements of sequence Q.

Theorem 2.1. [BS95] (Z(Q), τ) and (Z(Q∗), τ) are topologically conjugate if and only if
for every prime p, the multiplicity of p in Q and Q∗ is equal.

Theorem 2.1 also tells us that we can assume that all elements in Q are prime. When
convenient we will assume this. If Q = (p, p, . . .), then let Z(p) := Z(Q) (this is the group
of p-adic integers). We consider quotient sets Q for whom only finitely many primes have
positive multiplicity.

3. Self-similar structures in spacetime diagrams

Spacetime diagrams of linear CA often exhibit self-similar structures, as in Figure 1.
This self-similarity reflects the self-similarity of Pascal’s Triangle in Z/p, as described by Lu-
cas’ theorem [Luc78], and has been intensively studied [Wil87, Tak93, vHPS01, AvHP+97,
BvHPS03]. Self-similar structures also arise in nonlinear CA [e.g. see Figures 2 and 3
below], but these cannot be explained using Lucas’ theorem. In this section we will develop
an analytic framework to understand this self-similarity as ‘compatibility’ of the CA with
a suitable substitution mappings on AZ×N.

Let Φ : AZ−→AZ be a CA, with φ : A{0,1} → A, and let a ∈ AZ. The spacetime subshift
of Φ is the set ST (Φ) ⊆ AZ×N of all spacetime diagrams of Φ. In other words, ST (Φ) is
the two-dimensional subshift of finite type in AZ×N, generated by the set of admissible
triominos {[

a b

c

]
; a, b ∈ A; c = φ(a, b)

}
. (3.1)

For example, Figures 1, 2 and 3 show spacetime diagrams, all exhibiting self-similarity. We
will now explain this using the theory of substitution systems.
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Figure 1: A self-similar spacetime diagram for the ‘Ledrappier’ CA on A = Z/2 with local rule φ(x0, x1) =

x0 + x1. The five images show the same spacetime diagram on larger and larger scales. Each

diagram can be obtained from the previous one by applying the substitution rule described in

Examples 3.1. See also Examples 3.3 and 3.4.

Substitution configurations. Let W,H ∈ N and let A be a finite alphabet. A W × H
substitution rule is a function ς : A−→AW×H . This defines a function ς : AZ×N−→AZ×N

where

ς


· · · b0−1 b00 b01 · · ·
· · · b1−1 b10 b11 · · ·
· · · b2−1 b20 b21 · · ·
···

...
...

...
. . .

 :=

· · · ς(b0−1) ς(b00) ς(b01) · · ·
· · · ς(b1−1) ς(b10) ς(b11) · · ·
· · · ς(b2−1) ς(b20) ς(b21) · · ·
···

...
...

...
. . .

(3.2)

(the lines indicate the positions of the axes). If a ∈ A and n ∈ N, then we likewise define
ςn(a) ∈ AWn×Hn

in the obvious way. The language of ς is the set L(ς) of all n×m blocks
(for any n,m ∈ N) which occur in ςk(a) for some a ∈ A and k ∈ N. The ς-substitution shift
Sub (ς) is the subshift of AZ×N defined by L(ς) [Que87, Fog02]. If Φ is a CA, we say that ς
is compatible with Φ if Sub (ς) ⊆ ST (Φ).
Example 3.1: Let A = Z/2, and define ς : A−→A2×2 by ς(0) =

[
0 0
0 0

]
; and ς(1) =

[
0 1
1 1

]
.

Then Figure 1 shows an element of Sub (ς). This is also the spacetime diagram generated by
the ‘Ledrappier’ CA with local rule φ(x0, x1) = x0 + x1. This suggests that ς is compatible
with Φ. ♦

A ς-seed is a pair [a, b] ∈ A2 such that:
(i): [a, b] ∈ L(ς); (ii): For all c ∈ A, ∃ n ∈ N such that c occurs in ςn[a, b].

(iii): ς(a) =

 ∗
∗

...

...
∗
∗

a
∗

...
∗

···
...

...
∗

...
∗

; (iv): ς(b) =

 b
∗
∗
∗

...

...
∗
∗

...
∗

...
∗

. . .
...

...
∗

;

Note that, since L(ς) = L(ςn) for any natural n, then it is always possible to find a pair [a, b]
satisfying (i), (iii) and (iv), by the pigeonhole principle. Define A ∈ A(−∞...0]×N by the
property that A(−Wn...0]×[0...Hn) = ςn(a) for all n ∈ N (this definition is consistent because
ς(a)0

0 = a). Likewise, define B ∈ A[1..∞)×N by the property that B(0...Wn]×[0...Hn) = ςn(b)
for all n ∈ N (this definition is consistent because ς(b)0

1 = b). We write “A := ς∞(a)” and
“B := ς∞(b)”. Let ς∞[a, b] := A B be the obvious element of AZ×N.

If A ∈ AZ×N and n ∈ N, then the nth row of A is the biinfinite sequence [. . . an−1, a
n
0 , a

n
1 , . . .].

If r = [r1, r2] ∈ A2, we say that r occurs in A if there is some z ∈ Z and n ∈ N such that
anz = r1 and anz+1 = r2. Let L2(ς) :=

{
r ∈ A2 ; r occurs in some A ∈ Sub (ς)

}
. A configu-

ration S ∈ AZ×N is ς-fixed if ς(S) = S.

Lemma 3.2. Let ς be a substitution and let s ∈ A2 be a ς-seed. Then
(a) S := ς∞(s) is a ς-fixed configuration, and Sub (ς) is the σ-orbit closure of S.
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Figure 2: Self-similarity in the Z/4-ratchet CA. The left four images are the same spacetime diagram,

shown on larger and larger scales. The numerical labels show how each spacetime diagram can

be obtained from the previous one by applying the substitution mapping illustrated on the far

right.

(b) There exists n ∈ N so that L2(ς) is the set of all 2-words which occur in ςn(s).

Proof. See Appendix. 2

Example 3.3: Let A = Z/2, and define ς : A−→A2×2 as in Example 3.1 Then [1, 0] is a
ς-seed. ♦

We say that φ commutes with ς if, for every [a, b] ∈ L2(ς) with c = φ(a, b),

ς

[
a b

c

]
:=

[
ς(a) ς(b)
ς(c)

]
is a fragment of a spacetime diagram of Φ.

Example 3.4: Let ς : A−→A2×2 be as in Examples 3.1 and 3.3. The Ledrappier CA (with
local rule φ(x0, x1) = x0 + x1) commutes with ς, as shown by the following computations

ς

»
0 0

0

–
=

0 0 0 0
0 0 0 0

0 0 (0)
0 0

ς

»
0 1

1

–
=

0 0 0 1
0 0 1 1

0 1 (0)
1 1

ς

»
1 0

1

–
=

0 1 0 0
1 1 0 0

0 1 (0)
1 1

ς

»
1 1

0

–
=

0 1 0 1
1 1 1 1

0 0 (0)
0 0

.

Observe that the image of each Φ-admissible triomino is a fragment of a Φ-spacetime
diagram (to illustrate this, we have completed these diagram by adding one entry in the
bottom right box, in parentheses). ♦
Proposition 3.5. Let ς be a substitution with seeds. Let Φ be a CA. The following are
equivalent:
(a) ς is compatible with Φ.
(b) There is some ς-seed s ∈ A2 such that ς∞(s) ∈ ST (Φ).
(c) For every ς-seed s ∈ A2, we have ς∞(s) ∈ ST (Φ).
(d) ς commutes with Φ.

Proof. See Appendix. 2

A substitution ς is aperiodic if there is no z ∈ Z× N such that Sub (ς) ⊆ Fix [σz].
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Corollary 3.6. Let ς : A−→AW×H be an aperiodic substitution compatible with Φ. Let
A ∈ ST (Φ) be a ς-fixed configuration [which exists by Prop.3.5(b)], whose first row is
x = ab, where a ∈ A(−∞...0] and where b ∈ A[1..∞) is Φ-periodic [as in Thm.1.1]. Then
OΦ(x) has a p-adic odometer as a factor, for at least one prime factor p of H.

Proof. See Appendix. 2

Let n ∈ N, and let A := Z/n. The Z/n-ratchet CA is the left-permutative CA Ψ :
AZ−→AZ with right-sided local rule ψ : A{0,1}−→A defined

ψ(a, b) :=
{

a if b 6= n′;
a+ 1 if b = n′; where n′ := n− 1.

For example, the Z/2-ratchet CA is just the Ledrappier CA shown in Figure 1. Figure 2
shows a spacetime diagram of Z/4-ratchet CA. This diagram is visibly self-similar, and some
of the columns are strongly reminiscent of the 4-adic odometer, as explained by the next
result.

Proposition 3.7. Let n ∈ N, let A := Z/n, and let n′ := n − 1. Let Ψ : AZ−→AZ be the
Z/n-ratchet CA. Then
(a) Ψ is compatible with the substitution ς : A−→A2×n defined by

ς(0) =

26664
0 0

0 0
.
..

.

..
0 0

37775; ς(1) =

26664
0 1

0 1
.
..

.

..
0 1

37775; ς(2) =

26664
0 2

0 2
.
..

.

..
0 2

37775; . . . ς(n− 2) =

26664
0 n− 2

0 n− 2
.
..

.

..
0 n− 2

37775; ς(n′) =

26664
0 n′
1 n′
...

...
n′ n′

37775;

(b) Let a = [. . . 0, 0, 0, 0, n′.0, 0, 0, 0 . . .]. Then STΨ(a) is a ς-fixed point.
(c) (OΨ(a),Ψ) is conjugate to a Z(n)-odometer (where Z(n) is the n-adic integers).

Proof. (a,b) Note that L2(ς) = A2, and that ψ commutes with ς (this can be checked by
direct computation, similar to Example 3.4). Also, [n′, 0] is a seed for ς, so Proposition
3.5(c) says that the ς-fixed array S := ς∞([1, 0]) is in ST (Ψ). But the zeroth row of S is
a; hence S = A.

(c) Suppose A = [Ats]s∈Z,t∈N. For all k ∈ N, let Ck := [At−2k ]t∈N ∈ AN be the −2kth
column of A. Then Ck is the sequence of the kth digit in the standard ‘n-ary number’
representation of the n-ary odometer. That is,

Ck = [0, . . . , 0︸ ︷︷ ︸
nk

, 1, . . . , 1︸ ︷︷ ︸
nk

, 2, . . . , 2︸ ︷︷ ︸
nk

, . . . . . . n′, . . . , n′︸ ︷︷ ︸
nk

, 0, . . . , 0︸ ︷︷ ︸
nk

, 1, . . . , 1︸ ︷︷ ︸
nk

, . . . . . .]

This yields an obvious surjection Γ : OΨ(a)−→Z(n). Also, Γ is injective, because the
information in the columns {Ck}∞k=0 is sufficient to reconstruct all the other columns in
the Ψ-spacetime diagram A. 2

If A := Z/2 and R ∈ N, then the range R Coven CA is the CA Φ : AZ−→AZ with local
rule φ(x0, x1, . . . , xR) = x0 +x1x2 · · ·xR; these were introduced in [CH79]. For example, the
range 1 Coven CA is just the Ledrappier CA with local rule φ(x0, x1) = x0 + x1 [Figure 1],
while the range 2 Coven CA has local rule φ(x0, x1, x2) = x0 + x1x2 [Figure 3]. Nonlinear
(i.e. R ≥ 2) Coven CA exhibit self-similar spacetime diagrams which cannot be explained
simply by compatibility with a substitution map. Also, we remark that the configuration
in Figure 3 is not automatic (see [vH03] for an introduction to automatic configurations).
Instead, these diagrams are self-similar because they can be ‘recoded’ as the diagrams of
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Figure 3: Self-similarity in the Coven CA with local rule φ(x0, x1, x2) = x0 + x1x2. The left three images

are the same spacetime diagram, shown on larger and larger scales. The alphabetic labels show

how this spacetime diagram can be obtained from Figure 2 via the function Ξ described in

Example 3.8.

ratchet CA, which are self-similar by Proposition 3.7. We will explain this in Proposition
3.9, but first we illustrate with an example.
Example 3.8: Let A := Z/2 and let Φ : AZ−→AZ be the range 2 Coven CA with local rule
φ(x0, x1, x2) = x0 + x1x2. Let a := [0, 0, 0], b := [0, 0, 1], c := [0, 1, 0] and d := [0, 1, 1]. Let
B := {a,b, c,d} ⊂ A3, and let B ⊂ AZ be the set of all sequences obtained by concatenating
words from B, such that a word boundary lies at zero. Clearly, B is σ3-invariant, and it can
be checked by direct computation that Φ2(B) ⊆ B. Let Ξ : (Z/4)Z−→B be the bijection
with local rule given by ξ(0) := a, ξ(1) := b, ξ(2) := c, and ξ(3) := d.

Let Ψ : (Z/4)Z−→(Z/4)Z be the Z/4-ratchet CA. Direct computation shows that Ξ ◦ σ =
σ3 ◦Ξ and Ξ◦Φ2 = Ψ◦Ξ. In other words, Ξ is a dynamical isomorphism from ((Z/4)Z,Ψ, σ)
to (B,Φ2, σ3).

The first row of Figure 3 is [. . . 0, 0, 0, 0, 1, 1 . 0, 0, 0 . . .], which equals [. . .a,a,d .a,a, . . .]
(an element of B), which is the Ξ-image of [. . . 0, 0, 3 . 0, 0, . . .], which is the first row of Figure
2. Thus, Ξ maps the spacetime diagram of Figure 2 into that of Figure 3. Proposition 3.7(d)
implies that Figure 3 is conjugate to a dyadic odometer. ♦

Example 3.8 generalizes as follows.

Proposition 3.9. Let A := Z/2 and let Φ : AZ−→AZ be the range R Coven CA. Let
C := Z/2R and let Ψ : CZ−→CZ be the C-ratchet CA.

(a) There is a (Φ2, σR)-invariant subset B ⊂ AZ such that (B,Φ2) is isomorphic to (C,Ψ).

(b) The point x := [. . . 0, 0, 0, 0,
R︷ ︸︸ ︷

1, . . . , 1 . 0, 0, 0, . . .] is in B, and (OΦ(x),Φ2) is conjugate
to (OΦ(a),Ψ), where a ∈ CZ is as in Proposition 3.7(b,c). Hence (OΦ(x),Φ) is isomorphic
to a dyadic odometer.

Proof. (a) Let B := {b0,b1, . . . ,b2R−1} ⊂ AR+1, where b0 := [0, . . . , 0, 0], b1 :=
[0, . . . , 0, 1], b2 := [0, . . . , 1, 0], . . . , b2R−1 := [0, 1, . . . , 1, 1]. Let B := BZ, as a subset
of AZ. Clearly B is σR-invariant. The function ξ : C 3 n 7→ bn ∈ B yields a bijection
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Ξ : CZ−→B, and direct computation shows that Ξ ◦ σ = σR+1 ◦ Ξ and Ξ ◦Φ2 = Ψ ◦ Ξ, so
Ξ is a dynamical isomorphism from (CZ,Ψ, σ) to (B,Φ2, σR+1). It follows that B is also
Φ2-invariant.

(b) x = Ξ(a) where a is as in Proposition 3.7(b); thus Proposition 3.7(c) states that
(OΨ(a),Ψ) is conjugate to the 2R+1-adic (hence dyadic) odometer. Thus, part (a) im-
plies that (OΦ2(x),Φ2) is also isomorphic to a dyadic odometer. Thus (OΦ(x),Φ) is also
isomorphic to a dyadic odometer. 2
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Appendix: Proofs

Proof of Theorem 1.2 : The Chinese Remainder Theorem implies that any non-trivial CA
Φ with rule Φ(x) = x +

∑r
i=1 aiσ

i(x) on (Z/N )Z is topologically conjugate to Πn
j=1Φqj ,

where Φqj acts on (Z/qj )Z by Φqj (x) := x +
∑r

i=1 aiσ
i(x). The conditions on the ai’s

guarantee that each Φqj is non-trivial. Note that Πn
j=1 (Z(qj), τ) is topologically conjugate

to (Z(Q), τ). We will show that Πn
j=1 (Z(qj), τ) can be embedded in Πn

j=1Φqj .
Case 1. Suppose first that the multiplicity of q inQ is infinite for each p in {q1, q2, . . . qn}.

Find x ∈ AZ such that x[0...∞) is Φ-fixed and such that OΦ(x) :=
{

Φt(x) ; t ∈ N
}

is in-
finite. This can be done, since Φqj is conjugate to a full one sided shift, which has fixed
points — thus one can find some Φqj -fixed x[0...∞); further if x−1 is chosen so that x[−1...∞)

is not fixed, then the proof of Theorem 1.3 shows that x has an infinite Φqj orbit. Using
Theorem 4 in [CPY07], Φqj embeds (Z(qj), τ).

Case 2. Suppose that P = Pf ∪ Pi where p in Pf have finite multiplicity in Q and p
in Pi have infinite multiplicity in Q. Let P := Πp∈Pf

p. As in the Corollary to Theorem 1
in [CPY07], find x ∈ AZ such that x[0...∞) is Φq1-periodic with least period P , and such
that OΦ(x) is infinite. Then Φq1 embeds (Z(P, q1, q1, . . .), τ), and, by Case 1, Φqj embeds
(Z(qj), τ) for 1 < j ≤ n. The embedding result follows. That no other odometer can
be embedded in these linear CA is proved similarly to the result for Φ(x) = x + σ(x) in
[CY07]. 2

Lemma 3.10. Let A := Z/2, and suppose that Φ : AZ−→AZ and x = (xi)∞i=−∞ ∈ AZ

satisfy the conditions of Theorem 1.3. Then for each j ≥ 1 and each k ≥ 0, we have
L∑
p=1

x2k(ap−a1)+a1−1+j = 0 .

Thus Φ2k
(x)|−(2ka1−a1+1)+j = x−(2ka1−a1+1)+j for each k ≥ 0 and j ≥ 1.

Proof. We prove this by induction on k. Since x[0...∞) is fixed by Φ, we have xk+
L∑
p=1

xk+ap =

xk, for each k ≥ 0, so that
∑L

p=1 xap−1+j = 0 is true for each j ≥ 1. Let ∆i := ai+1 − ai,
for 1 ≤ i ≤ L− 1, and assume that for each j ≥ 1,

L∑
p=1

x2k(ap−a1)+a1−1+j =
L∑
p=1

x
a1−1+j+2k(

Pp−1
i=1 ∆i)

= 0. (3.3)

Given a positive j, let ?p := 2k+1(ap − a1) + a1 − 1 + j for 1 ≤ p ≤ L, and define ∗11 :=

?1 and ∗1p := ?1 + 2k
(∑p−1

i=1 ∆i

)
for p = 2, . . . L . By Equation 3.3,

∑L
p=1 x∗1p = 0 .

For 2 ≤, q ≤ L, define ∗q1 := ∗1q , and ∗qp := ∗q1 + 2k
(∑p−1

i=1 ∆i

)
. Using Equation 3.3

and jq := j + 2k
(
q−1∑
i=1

∆i

)
, we have

L∑
p=1

x∗qp = 0.

Consider the matrix {x∗pq}Lp,q=1. We have the following two claims:
Claim 1: ∗pq = ∗qp for 1 ≤ p, q ≤ L.
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Proof. If q = 1 or p = 1 this is true by definition. If 2 ≤ p, q ≤ L, ∗pq = ∗1p+2k
∑q−1

i=1 ∆i =
?1 + 2k

∑p−1
i=1 ∆i + 2k

∑q−1
i=1 ∆i = ∗1q + 2k

∑p−1
i=1 ∆i = ∗qp. 3 Claim 1

Claim 2: ∗pp = ?p.

Proof. ∗pp = ∗1p+2k
(∑p−1

i=1 ∆i

)
= ?1 +2k+1

(∑p−1
i=1 ∆i

)
= a1−1+ j+2k+1(ap−a1) =

?p . 3 Claim 2

These last two claims tell us that the matrix {x∗pq}Lp,q=1 is a symmetric 0, 1-matrix each
of whose rows sum to zero. Thus 0 =

∑L
p=1

∑L
q=1 x∗pq =

∑L
p=1 x∗pp =

∑L
p=1 x?p , which

shows that
∑L

p=1 x2k+1(ap−a1)+a1−1+j = 0.
2

Lemma 3.11. Let A := Z/2, and suppose that Φ : AZ−→AZ and x = (xi)∞i=−∞ ∈ AZ satisfy
the conditions of Theorem 1.3. Then for each k ≥ 0, Φ2k

(x)|−(2ka1−a1+1) 6= x−(2ka1−a1+1).

Proof. We prove this by induction on k. If x satisfies the conditions of Theorem 1.3, then
Φ(x)|−1 6= x−1. Next, assume that Φ2k

(x)|−(2ka1−a1+1) 6= x−(2ka1−a1+1). Thus

x−(2ka1−a1+1) + xa1−1 +
L∑
p=2

xa1−1+2k(ap−a1) 6= x−(2ka1−a1+1), (3.4)

What follows is essentially the same as that of the previous lemma, except that this time
we have a symmetric, 0-1 matrix all of whose rows sum to 0, except the first, which sums
to one. We claim that

xa1−1 +
L∑
p=2

xa1−1+2k+1(ap−a1) = 1 . (3.5)

Let ∗1p := a1 − 1 + 2k(ap − a1), for 1 ≤ p ≤ L. For 2 ≤ p ≤ L, let ∗p1 := ∗1p =
a1 − 1 + 2k(ap − a1), and ∗pq := a1 − 1 + 2k(ap − a1) + 2k(aq − a1). Let jp := 2k(ap − a1).

Lemma 3.10 tells us that xa1−1+j+
∑L

p=2 x2k(ap−a1)+a1−1+j = 0 , so
L∑
q=1

x∗pq = 0; Equation

3.4 implies that
L∑
q=1

x∗1q = 1.

As in Lemma 3.10,we have a symmetric 0-1 matrix [x∗pq ]Lp,q=1 whose diagonal terms are
the summands in Equation 3.5, and all of whose rows sum to zero, save the first row. The
result follows. 2

Proof of Theorem 1.3. Lemma 3.11 tells us that kn ≥ 2na1− a1 + 1, and Lemma 3.10 tells
us that kn = 2na1 − a1 + 1. 2

Proof of Lemma 3.2. (a) is a standard argument [Fog02, §1.2.6]. For (b) note that
s ∈ L2(ς). For any n ∈ N, let Rn :=

{
r ∈ A2 ; r occurs in ςn(s)

}
. Then R1 ⊆ R2 ⊆

R3 ⊆ · · · ⊆ L2(ς). Let R∞ =
⋃∞
n=1Rn. Then R∞ = L2(ς), because s is a ς-seed. But

R1 ⊆ R2 ⊆ · · · ⊆ R∞ are finite sets, so there exists n ∈ N such that R∞ = Rn. 2
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Proof of Proposition 3.5. “(a) ⇒ (c)” If s is a ς-seed, then ς∞(s) ∈ Sub (ς) . If Sub (ς) ⊆
ST (Φ), then ς∞(s) ∈ ST (Φ).

“(c) ⇒ (b)” is immediate. For “(b) ⇒ (a)”, let S = ς∞(s), and suppose S ∈ ST (Φ).
Then the σ-orbit closure of S is contained in ST (Φ), because ST (Φ) is closed and σ-
invariant. Thus, Lemma 3.2(a) says Sub (ς) ⊆ ST (Φ); ie. ς is compatible with φ.

“(d) ⇒ (c)” Let s = [a, b] be a ς-seed and let S := ς∞(s) = A B , where A = ς∞(a)
and B := ς∞(b).
Claim 1: For all n ∈ N, let An := ςn(a) and Bn := ςn(b). Then An Bn is ST (Φ)-
admissible.
Proof. Case (n=1): By definition, [a, b] ∈ L2(ς), and by hypothesis, φ commutes with ς,

so A1 B1 = ς[a, b] is ST (Φ)-admissible.
Induction: Suppose An Bn is ST (Φ)-admissible. Let

[
x y
z

]
be a triomino appearing

somewhere in An+1 Bn+1 ; we must show that
[
x y
z

]
is ST (Φ)-admissible [ie. that

z = φ(x, y)]. Now, An+1 Bn+1 = ς(An Bn ), so there is some triomino
[
u v
w

]
in An Bn

such that
[
x y
z

]
appears inside ς

[
u v
w

]
. By definition, [u, v] ∈ L2(ς), and by hypothesis,

φ commutes with ς. Hence ς
[
u v
w

]
is a ST (Φ)-admissible fragment, which in particular

means that
[
x y
z

]
is ST (Φ)-admissible.

This works for any
[
x y
z

]
in An+1 Bn+1 . Thus, An+1 Bn+1 is ST (Φ)-admissible,

because ST (Φ) is the SFT generated by the set of triominos in eqn.(3.1). 3 Claim 1

It follows that S = A B is ST (Φ)-admissible.
“(b) ⇒ (d)” Suppose S = ς∞(s) for some ς-seed s ∈ A2. If S ∈ ST (Φ), then ς

commutes with Φ on all [u, v] which occur in S. But Lemma 3.2(b) says this is all of
L2(ς). 2

Proof of Corollary 3.6. x has infinite Φ-orbit because otherwise, A would be fixed
under some vertical shift, contradicting the aperiodicity of ς. Thus, Theorem 1.1 says
O := (OΦ(x),Φ) is isomorphic to some odometer. We must show that O has a p-adic
odometer as a factor, for some prime p dividing H.

For all k ∈ N, let Ak := A(−Wk...0]×N = [Φt(x)(−Wk...0]]
∞
t=0 (i.e. the first W k ‘columns’

in the spacetime diagram of x). Each Ak is vertically periodic (because O is an odometer);
let Tk be its minimal period. Thus, T0 ≤ T1 ≤ T2 ≤ · · · .
Claim 2: (a) Tk divides HkT0. (b) lim

k→∞
Tk =∞.

Proof. (a) ς(A) = A, so ς(Ak−1) = Ak, so Ak is vertically (HTk−1)-periodic, so its least
period Tk must divide HTk−1. By induction, this means Tk divides HkT0.

(b) By contradiction, suppose the sequence {Tk}∞k=1 was bounded. Then there would
be some k such that Tk = Tk+1 = Tk+2 = · · · , and then x would be ΦTk -periodic,
contradicting the fact that x has infinite Φ-orbit. 3 Claim 2

For any N , Claim 1(b) yields some k ≥ N such that Tk ≥ HNT0. Let d := gcd(Tk, T0),
and let T ′k = Tk/d and T ′0 := T0/d; then T ′k ≥ HNT ′0 ≥ HN . But Claim 1(a) says that
Tk divides HkT0, which means T ′k divides HkT ′0, which means T ′k divides Hk (because T ′k
is coprime to T ′0). Thus, all prime factors of Tk are prime factors of H. But T ′k ≥ HN ,
so Tk must be divisible by pN for at least one prime factor p of H. It follows that pN

divides Tk, which means that O contains a factor of minimal period pN . But N can be
made arbitrarily large, so O must have a p-adic odometer as a factor. 2

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.
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Abstract. Partitioned cellular automata are a variant of cellular automata that was
defined in order to make it very simple to create complex automata having strong properties
such as number conservation and reversibility (which are often difficult to obtain on cellular
automata). In this article we show how a partitioned cellular automaton can be translated
into a regular cellular automaton in such a way that these properties are conserved.

1. Introduction

A number-conserving cellular automaton is a cellular automaton such that all states of
cells are represented by integers and that the sum of all states in any finite configuration
(the quiescent state corresponds to the value 0) is unchanged after one transition of the
automaton. Number-conservation can be seen as a modelization of the physical law of
conservation of mass and energy. Thus number conserving cellular automata can be used
to model complex physical phenomena, like fluid dynamics [1] or highway traffic flow [6].

However, it appears that designing number-conserving cellular automata with complex
transition rules is very difficult. To solve this problem a new kind of cellular automata has
been studied by Morita et al. [3] that use a partitioned space. It is then possible to construct
complex two-dimensional number-conserving (and reversible) PCA, like for example some
that simulate any reversible two-counter machine [4].

Although in a number-conserving partitioned cellular automaton the total weight of
a configuration is conserved after each transition, each cell has multiple parts and cannot
therefore be regarded as a usual type of CA. In this paper we will show how it is possible
to translate any number-conserving partitioned cellular automaton into a classical type
number-conserving cellular automaton and thus prove the equivalence of the two models.

Key words and phrases: Partitioned cellular automata, number-conservation, reversibility.
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1.1. Definitions

Definition 1.1 (Cellular Automaton). A cellular automaton (CA) is a quadruple A =
(d,Q, V, f) where

• d ∈ N is the dimension of the automaton;
• Q is a finite set called set of states;
• V = {v1, . . . , V|V |} ⊆ Zd is a finite set called neighborhood ;
• f : Q|V | → Q is the local transition function.

For a given automaton A, we call configuration of A any function C from Zd into Q.
The set of all configurations is therefore QZ2

. From the local function f we can define a
global function F

F : QZd → QZd

C 7→ C′ | ∀x ∈ Zd,C′(x) = f(C(x+ v1), . . . ,C(x+ v|V |))

Elements of Zd are called cells. Given a configuration C, we will say that a cell c is in
state q if C(c) = q. If we distinguish a quiescent state q0 such that f(q0, . . . , q0) = q0, we
will call finite configuration any configuration for which only a finite number of cells is not
in the quiescent state. If C is a finite configuration, so is F (C).

Cellular automata will be seen as dynamical systems. If the CA is in the configuration
C at some time, we will say that it is in the configuration F (C) at the next time. We can
therefore define the evolution of a CA from a configuration. This evolution is completely
determined by C.

Remark: In the following, we will only consider two-dimensional CA (d = 2).

Definition 1.2 (Number-Conservation). A CA will be said to be number-conserving if its
states are distinct natural numbers (Q ⊆ N), the state 0 is quiescent, and for every finite
configuration C the total weight of C (sum of all states) is equal to that of F (C).

Definition 1.3 (Partitioned Cellular Automaton). A two-dimensional partitioned cellular
automaton (PCA) is a four-neighbor two-dimensional CA whose cells are divided into four
parts : upper, left, lower and right. The next state of each cell is only determined by the
current states of the upper partition of the lower cell, the right partition of the left cell, the
lower partition of the upper cell and the left partition of the right cell.

Let us denote by Qp the set of all states that a partition of a cell can be into. Then
there are Qt = |Qp|4 different states for each cell. However, the local rules of the automaton
can be seen as a function of Q4

p → Q4
p. As illustrated by Figure 1. Qp will be called the set

of partitioned states of the PCA.
It is very easy to see that for PCA global reversibility is equivalent to local reversibility.

It is therefore very easy to design reversible automata using this notion.
Note. There are other kinds of PCA. We could for example divide each cell into 5

parts by adding a central partition. It is also possible to consider PCA in other dimensions.
However in this paper we will only work with two-dimensional 4-partitioned PCA.

If we want to consider number-conservation for PCA we have to redefine it. In this
case, only the partitioned states will be integers. The total weight of a cell is the sum of
the four states in its partitions.

The weight of a finite configuration is the sum of all weights of its cells (only a finite
number of cells are in a positive state). The automaton is said to be globally number-
conservative if for all finite configuration its total weight is conserved after one transition and
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d′

l′ r′
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Figure 1: Illustration of the rule [d, l, u, r]→ [u′, r′, d′, l′].

locally number-conservative if for each rule (d, l, u, r)→ (u′, r′, d′, l′) we have d+ l+u+ r =
u′ + r′ + d′ + l′.

It is very easy to see that both local and global number-conservation are equivalent for
a PCA and hence it is very easy to design a number conservative PCA even when we want
to have it perform a complex task.

1.2. Why Translating into Classical Type CA?

We have seen that the notion of PCA is very useful when working with number-
conserving or reversible automata as they are very easy to design and that checking both
number-conservation and reversibility can be done by a local study of each rule (therefore
very simply and quickly).

However the definition of PCA slightly differs from classical CA. Of course it is possible
to consider that a PCA is a classical CA and that it has Q4

p different states. However, by
doing so we see that what we called a number-conserving PCA is not necessarily a number
conserving CA because we gave the same weight to different states (for example the states
(1, 0, 0, 0) and (0, 0, 0, 1) have the same weight). In other words, even if the PCA are a
subclass of CA, the definition we gave of number-conservation in this specific class (which
is the definition that makes it easy to design number conserving PCA) is not the same as
the usual number-conservation.

Here we will show how a NCPCA can be translated into a classical NCCA without
increasing the number of states.

2. Main Theorem

The rest of the article will be devoted to proving the following theorem:

Theorem 2.1. Given a PCA Ap of partitioned states Q, there exists a CA Ar of states Q
working on the neighborhood V 10

m such that Ar mimics the behavior of Ap (in a very natural
sense that we will explain later). Moreover, if ACAp is number conserving or reversible (or
both) then so is Ar.

In the following, we will consider a PCA of partitioned states Q and describe how the
regular CA described in the theorem works.



TRANSLATING PCA INTO CLASSICAL CA 133

3. Preliminaries

3.1. Main Idea

First, we will explain how to convert configurations of Ap into configurations of Ar in
such a way that no information is lost so that from such an image configuration the CA Ar
can easily mimic the behavior of Ap. Then we will show how we can ensure that Ar has the
same properties (number-conservation and reversibility) than Ap. These properties will be
trivially conserved on valid configurations (configurations that are images of configurations
of Ap by the transformation mentioned above) but not necessarily on invalid ones. In this
case we will show that the CA Ar can detect the irregularities and “freeze” its behavior
so that nothing happens that can break number-conservation or reversibility: after all, the
identity CA is both conservative and reversible.

3.2. Vocabulary

To avoid confusions between the original PCA and the new CA we will clearly distin-
guish the vocabulary between the two.

From now on we will call square cell a cell of the original PCA. A partition will be one
portion of a square cell (a square cell has 4 partitions which are naturally the upper, right,
lower and left partitions).

Most of the time, the word cell will refer to a cell of the new CA. This automaton works
as classical CA do, but on a Moore neighborhood of radius 10 (we will see later why such
a neighborhood is needed).

We will call states the elements of Q (the partitioned states of Ap and the states of the
cells in Ar).

The state 0 will be called blank state. All other states will be colored states. The blank
state is assumed to be quiescent. A blank cell is a cell whose state is 0, and a colored cell
is a cell whose state is not 0.

If we consider a given partition p in the PCA, there are some partitions that play a
particular role from its point of view. The first of these particular partitions is the one that
is in front of it (the lower partition of the upper square cell in the case of an upper partition
for example). This partition will be called p’s facing partition. The three other partitions
in the same square cell as p will be called p’s brother partitions.

Later on, we will establish a parallelism between certain patterns of the new CA (called
blocks) and the partitions of the original one, which will lead to the use of the terms facing
blocks and brother blocks whose meaning will be straightforward.

3.3. Switch and Mix: the Key to Understanding PCA

There is an important property in the way PCA local rules are defined. As shown by
Figure 1, the transition is such that four partitions (the outter ones shown on the left part
of the figure) entirely define the next states in four other partitions (the inner ones). But
there is more than meets the eye...

Indeed, transitions of a PCA can be split in two virtual steps that are purely local
transformations: the switch and the mix. During the switch, all partitions exchange their
state with their facing partition. Once this is done, all brother partitions in a square cell
“mix” their states to produce the result of the local transition rule.
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These two steps are virtual because they happen both in one single step of the automa-
ton. It might seem useless to consider an intermediate step, but it gives the automaton an
important property: pure locality. Both steps can now be expressed as local transforma-
tions of some parts of the configuration: the switch transforms the pairs of facing partitions
whereas the mix transforms the four brother cells inside of a square cell, and for both of
these transformations the affecting area is the same as the affected area1.

This property is reminiscent of the kind of cellular automata considered by N. Margolus
to build small Turing-universal machines [2].

3.4. From the Configurations of Ap to Those of Ar
Starting from a configuration C of Ap, we obtain the configuration τ(C) of Ar by

transforming each square-cell into a 4× 4 pattern of cells of Ar as illustrated by Figures 2
and 3.

u u r r

u r

l d

l l d d

d
l r
u

Figure 2: How to translate a square cell into a portion of configuration of Ar.

Figure 3: Example of conversion of a configuration of a PCA into a configuration of our new
automaton. The original PCA has 3 different states : white, black and blank.

We will call valid a configuration of Ar that is the image by τ of some configuration of
Ap and invalid a configuration that is not.

1This property is reminiscent of the kind of cellular automata considered by N. Margolus to build small
Turing-universal machines [2]. In fact PCA are highly related to the Margolus model as one kind can easily
be translated into the other by simple geometric operations on the configurations and local transition rules.
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4. Evolution of Ar
The evolution of a cell in Ar will happen in 3 steps. The cell will always start assuming

that it is in a valid configuration and try to apply the rule of Ap on this valid configuration.
However, if it finds that it is not in a valid configuration it will stop its behavior to make
sure that no irreversible or non-conserving action is made (the behavior of Ap needs not be
mimicked if the configuration is invalid).

During the first step the cell will try to find the block in which it lies and check that this
block is correctly formed. Then, as it will know the orientation of its block, the second step
is to look at its facing block and check that it is also well formed. If it is then it will apply
the switch step with its facing block. The third and last step is then to look at its brother
blocks and check that they are well formed and that they have made the switch step. If
everything is correct, the blocks will apply the mix step, which completes the transition.

All of these 3 steps will in fact take place in one single transition of the CA.

4.1. Finding the Block

A valid configuration of Ar looks like what is shown in Figure 4.

Figure 4: A valid configuration.

In such a configuration, a colored cell can easily determine its block by looking at its
immediate neighborhood: if for each of the four quadrants (up-right, up-left, down-left and
down-right) it looks at its 3 corresponding neighbors (up, up-right and right for the up-right
quadrant for example), there should be exactly one quadrant in which it has exactly one
blank neighbor and two colored neighbors in the same state as itself (the correct quadrant
is shown for some cells in the figure). When the block is found, the orientation of the block
gives the position of the partition that it corresponds to in the pre-image of the configuration
(upper, left, lower or right). From there the cell knows where its facing block and its brother
blocks should be.

By looking one step farther (radius 2), the cell can determine if the other cells on its
block can determine correctly the block they are in (and come to the same conclusion as
itself). The block is considered well formed if there was exactly one possible block, that the
cells in this block all have the same state and that all cells in the block consider themselves
as part of this block.

If the considered cell is blank, the situation is slightly more complex. A blank cell can
be either a cell of a blank block or a marking blank cell (one of the blank cells between
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the blocks). To find its situation, the cell will look at a Moore neighborhood of radius 5
around itself. In this neighborhood, it will try to identify the well formed colored blocks
(as defined previously). According to what it finds, it will either conclude that it is in an
invalid configuration (if the blocks are not well formed or do not match the ones with the
others) or in a valid one and therefore know its own situation.

The only things that the cell needs to identify are its facing and brother blocks. These
are all located in a neighborhood of radius 3. Since a neighborhood of radius 2 is neces-
sary for a colored cell to know if its block is well formed, the blank cell needs a radius 5
neighborhood to determine a possible match for its facing and brother blocks.

Only if the blank cell has managed to find its block (and therefore the location of its
facing and brother blocks) does it proceed to the next step (otherwise it remains blank).

Note that it is possible that the blank cell sees only blank cells on its radius 3 neigh-
borhood and therefore cannot find any well formed block by looking at its radius 5 neigh-
borhood. In this case it will not know its position but this is not a problem since, if it is
in a well formed configuration, all its facing and brother blocks are blank. Since the blank
state is quiescent, the cell should stay blank anyway.

All in all, any cell can find its block and make sure that the other cells in its block
consider themselves as being part of the same well formed block by looking at a radius 5
neighborhood around itself.

4.2. Switch

The switch happens between a block and its facing block. During the switch a cell of one
block takes the state of its facing block. To make sure that the switch is conservative and
reversible we have to make sure that both blocks are well formed and that each considers
the other as its facing block.

For a given cell, all the cells in its facing block are located in a radius 3 neighborhood.
Since a radius 5 neighborhood was needed to find the block of a cell, by looking at a radius
8 neighborhood, a cell can check that the blocks of all the cells it considers as its facing
block also consider themselves as being in its facing block.

If this is the case it take the state of these cells (switch). Otherwise, it does nothing.
The switch is a virtual step, which means that the cell does not actually change its

state yet. But if the conditions for the switch are met, and that the next step (mix) does
not happen, the cell will really take the switched state at the end of the transition.

4.3. Mix

The mix is very similar to the switch. However it is necessary to check a larger area:
the cell must check that all its brother blocks are well formed and that all the facing blocks
of its brother blocks are too in order to make sure that all the brother blocks have made a
successful switch.

The cells in the facing block of a brother block of a given cell are all located in a radius
5 neighborhood of the cell, which means that by looking at a radius 10 Moore neighborhood
around itself the cell can check that all its brother blocks have successfully performed their
switch and will also perform the mixing step, meaning that it will look at the states of the
facing blocks of its brother blocks and will apply the rule of the PCA to determine its own
new state.
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If an error is spotted while checking before the mix, the cell does not mix with its
brother blocks and therefore keeps the switched state. Otherwise, the switched state is
mixed and the switch remains a virtual step.

5. Correctness of the Automaton

5.1. Number-Conservation

The number-conservation is guaranteed by the strong verifications that we do all the
time. In fact, in most cases the cell keeps its own state.

First of all it is important to notice that modifications of states occur in block tran-
sitions, that is to say that a cell only decides to change its state when it knows that it is
part of a well formed block and by the definition of a well formed block all cells of the same
block consider themselves in the same block (this means that if a cell c considers that c′ is
in its block then c′ considers that c is in its block). The consequence of this is that each
time that c will change its state, this change is made as a “block change” and therefore c′
will change its state the same way.

This means that a cell that isn’t part of a well formed block will never change its state.
Once we have this in mind, we see that a block will only change its state in two occasions

: either after a switch with its facing block or after a mix with its brother blocks.
In the first case the block first checks that the facing block is correctly oriented so that

this facing block will in turn take the current block’s information. There is therefore a real
block exchange, no state is lost nor created, there is evidently number-conservation when a
switch occurs.

In the second case the block also checks that all three other brother blocks are well
formed and correctly oriented and that they have already performed a switch so that they
will in turn decide to perform the mix. This ensures that all four apply the rule of the original
PCA and thus as the rules of the PCA are number-conserving (this is our hypothesis) the
mix operation is also number-conserving.

Therefore, every time there is any kind of change in the states of a block we have
guaranteed that this change is compensated by the change of 1 or 3 other blocks (and of
course this guarantees the conservation at the level of the cells because every block has
exactly 3 cells that have all the same state).

5.2. Reversibility

If Ap is reversible, then so is Ar: given a configuration C of Ar, we can rebuild its
predecessor (because it is reversible, the CA is bijective as a consequence of the Moore-
Myhill theorem).

The important thing to see is that a well formed block stays well formed as Ar evolves
and that a non well formed block cannot become well formed (with the exception of large
areas of blank cells that can be considered as both well formed and not well formed, without
any consequence because the blank state is quiescent).

Because of this, one can check the status of a given cell. If it is in no well formed block
or that its facing block is not well formed we know that it didn’t change its state. If it
is part of a well formed block, that its facing block is also well formed but that one of its
brother blocks or the facing block of one of its brother blocks is not well formed, then the
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block has simply switched with its facing block. Lastly, if all the surrounding blocks are
correct, the cell (and its whole block) has applied the rule of the reversible PCA /ACAp,
which is a reversible local rule, so the pre-image of the cell can be determined by looking
at its brother blocks’ states.

5.3. Simulation of the Original PCA

In order to be useful in any way, our automaton must be able to simulate the behaviour
of the original PCA.

This simulation is very easy to realize as the rules of our automaton have been designed
for it.

As we have explained earlier, any configuration of the PCA Ap can be translated into
a valid configuration of the resulting CA Ar. Conversely, every valid configuration of Ar
trivially corresponds to a configuration of the original one (applying the obvious reverse
transformation).

Moreover, the rules of the automaton have been designed in such a way that in a valid
configuration every cell could find its block, its orientation and therefore its facing and
brother blocks, that are the ones that correspond to the facing and brother partitions in
the partitioned automaton.

The only times when a cell cannot find its block in a valid configuration is when it is
part of a blank block corresponding to a blank partition surrounded by blank partitions in
the original PCA. In this case, the cell will do nothing (because it cannot determine whether
or not the configuration is valid) which incidentally happens to be what it is supposed to
do because the blank state is quiescent (so a blank partition surrounded by other blank
partitions should remain blank).

After the blocks have been found, the switch and mix steps will occur correctly. The
mix is the step that eventually applies the local rule of Ap (the switch has no incidence in
a valid configuration, it is only used to guarantee conservation in an invalid configuration).

The simulation property can be expressed by using the simple translation function τ
from the configurations of Ap into valid configurations of Ar. For any configuration C of
Ap, we have

Fp(C) = τ−1(Fr(τ(C)))
where Fp is the global transition rule of Ap and Fr that of Ar.

6. Comments

6.1. Another Solution

There is a simpler solution if one wants only to convert a number-conserving and/or
reversible PCA into a regular CA that conserves these properties.

The solution is to increase the number of states fourfold by adding a directional layer :
if Q is the set of partitioned states of the original PCA, we make a CA working on the
states Q× {↑,←, ↓,→}.

A square cell of Ap is here transformed into a 2 × 2 square of cells, each holding a
partitioned state and the arrow indicating the partition it corresponds to. The arrows do
not change over time.
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The behavior of the automaton is then similar to the one explained in the article
but the needed neighborhood is smaller (a radius 2 neighborhood is sufficient because the
configurations are more compactly represented and there are less possibilities for errors that
have to be checked).

Fhe four directions are given the weights 0, |Q|, 2|Q| and 3|Q| respectively, and the
weight of a cell is the sum of its state and the weight of its direction.

This method is simpler to implement but has many disadvantages over the one described
in the article, most notably that it requires finite configurations to be translated into non
finite ones (but still ultimately periodic) and that it increases the number of states.

6.2. Rotation Invariance

In the whole construction that we have described in this article, all four directions
(up, left, down and right) have been considered similarly. Even the translation τ from
configurations of Ap into configurations of Ar is rotation-invariant.

This means that if the PCA Ap has a rotation-invariant local rule then our resulting
automatonAr will also be. This is a good thing when devising simple PCA based on physical
principles (both number-conservation and reversibility are often sought after because of
physical considerations).

6.3. Other Partitions

In this article we have only considered two-dimensional 4-partitioned cellular automata.
However there exist other kinds of partitioned cellular automata.

Important variants include for example one dimensional 2-partitioned and 3-partitioned
cellular automata and two-dimensional 5-partitioned cellular automata.

For all of these different forms of PCA it is possible to adapt the construction explained
in this article to obtained similar results. The key lies in the correct choice of the translation
function τ that will define valid configurations.

Some important points are to be observed when choosing such a function:
• All resulting blocks must comprise the same number of cells. If not, the switch and

mix steps are not conservative anymore.
• Marking blank states cannot be omitted. These states are more than mere fillers

since they are the only way to determine the orientation of blocks. Markers must
also be blank, not only to ensure that finite configurations have a finite total weight
but also because the marking state must be quiescent (in case a cell is surrounded
by cells in the marking state). In a number-conserving PCA all states are quiescent,
but that is not necessarily the case for a reversible PCA.
• The translation pattern must be rotation invariant if rotation invariance is to be

conserved by the transformation.
• Blocks must not necessarily be connex but non-connexity will probably increase the

size of the required neighborhood in order to perform the necessary checks.
There are some simple translation functions that fit the aforementioned variants of PCA

which make the results valid on these too. A smaller translation pattern might also exist
for the 4-partitioned cellular automata considered in this article.
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7. Conclusion

We have therefore shown how any partitioned cellular automaton can be converted
into a regular cellular automaton in such a way that important properties such as number-
conservation, reversibility and rotation invariance are conserved in the process.

The number of states is not increased (it is even decreased if we consider that a PCA
has Q4 states where Q is the set of its partitioned states) but the considered neighborhood
is.

The result is mainly interesting as a theoretical equivalence (there is no other real
need to translate a PCA into a regular CA) because some constructions are much easier to
perform on PCA. For instance, K. Morita was able to devise a PCA with only 3 states that
is reversible, number-conserving, rotation invariant and Turing-complete. Our construction
gives a regular CA that has all these same properties (although it works on a quite large
neighborhood).
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Abstract. Cellular automata are a simple model of parallel computation. Many people
wonder about the computing power of such a model. Following an idea of S. Wolfram [16],
M. Cook [3] has proved than even one of the simplest cellular automata can embed any
Turing computation. In this paper, we give a new high-level version of this proof using
particles and collisions as introduced in [10].

Introduced in the 40s by J. Von Neumann as a parallel model of computation [13],
cellular automata consist of many simple entities (cells) disposed on a regular grid. All
cells evolve synchronously by changing their state according to the ones of their neighbours.
Despite being completely known at the local level, global behavior of a cellular automaton
is often impossible to predict (see J. Kari [6]). This comes from the fact that even “simple”
cellular automata can exhibit a wide range of complex behaviors. Among those behaviors,
one often refers as emergence the fact that “complexity” of the whole system seems far
greater than complexity of its elements.

Elementary cellular automata are an example of subclass of “simple” cellular automata.
They are obtained by considering only a one dimensional grid (i.e., a line of cells), two
possible states and nearest neighbours (i.e., left and right one in addition to the cell itself).
Although very restrictive, some elements of this class do exhibit very complex behaviors
including emergence. One way to assert such a claim is to prove that some of those cellular
automata can embed any Turing computation. Among elementary cellular automata, more
likely candidate to this property were though to be the ones that exhibit meta-structures
with predictable behavior. Those meta-structures have been studied with regards to their
combinatorial aspect (see N. Boccara et al. [1] or J. P. Crutchfield et al. [5]) and widely
used as support for constructions. In fact, M. Cook [3] managed to embed any Turing
computation in an elementary cellular automaton (namely rule 110) using these structures.
However, lack of formalism to manipulate those meta-structures forced him to develop long
and complex combinatorial arguments to prove that intuition on behavior is correct.

In this paper, we shall use a new formalism on these meta-structures developed in [10]
to provide a complete and high-level proof of Turing universality of rule 110 without the
need of complex combinatorial arguments.

2000 ACM Subject Classification: 68Q80,68Q05,37F99.
Key words and phrases: Cellular automata, particles and collisions, Turing, simulation.
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In section 1, we give formal definitions of cellular automata, discuss about the notion
of Turing simulation and introduce the framework of particles and collisions. In section 2,
we introduce the cyclic Post tag system (CPTS) used as an intermediate and prove this
system is able of any Turing computation. Finally, In section 3, we explicitly give the
meta-structures used, present in details the construction to encode CPTS and prove that
the encoding method is valid.

1. Cellular automata

Cellular automata are a parallel computation model on a regular grid in discrete time.
In general, this model is known to be able of any Turing computation. In this paper, we
consider only a very simple subclass of cellular automata: elementary cellular automata
(ECA). These automata are made of a line of cells with a binary state {0, 1} and only
take into account the three nearest neighbours (i.e., left, center and right). An elementary
cellular automaton is thus a function f : {0, 1}3 → {0, 1} also called local transition function.
One can notice that this class has only a finite number (256) of elements. Usually, those
elements are referred by their index which is the integer obtained by taking for the i-th
digit f(i0, i1, i2) where i0i1i2 is the writing of i in base 2. In the rest of the paper, we focus
on rule 110 whose transition function is given on Table 1.

f(l, c, r) 0 1 1 0 1 1 1 0
(l, c, r) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)

Table 1: Local transition function of rule 110

ECA act, in a synchronous way, over configurations c ∈ {0, 1}Z by the global transition
function F (c)i = f(ci−1, ci, ci+1). Starting from an initial configuration c0, the sequence
of successors O = (F (i)(c0))i∈N is called the orbit starting from c0. To draw an orbit of a
cellular automaton, a convenient method it to pill up elements of this orbit leading to a
space-time diagram (see Figure 1).

Figure 1: Example of a space-time diagram of rule 110 (time goes from bottom to top)

Due to the parallel nature of cellular automata, they have several differences with other
computation models. Therefore, the notion of simulation is less straightforward than usual.
Thus, it needs some discussions presented in the following.
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1.1. Universalities

Among the differences between cellular automata and other systems, main ones are
that they have no halting condition and act on infinite configurations. These two points
make it very difficult to achieve a “natural” or even standard definition of simulation by
cellular automata of other systems (and in particular Turing machines). In this section, we
discuss the notion of Turing universality and present the version used in this paper.

To make a parallel between Turing machines and cellular automata, we first need to
introduce some “halting” condition somewhere in cellular automata. This is generally
achieved by seeking a particular word in the configuration. This seek can be done ei-
ther at a specific place or anywhere on the configuration. Here, we choose the latter option
leading to the following formal definition: A word w ∈ {0, 1}∗ occurs in an orbit O if there
exists t ∈ N and x ∈ Z such that w = Ot,xOt,x+1 . . . Ot,x+|w|−1.

For input, one solution is to restrict to finite configurations (i.e., configurations with
a finite number of non 0 letters). However, this definition is too restrictive in our case.
Therefore we prefer to use the less restrictive set of ultimately periodic configurations: that
is configurations which are of the form ωlmrω where l, m and r are finite words. We request
that these words can be easily computed from the input word of the Turing machine and
that the resulting configuration “halts” if and only if the Turing machine halts. All those
points can be formalized in the following definition:

Definition 1.1. A cellular automaton is Turing universal is for any Turing machine M,
there exists a word w and a log-space function f which maps any words s ∈ Σ∗ to three
words ls, ms, rs such that w occurs in the orbit starting from configuration ωlsmsr

ω
s if and

only if M eventually halts on s.

One can note that our definition is a specific case of the more general scheme presented
by B. Durand and Zs. Róka in [4].

Since most of the problems encountered with definitions of Turing universality come
from the fact that we deal with two heterogeneous systems, another sensible approach of
simulation is to focus on simulation of cellular automata by cellular automata, as described
by N. Ollinger in [8]. This idea led to the notion of intrinsic universality. Intuitively,
a cellular automaton simulates another one if the space-time diagram of the simulating
one can be regularly embedded into the simulating one. Due to the fact that intrinsic
universality requires the whole computation to be embedded in a regular way, intrinsic
universality implies Turing universality but the converse is false. A more detailed study of
those two types of universalities can be found in the survey made by N. Ollinger [9]. In this
paper, we deal with the Turing universality of rule 110, the question of intrinsic universality
of such a rule is still open.

Theorem 1.2 (M. Cook [3]). Rule 110 is Turing-universal.

The construction made by M. Cook makes heavy use of regular structures present in
rule 110. However, due to a lack of specific formalism, it fail to achieve the proof on these
structures level and must default to a technical combinatorial approach. In this paper, we
intend to lever the proof by using specific high-level tools on these meta-structures. These
meta-structures and tools are presented in the next part.



144 G. RICHARD

1.2. Particles and collisions

Through very restricted, elementary cellular automata can exhibit a wide range a be-
haviors. Those behaviors have been experimentally categorised by S. Wolfram [15] into four
classes (see Figure 2): Class I regroups cellular automata whose behavior converges towards
a stable configuration. Class II is constituted by those whose orbits ultimately go into a
cycle. Class III regroups the ones whose behavior seems random and does not exhibit any
kind of regularity. At last, elements of class IV are cellular automata where “(...) local-
ized structures are produced which on their own are fairly simple, but these structures move
around and interact with each other in very complicated ways. (...)”. Such phenomenon is
often referred as self-organisation and is though to include a great computational power.
In fact, simulation of Turing machine by rule 110 heavily relies on such structures. To use
those structures, we need a formalism as the one introduced in [10] which gives us a formal
support on intuitive tools.

Class I (rule 232) Class II (rule 215) Class III (rule 18) Class IV (rule 110)

Figure 2: Behaviors of elementary cellular automata

Intuitively, those elements (which can be seen in the last class on Figure 2) can be
easily described: most of the space-time diagram is filled with a bi-periodic pattern called
background (Figure 3a). Among backgrounds, some uni-periodic structures called particles
seem to travel (Figure 3b). These particles interact with each other and give birth to new
particles in collisions (Figure 3c).

(a) Background (b) Particle (c) Collision

Figure 3: Examples of elements present in self-organisation and symbolic representation.

To give a formalism of these object, one heavily relies on two-dimensional aspect of
space-time diagram. Therefore, in the rest of the paper, we only consider bi-infinite space-
time diagrams (i.e., orbits with an infinite sequence of predecessors). Moreover, all defini-
tions are based on discrete two-dimensional geometry. In this vision, space-time diagrams
are elements of {0, 1}Z2

with constraints induced by local transition function.
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A coloring is an application C from a subset Sup(C) of Z2 to {0, 1}. If Sup(C) is
finite then the coloring is said to be finite. Restriction of a coloring C to a subset S of
Z2 is denoted as C|S . Translation of a coloring along a vector u is the coloring of support
{s+ u|s ∈ sup(C)}, defined by (u · C)(z + u) = C(z). Disjoint union of two colorings C and
C′ whit Sup(C)∩ Sup(C′) = ∅ is defined such that z ∈ Sup(C), it holds C ⊕ C′(z) = C(z) and
for all z ∈ Sup(C′), it holds C ⊕ C′(z) = C′(z).

A background is a triplet B = (C, u, v) where u, v are two non-collinear elements of Z2

and C a finite coloration satisfying that
⊕

i,j∈Z2(iu + jv) · C is a space-time diagram. In
the rest of the paper, we abusively also denote by B the resulting space-time diagram. A
particle is a tuple P = (C, u,Bl,Br) where C is a finite coloring, u ∈ Z2, Bl and Br are
backgrounds, provided that I =

⊕
k∈Z ku · C separate the plan in two 4-connected zone L

and R (oriented according to u) ensuring that B|L ⊕ I ⊕ B′|R is a space-time diagram1.
At last, a collision is a pair (C, L) where C is a finite coloring, L is a finite sequence of n
particles Pi = (Bi, Ci, ui,B′i), satisfying:

(1) ∀i ∈ Zn, B′i = Bi+1;
(2) I = C ⊕⊕i∈Zn,k∈N kui · Ci cut the plan in n 4-connected zones;
(3) For all i ∈ Zn, C ⊕⊕k∈N (kui · Ci ⊕ kui+1 · Ci+1) cut the plane in two 4-connected

zones. Let Pi be the one right of Pi;
(4) C = I ⊕⊕i Bi|Pi

is a space-time diagram.
Since finite colorings involved in particles and in collisions can be quite large, it would be

unreadable to give them in an analytic form. That’s why we depict them using a graphical
version. To help the reader convince itself, rather than just depicting the coloring, we give
the finite coloring “in context” and highlight it. This representation is more intuitive but
nevertheless completely defines the object. In this paper, all background, particles and
collisions shall be given this way (see figure 3). For collisions, we also give the name of
involved particles.

The idea behind formalism [10] is to manipulate space-time diagram representing par-
ticles as lines and collisions as points. Such representation allows to represent evolutions
of the cellular automaton as a planar map (see for example Figure 15) and is formalized
below:

Definition 1.3. a catenation scheme is a planar map whose vertices are labeled by collisions
and edges by particles which are coherent with respect to collisions.

A catenation scheme is a high-level symbolic assembly of particles and collisions. To
make this scheme correspond to a valid space-time diagram, one needs to give explicit
positions for every vertex and check that all local constrains are correct. Alternatively, those
positions can be given indicating relative position of collisions, for example by specifying
the number of repetitions of particles. Such set of repetitions is called valid affectation is
the resulting object is a space-time diagram. The main point is that, from a catenation
scheme, one can automatically know the form of the set of valid affectations.

Theorem 1.4 ([10]). Given a finite catenation scheme, the set of valid affectations is a
computable semi-linear set.

1In an exact version, disjoint union is replaced by patchwork which require the different colorings to have
a “safety border” on which they agree. This condition can be easily fulfilled by making the finite coloring
larger. In this paper, we stick to this simplified version.
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Catenations allow us to construct complex behaviors for cellular automata exhibiting
self-organisation. To apply this in the case of rule 110, we need to manually extract a set
of particles and collisions and then use it to simulate our Turing machine. Although rule
110 is known to have a very wide and complex system of particles and collisions, we are
still not able to simulate directly a Turing machine. To make the simulation, M. Cook
introduces an intermediate dynamical system known as cyclic Post tag systems with several
additional constraints. To do this, one must first prove that this system can embed any
Turing computation and then that rule 110 can embed this system.

For completeness of the proof, the next section describe how Turing machines can be
embedded into this specific version of cyclic Post tag system. On first reading, the reader
who is mainly concerned with rule 110 stuff can easily skip this part and just read cyclic
Post tag systems definition (def 2.2) and assume the result of proposition 2.4.

2. Cyclic Post tag systems

In this section, we prove that cyclic Post tag systems with additional restrictions can
simulate any Turing machine. Those systems are a variant of Post tag systems whose Turing
power has been know for long (see H. Wang [14] or J. Cocke and M. Minsky [2]). From those
systems, obtaining a cyclic one is not very difficult but ensuring the additional restrictions
require a deep understanding of the simulation. Since those restrictions are a key point of
the proof of rule 110, we choose to give a full proof of Turing machines simulation.

2.1. Definitions

Introduced by A. Turing in the 30s [12], Turing machines are one of the main dynamical
models of computation. In our case, they consist of a bi-infinite tape filled with letters chosen
among a finite alphabet Σ (see Figure 4). On the tape, there is a unique head with a state
taken among a finite set Q. Dynamics is obtained the following way: at each time step, the
head can write a new letter at its position, change its state and make a move to the left or to
the right. The behavior of the head is uniquely determined by the current state of the head
and the symbol on the tape under it. This behavior is denoted by the transition function
δ. Initially, the tape filled with one distinguished white letter w(∈ Σ) on all but a finite
portion called input. The head starts at position 0 in the initial state q0 . Computation
steps are done by applying the local rule until the head enters the halting state qf . This
can be formalized with the following definition:

Definition 2.1. A Turing machine (TM for short) is a tuple (Σ, w,Q, q0, qf , δ) where:
• Σ is the finite set of letters;
• w ∈ Σ is the white letter;
• Q is the finite set of states;
• q0, qf ∈ Q are the initial (resp. halting) state;
• δ : Q× Σ→ Q× Σ× {←,→} is the transition function.

At each step, the system is fully defined by a configuration consisting of the non-
white portion of the tape along with the current state and position of the head. In this
system, all changes are localised under the head. Although simple, this system has as much
computational power as most of other known dynamical systems. In this paper, we also
use another system known as cyclic Post tag system. This system was first introduced by
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w ww ww ww ww w. . . . . .. . . . . .a b a b a w a b

q q′

Figure 4: Example of Turing machine transition δ(q, b) = (q′, w,→)

E. Post in 1943 [11]. A Post Tag system (PTS for short) can be described as a finite queue
on a finite alphabet Σ. At each step, the system pops a finite fixed number n of letters
from the queue. Then, according to the first popped letter, it pushes a (possibly empty)
word at the end of the queue (see Figure 5a). The function associating the pushed word to
the read letter δ is called transition function. The system starts with an initial finite input
word in the queue. Transition rule is applied until there are not enough letters left to pop
in the queue (i.e., strictly less than n). Formally, a Post Tag system can be depicted as a
triplet (Σ, n, δ) where Σ is the finite set of letters; n is a non-null integer and δ : Σ→ Σ∗ is
the local transition function.

01 01100 11011 (ε, 10011, 011100, 01)
01 100 1011 (10011, 011100, 01, ε)
10 0 01110011 (011100, 01, ε, 10011)
01 00 11110011 (01, ε, 10011, 011100)
00 111001101 (ε, 10011, 011100, 01)
ε (halts) . . .

(a) Post Tag System ({0, 1}, 2, θ) (b) Cyclic Post Tag System
with θ(0) = ε and θ(1) = 100 (ε, 10011, 011100, 01)

Figure 5: Example of Post tag systems transitions

In this paper, we use a variant of this system, introduced by M. Cook [3], called Cyclic
Post Tag System (CPTS for short) depicted in Figure 5b. In this variant, the alpha-
bet is fixed to {0, 1} and the transition rule is replaced by a finite cyclic list of words
(w0, w1, . . . , wk−1) on {0, 1}∗. At each step, the systems pops the first letter. If this letter
is 1, it pushes the first word of the list (here w0) at the end of the queue. Then, in all cases,
it rotates the list of words — here, for example, the list becomes (w1, w2, . . . , wk−1, w0).
As previously, starting from an initial input word in the queue, transitions occur until the
queue is empty. In this case, the system is said to halt on the selected input. This leads to
the following definition:

Definition 2.2. A cyclic Post tag system P is a finite cyclic list (w0, w1, . . . , wk−1) of words
over the alphabet {0, 1}.

Once again, at each step, the system can be entirely characterised by a configuration
consisting of the current content of the queue and the current rotation of the cyclic list
(more precisely, the index of the first word in the list). The rest of this section is devoted
to prove that CPTS can embed any Turing machine even when ensuring two additional
restrictions. The first one is on the length of every word in the cyclic list. The other one is
on the occurrence of letter 1 during any Turing simulation.
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2.2. From Turing machines to cyclic Post tag systems

In this section, we show how a CPTS can simulate a Turing machine. Intuitively, the
notion of simulation indicates that there exists an easy way to transform any input of the
Turing machine into an input of the CPTS such that the Turing machine halts on the input
if and only if the CPTS does. This can be formalized by the following:

Definition 2.3. A CPTS P simulates a Turing machine M if there exists a function
f : Σ∗ → {0, 1}∗ which is simple2 such that for any word s ∈ Σ∗, M eventually halts on s
if and only if P eventually halts on f(s).

With this definition, we can state the main theorem of this section which says that a
subset of CPTS is sufficient to simulate any Turing machine. As underlined before, the
result has been already known for long in the general case but restrictions need a deep
understanding of the method used. For this reason and to give the reader a complete view
of the embedding process, we give in the following the complete reduction. Restrictions may
seem quite mystic by now but they will appear when embedding this system into cellular
automaton 110.

Proposition 2.4. Any Turing machine M can be simulated by a cyclic Post tag system P
such that:

• the length of any word in P is a multiple of 6;
• during any step of the simulation, there is at most K consecutive steps with 0 as

the first popped letter. Moreover, K only depends on M.

Proof. First of all, it is well known than any Turing machine can be simulated by a Turing
machine on alphabet {0, 1} with white letter 0. Since the reduction is trivial, we restrict our-
selves to Turing machine with this alphabet. In this proof, we prove an even stronger result:
there exists a transformation of any Turing machine configurations into CPTS configura-
tions which commutes with dynamics. The proof is done by using PTS as an intermediate
model.

Let us take any Turing machineM = ({0, 1}, 0, Q, q0, qf , δ) and c be a configuration of
the Turing machine. It can be entirely defined by the state of the head q , the portion of
the tape on the left of the head, the one on the right and the letter under the head i (see
Figure 6). Since left and right words have only a finite number of 1 letters (i.e., non-white),
they can be depicted as integers nl and nr which give c on the form (nl, nr, q, i).

At this point, let us how encode this configuration into a PTS (Σ, n, δ′) configuration.
To encode all information, we use different methods:

• the left (resp. right) integer is encoded in unary between start and end markers;
• state is encoded in every letter of the queue;
• current letter is encoded using the fact that only one letter over n is read.

To allow encoding of all these information, let us take an alphabet Σ0 on the form
M ×{J,I}×Q×{0, 1} where M = {., •, ◦/, •/} contains a marker information (respectively
one for start, one for interior and two for end). The part {J,I} indicates if we speak
about left or right word. the set Q is used to encode the current state. The last part of the
alphabet refers to the parity of the position: throughout the construction, every letter on the
form (m, f, q, 0) is followed by a (m, f, q, 1) letter. Such sequence is called representation
and depicted as mf (omitting the state for clarity). Moreover, representations are often

2usually, we request a log-space function but here we use the even more restrictive notion of morphism
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doubled, the result is called tag. With this formalism, a configuration c = (nl, nr, q, 0)
is encoded in the queue as .J.J(•J•J)2nl ◦/J ◦/J •/J •/J .I.I(•I•I)2nr ◦/I ◦/I •/I •/I (see also
Figure 6). For the (nl, nr, q, 1) case, the encoding is the same except that the first letter
is removed. As we have made four letters blocs, we choose n = 4 (i.e., read one letter and
then discard 3). This ensure that exactly one letter is read per tag.

Turing configuration 0 0 0 0 0 0 01 1 1. . . . . .

q

With left and right words (10, 110, q, 0)
Converting into integers (2, 6, q, 0)

PTS configuration (state omitted) .J.J(•J•J)4 ◦/J ◦/J •/J •/J .I.I(•I•I)12 ◦/I ◦/I •/I •/I

Figure 6: From Turing machine configuration to PTS configuration

At this point, let us study how transitions are achieved. Let (nl, nr, q, i) be a config-
uration of the Turing machine. Let us assume that the transition is on the form δ(q, i) =
(q′, s,←) (the case → is obtained by symmetry). In these conditions, the successor of the
configuration is (nl/2, 2nr + s, q′, nl mod 2) (shifting bits corresponds to multiplying or
dividing by 2). Thus, in our PTS we need to:

• update the state;
• multiply the right value by 2;
• add s to the right value;
• divide the left value by 2;
• make an integer floor on the left value;
• read the modulus of the left value and transform it into positioning.

Sadly, doing all these operations requires three passes. The current pass is encoded in all
letters of the queue by extending the alphabet with a Cartesian product: the new alphabet
is Σ1 = Σ0 × {A,B,C}. In pass A, we do the first four points. In pass B, we do the floor
and read the modulus and in pass C we convert the read modulus to alignment.

Now, let us construct the transition function achieving this behavior. A full example
of transition is given in Figure 7. During pass A, for each encountered tag, we know the
current state (present in the letter) and the current value under the head (read in the last
element of the letter). Thus we know the transition and can update the state and the left
and right values. For the doubled value, we copy the start and end tags, double each interior
tag and add one interior case if 1 if written. For the divided value and for each encountered
tag (start, interior or end), we write only one corresponding representation (thus dividing
the number of letters by two even for boundaries). As the word is only made of tags, the
relative position of read letters is the same after the first pass. During pass B, floor and
modulus of the divided word are computed as depicted in Figure 7: First, the starting letter
is read whereas eating one interior representation and writing a start tag. Thereafter, we
write one interior tag for every two interior representations. At the end, we can either arrive
on the first or second ending representation according to the interior representation parity.
In addition to write both end tags, we can also insert some new letters # to change the
relative position in the next step. On other portions, we just need to make a copy which
can be easily achieved since they are compound of tags (recall tags are made of four letters
and thus are read exactly one time). The last part also consists just of copying. Passing
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above letters # ensures the correct new positioning of read letters. A careful reader may
note that the depicted method is not fully correct since in pass B, we must know which
word must be floored and have no longer access to this information. However, this can be
easily overcome by enlarging once again the alphabet.

The last point is to define the behavior in the case we reach an halting state of the
Turing machine. This case is easily dealt with by requesting the Post system to erase the
whole queue, causing it to halt. To ensure our additional condition, we need to bound the
number of step without writing. Since the only case where there is no writing is when erasing
the configuration on halting, it is easy to obtain a bound by requesting that the simulated
Turing machine halt only with empty tape. This set of machine is obviously also Turing
powerful. With this restriction, the number of step without write is bounded by the number
of steps (precisely six) to erase the empty configuration .J.J ◦/J ◦/J •/J •/I.I.I ◦/I ◦/I •/I •/I.

Pass A: .J.J (•J•J)18 ◦/J ◦/J •/J •/J .I.I (•I•I)8 ◦/I ◦/I •/I •/I
.J.J (•J•J•J•J)18 •J•J ◦/J ◦/J •/J •/J .I (•I)8 ◦/I •/I

Pass B: .J.J (•J•J)37 ◦/J ◦/J •/J •/J .I•I (•I•I)3 •I ◦/I •/I
.J.J (•J•J)37 ◦/J ◦/J •/J •/J .I.I (•I•I)3 •I•I #2 •/I •/I

Pass C: .J .J•J (•J•J)36 •J ◦/J ◦/J •/J •/J.I .I•I (•I•I)3 •I#2 •/I •/I
.J.J (•J•J)36 •J•J ◦/J ◦/J •/J •/J .I.I (•I•I)3 •I•I •/I •/I

Figure 7: Example of a Turing transition simulation (above is the read queue and below
the corresponding elements written).

At this point, we want to convert our PTS system into a CPTS one. This can be done
without any real difficulty (see Figure 8). Let us take the alphabet Σ of the PTS. It is
possible to represent the n-th letter with a fixed length sequence of 0 by marking a letter
1 in a the n-th position. One can trivially request that the length m of those words is a
multiple of 6 (ensuring our first additional condition). This way, we can convert all letters
to words on alphabet {0, 1}. Since all letters have the same size, each transition read a fixed
number 4m of letters. The transition is indicated by the 1 in the first m read letters. Thus
the cyclic list can be done the following way: take a list of length 4m, for the first m words,
the word is the result by the transition of the PTS on the m-th letter. All other words are
taken empty. To end this, let us look at the maximal number of consecutive erasing. Since
a complete rotation of the list correspond to a transition of our PTS, we know there are at
most 24m steps without writing.

Initial Post system a ` bb, b ` caa, c ` ε
Representation of letters a⇔ 100000, b⇔ 010000, c⇔ 001000
Representation of images bb⇔ 010000010000, caa⇔ 001000100000100000, ε⇔ ε

Cyclic word list (with step 4) (010000010000, 001000100000100000, ε, ε, . . . , ε︸ ︷︷ ︸
18×

)

Figure 8: From PTS to CPTS
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In this transformation, we need to go thorough the configuration three times to simulate
one transition of the initial Turing machine. Since we use unary encoding, the length of
the configuration can double at each simulated step, thus the speed of simulation suffers an
exponential slowdown. With a more subtle and complex methods, T. Neary and D. Woods
managed to obtain a polynomial slowdown [7, 17] . This result allows them to obtain
stronger results using the simulation presented in the rest of the paper. In particular, they
prove that predicting rule 110 is P-complete with respect to Turing reducibility.

3. Universality of rule 110

Now, let us go back to rule 110. This last section is devoted to simulate a CPTS
(with the additional restrictions) with rule 110. Of course, this simulation is done using
tools introduced in section 1.2. With those tools, the way of constructing and proving the
simulation is the following:

(1) First, give an explicit set of particles and collisions of rule 110;
(2) Then, construct the simulation at a global level using catenations;
(3) Last, use properties of catenation to ensure that simulation is correct (in particular

at local level).

3.1. Particles and collisions of rule 110

Rule 110 do possess a very large number of particles and collisions. In this part, we
extract a small subset of those particles and collisions that are used in the construction.

For background, we use only one background (the standard one on rule 110) which is
given in Figure 9. Since it is the only background, it is omitted in all following objects and
representations.

Figure 9: Background used in the construction (coloring is highlighted)

During the construction, we use a bunch of particles and collisions. To ease the reading
and understanding of the construction, some hints about particles and collisions used are
given alongside their description.

These particles serve as support for information. Dynamic is achieved by a set of 23
collisions depicted in Figures 11 to 13. As for particles, each collision is given by an extract of
the space-time diagram where non perturbation pattern is highlighted. Moreover, symbolic
behavior of collisions on particles are also given as formulae.

Remark 3.1. The full set of particles and collisions used in this paper contains 18 particles
and 23 collisions that are all depicted in Figures 10, 11, 12 and 13.
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p ←−a1
−→a3

←−a4
←−a5

−→a6

−→a7
−→
b1

←−
d4

−→s ←−ı2 ←−
d5

−→
b2

←−
d1

←−
d2

c ←−ı p2

Figure 10: Particles used in the construction (with highlighted finite coloring)
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f d d′−→
b1 +←−ı ` −→b2 p+←−ı ` p2 p2 +←−ı2 ` ←−ı + p

f ′ g1 g2−→
b2 +←−ı2 ` −→b2 c+←−ı ` ←−a1 c+←−a1 ` ←−ı +−→a3

g5 g4 g3−→a3 +
←−
d1 ` p c+←−a5 +←−a4 ` ←−ı c+←−ı ` ←−a5 +←−a4 +−→a3

Figure 11: Collisions used in the construction
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g′7 g′8 g8−→a6 +←−ı ` −→b2 −→
b2 +←−ı ` −→b1 p2 +←−ı ` −→b2

h g′9 g6−→s +←−ı ` ←−ı +−→s −→
b1 +←−ı ` p −→a3 + p+

←−
d4 ` ←−ı + p

k s g′6−→s +←−ı ` c −→
b2 +←−ı ` −→b1 −→a3 + p+

←−
d4 ` −→a6

Figure 12: Collisions used in the construction (cont.)
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s′ w′1 w2−→
b1 +←−ı2 ` −→b1 p2 +←−ı ` ←−ı +−→a3 +−→a7

−→
b1 +

←−
d5 +

←−
d2 ` ←−ı +

←−
d1

w′2 j
−→a3 +−→a7 +

←−
d5 +

←−
d2 ` ←−ı +

←−
d1 c+←−ı ` ←−ı + c

Figure 13: Collisions used in the construction (end)

At this point, let us discuss how to encode CPTS elements using particles. Encoding
information into particles can be done in two ways: either by the type of particle used or
by the relative position in a group of particles. In the construction, both methods are used.
This implies, in particular, that some bits of information are conveyed by groups of parallel
particles. Those groups of particles are called symbols and named with capital letters. To
encode binary letters of the CPTS, we use groups of four particles, the letter x ∈ {0, 1} is
encoded by the relative position of those particles. In the construction different groups are
used to encode letters:

←−
F x = (←−ı ←−ı2 )4 are words list letters (called frozen letters); Cx = c4

are queue letters and
←−
W x = ←−ı 4 temporary container (called unfrozen letters). To encode

the cyclic list of words, we also use a starting symbol
←−
S = ←−ı ←−d1

←−
d4
←−ı 4←−ı2 and a delimiter←−

D =
←−
d5
←−
d2
←−
d1
←−
d4
←−ı 4←−ı . The behavior of transition is stored in a erasing symbol

−→
B =

−→
b2 or

a copying symbol P = p. For the dynamic, two additional symbols are needed: a clock−→
T = −→s 4 and some junk

←−
J = ←−ı 2. Some of these symbols also have a degraded version
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that we denote with a tilde: F̃x = (←−ı ←−ı2 )3(←−ı ←−ı ), S̃ = ←−ı ←−d1
←−
d4
←−ı 4←−ı , D̃ =

←−
d5
←−
d2
←−
d1
←−
d4
←−ı 4←−ı ,

P̃ = −→a3
−→a7 and B̃ =

−→
b1 .

Combining collisions into finite catenations, it is possible to obtain 10 different possible
behaviors with symbols (and 6 additional with altered versions). The complete list of such
catenations are given in Figure 14 and Figure 15. Altered versions are not fully depicted
since they can be very easily obtained from non-altered ones. The catenation C̃ is the same
as C with half number of collisions. For S̃0, the only difference is that the upper collision is
g′8 rather than f ′ (as for M̃0). For S̃1 and M̃1, the same holds replacing the upper collision
d′ by w′1. The last catenations E0, Ẽ0, E1 and Ẽ1 are made with only one collision (w2 for
the first two ones, w′2 for the last two ones).

R
−→
T +

←−
W x ` Cx

C′
−→
T +

←−
J ` ←−J +

−→
T

C Cx +
←−
W y ` ←−W y + Cx C̃ Cx +

←−
J ` ←−J + Cx

S0 C0 +
←−
S ` ←−J +

−→
B S̃0 C0 + S̃ ` ←−J + B̃

S1 C1 +
←−
S ` ←−J + P S̃1 C1 + S̃ ` ←−J + P̃

M0
−→
B +

←−
F x ` −→B M̃0

−→
B + F̃x ` B̃

M1 P +
←−
F x ` ←−W x + P M̃1 P + F̃x ` ←−W x + P̃

E0 B̃ +
←−
D ` ←−S Ẽ0 B̃ + D̃ ` S̃

E1 P̃ +
←−
D ` ←−S Ẽ1 P̃ + D̃ ` S̃

Figure 14: Local behavior of symbols

3.2. Simulation and catenation

With the previously defined local encoding of CPTS elements, let us proceed by speci-
fying the global encoding and construct catenations embedding the dynamic.

Encoding of a CPTS configuration is made the following way: in the center, the queue
is written with symbols Cx, the upper symbol of the queue being on the right. Right of
these elements, the cyclic list of words is repeated infinitely starting from the current word.
Words are written with symbols

←−
F x and separated with symbols

←−
D . The first symbol

before the current word is
←−
S . Furthermore, a symbol is replaced by its altered version

where being the last one before a delimiter — i.e., representing the last letter of a word
or being a delimiter (or a start symbol) before an empty word. On the left of the queue
contents, there is an infinite amount of

−→
T symbols.

Proposition 3.2. For any CPTS evolution, it is possible to construct a catenation scheme
embedding the evolution.

Proof. The catenation uses the symbols presented above. An extract of such a catenation
can be found in Figure 16. First, the upper letter of the queue encounters the starting
symbol, resulting either on a erasing symbol

−→
B (catenation S0) or a copying symbol P

(catenation S1) according to the considered letter. This symbol encounters all frozen letters
of the word erasing them (M0) or transforming them into an unfrozen ones (M1). On the
last letter, altered catenations (M̃0 or M̃1) alter the symbols which encounter the next
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g1

g2

g3

g4

g5

g6

d

g8

g′8

f
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g1

g2

g3

g4

g5

g′6
g′7

g′8

g′9

d

d′

M0 M1 S0 S1

Figure 15: Behaviors of symbols

delimiter, transforming it into a new starting symbol (E0 or E1). Unfrozen letters are going
left, crossing all queue letters (C). After that, they are added at the end of the queue when
colliding with a

−→
T symbol (catenation R). One can note that catenations Sx also generate

some junk symbols that go left untouched crossing both queue letters (catenation C̃) and
clock symbols (catenation C). In the case of an empty word, the behavior is the same up
to the fact that the altered symbol of copy or erase is directly generated by an altered start
catenation (S̃x). After those steps, the system is ready for a new transition. The simulated
system halts when the queue is empty. On the space-time diagram, this condition can
be easily expressed by a word indicating that a clock symbol

−→
T encounters a start of list

symbol
←−
S .
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←−
W

←−
F F̃

←−
S S̃

←−
J

←−
D D̃

C

P P̃

−→
B B̃

−→
T

Figure 16: Symbolic behavior of simulation

This explanation conclude the description of dynamic simulation. The last point is to
prove that those symbolic behaviors correspond to valid space-time diagrams. At this point,
properties of catenation allows us to end the proof without resort to low-level study.

3.3. Validity of simulation

Let us now study the catenation schemes simulating computations of the CPTS. In this
section, we shall use properties of catenations to ensure that constructed simulation can
really happen in the cellular automaton.

Proposition 3.3. The previously constructed catenations have all valid affectations. More-
over, constraints on input are independent on the considered evolution.

Proof. At first, let us look at a global level. Since many symbols are parallel, there are
hardly any problem on the order of encounters. The only non-trivial one is that any unfrozen
symbols must cross the whole queue before encountering the clock symbol. This implies
that is must have crossed the last queue letter before encountering the clock symbols. Since
the last queue letter is previous unfrozen letter, the previous condition can be formalized
by saying that space between two consecutive clock symbol must be greater than maximum
space between two consecutive unfrozen (i.e., copied) letters. At this point, you can see one
of the additional conditions on number of consecutive erasing during Turing simulation.
With this condition, there is a fixed size for clock spacing ensuring the correct order of
collisions independently of the computation.

Now, let us study local constraints. Due to our global approach with collisions and
catenations, we have “forgotten” local constraints. In previous proves, the method to
ensure these local constraints where by fixing values on the initial configuration and show
by induction that they remain consistent. This approach requires a very detailed study and
many combinatorial arguments. Here, with the help of catenations, we can have a more
global and intuitive approach.
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The first remark is that since all our catenations are finite, theorem 1.4 allows us to know
affectations such that catenations correspond to real space-time diagram extracts. The set
of affectations can be automatically obtained using Presburger arithmetic as described in
details in [10].

The only important thing on obtained result is that there exists values for S0 and S1

that have the same spacing for particles inside
←−
S symbol. The same way, it is possible

to chose fixed values of spacing for all other signal in symbols that ensure coherence in
all catenations. The only exception being the junk symbol which has two possibles values
depending on whether it has be generated from a S0 or S1 catenation.

The last point is to study spacing between symbols. During this process, one look at
the catenations formed by the border of the one introduced previously. Even if the used
method is the same as previously, some interesting things may be noted: First, the main
difference between junk signals and unfrozen letters are the relative positions of particles←−ı . Another main point encounter when studying the erasing face (see Figure 17). In this
face, each erased letter induce a small shift which can not be compensated directly. The
solution for this problem is to require that the number of letter is a multiple of 6 which
provide a greater and solvable gap. This explains the second restriction introduced in our
CPTS.

Conclusion

In this paper, we have shown how any Turing computation can be embedded into
rule 110. Starting from a Turing machine, we show how to embed it into a CPTS in
Proposition 2.4. Then, we show how to encoding this system into rule 110 space-time
diagram (Proposition 3.2) and that this encoding is correct (Proposition 3.3). Thus proving
that rule 110 is Turing universal. The main achievement is that the construction can be
completely made at high level using particles and collisions which allows to follow at each
point what is happening. This construction is very interesting but does only erase particles
without creating it, thus having the need to be continually feed with particles. This need
of “fuel” is not compatible with intrinsic universality. One open question is whether or not
rule 110 is intrinsically universal.
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Abstract. We study the dynamics of the action of cellular automata on the set of shift-
invariant probability measures according two points of view. First, the robustness of the
simulation of a cellular automaton on a random configuration can be viewed considering
the sensitivity to initial condition in the space of shift-invariant probability measures.
Secondly we consider the evolution of the quantity of information in the orbit of a random
initial state.

Introduction

Despite the apparent simplicity of their definition, cellular automata can have very
complex behaviours which are observed on space time diagrams. To try to understand
this complexity, they can be considered as dynamical systems. Generally, one studies the
dynamics of the N-action of a cellular automaton on the set of configurations AZ, where
A is a finite alphabet, endowed with the product topology. However, very simple cellular
automata as the power of the shift, denoted σm for m ∈ Z, are sensitive. That is to say, they
are considered with a highly chaotic behaviour. This does not correspond to the intuitive
idea which give the space-time diagram.

The shortcoming of the Cantor distance is to privilege the central coordinates whereas
there may be no reason to give more importance to coordinates around the origin. Moreover,
one considers only the action of the cellular automaton without considering the shift action.
Indeed, space-time diagrams of a cellular automata (AZ, F ) are not so different from that
of (AZ, σm ◦ F ) for m ∈ Z. However, if F is not nilpotent, σm ◦ F is sensitive for m taken
quite far from the origin. The reason is that Cantor topology is non-homogeneous, thus a
simple transport of information is enough to obtain sensitivity.

One point of view can be to address the Z×N-action (σ, F ) in order to emphasize the
spatiotemporal structure. In [Sab06], one gives general definitions to talk about directional
dynamics; the purpose is to study the sets of directions which have a certain kind of dy-
namics. Another point of view is to kill the Z-action of σ and consider the N-action of
F on a σ-invariant object. In this direction, G. Cattaneo, E. Formenti, L. Margara et J.
Mazoyer [CFMM97] introduce another topology defined by the Besicovitch pseudo distance

Key words and phrases: Cellular automata, shift invariant topology, entropy of a configuration.
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which measures the upper density of the differences between two configurations in order
to give the same importance at all cells. For this distance, the shift map is an isometry.
However, with this topology, we lose the compactness of the space which is the traditional
framework of topological dynamics.

Another natural σ-invariant object is the set of σ-invariant probability measures, de-
noted Mσ(AZ). Indeed, a cellular automaton acts on the set of configurations and canon-
ically transforms µ ∈ Mσ(AZ) into another σ-invariant measure denoted F∗µ. Hence,
cellular automata also have a natural action on the set of shift-invariant measures. In this
space the shift has the same behavior as the identity and a sensitive cellular automaton in
this space is not only capable of “transporting” information but it is also able to “create”
new information outwardly.

The study of the action of a cellular automaton onMσ(AZ) could be interesting when
we use cellular automata to simulate. Indeed, generally we observe the action of a cellular
automaton on a random initial configuration, that is to say a configuration chosen according
to a probability measure µ ∈ Mσ(AZ). But it is more natural to study the action of a
cellular automaton directly on Mσ(AZ) instead the set of configurations chosen according
a given probability measure.

In this article we exhibit two problematics:
• The more natural for a dynamical system is the study of sensitivity to initial conditions

of the map F∗ : Mσ(AZ) → Mσ(AZ). This approach can be interesting when we use
cellular automata to simulate. Indeed, generally we start the simulation with a random
configuration choosen according to a distribution µ ∈ Mσ(AZ), this approach may help to
evaluate the impact of a mistake when we choose the initial configuration with a distribution
ν ∈Mσ(AZ) near to the expected distribution µ.
• The information contained in a random configuration according to a measure µ ∈

Mσ(AZ) can be expressed by the entropy of the shift hµ(σ). It would be natural to obseve
the evolution of this quantity when a cellular automaton acts on µ. It is easy to see that
(hFn∗ µ(σ))n∈N decreases towards h∞µ (F ), but for some cellular automata, like linear cellular
automata, it appears a phenomenon of gap between h∞µ (F ) and the apparent entropy haµ(F ),
defined by [Mar00], which coresponds to the entropy observed in the central window. This
can explain why linear cellular automata have complex space-time diagrams.

We illustrate these two points of view by the study of two important classes: cellular au-
tomata with directional equicontinuous points which have very regular space-time diagrams
and linear cellular automata which have complex space-time diagrams.

1. Action of a cellular automaton on AZ (Background)

1.1. Space of configurations

1.1.1. Cantor topology. Let A be a finite set. We consider AZ, the configuration space of
Z-indexed sequences in A. If A is endowed with the discrete topology, AZ is compact,
perfect and totally disconnected in the product topology. Moreover one can define a metric
on AZ compatible with this topology:

∀x, y ∈ AZ, dC(x, y) = 2−min{|i|:xi 6=yi i∈Z}.
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Let U ⊂ Z. For x ∈ AZ, the restriction of x to U is denoted by xU ∈ AU. For a pattern
w ∈ AU, define [w]U = {x ∈ AZ : xU = w} the cylinder centered on w.

The shift map σ : AZ → AZ is defined by (xi)i∈Z 7→ (xi+1)i∈Z. A subshift Σ ⊂ AZ is a
closed σ-invariant subset of AZ. Denote Ln(Σ), the set of patterns u ∈ A[0,n−1] such that
there exists x ∈ Σ which verifies x[0,n−1] = u. The language of Σ is L(Σ) = ∪n∈NLn(Σ).

1.1.2. Besicovitch topology. G. Cattaneo, E. Formenti, L. Margara and J. Mazoyer [CFMM97]
introduce the Besicovitch pseudo distance which is σ-invariant. For x, y ∈ AZ, it is defined
by:

dB(x, y) = lim sup
n→∞

Card({m ∈ [−n, n] : xm 6= ym})
2n+ 1

.

The topology induced by this pseudo-distance has good properties for studying dynamical
systems except the compacity.

1.2. Action of a cellular automaton on AZ

1.2.1. Definition of CA. A cellular automaton (CA) is a pair (AZ, F ) where F : AZ → AZ

is defined by F (x)m = F ((xm+u)u∈U) for all x ∈ AZ and m ∈ Z where U ⊂ Z is a finite
set named neighborhood and F : AU → A is a local rule. By Hedlund’s theorem [Hed69],
it is equivalent to say that it is a continuous function which commutes with the shift
(σm ◦ F = F ◦ σm for all m ∈ Z).

1.2.2. General definitions about dynamical systems. Let (X, d) be a metric space and F :
X → X be a continuous function. There is a lot of definitions to precise the sensitivity to
initial conditions of the dynamical system generated by the N-action of F on X. We recall
here some of them:
• x ∈ X is an equicontinuous point if for all ε > 0, there exists δ > 0, such that for all

y ∈ X, if d(x, y) < δ then d(Fn(x), Fn(y)) < ε for all n ∈ N. Denote Eqd(F ) the set of
equicontinuous points. If x /∈ Eqd(F ), it is a sensitive point.
• (X,F ) is equicontinuous if for all ε > 0, there exists δ > 0, such that for all x, y ∈ X,

if d(x, y) < δ then d(Fn(x), Fn(y)) < ε for all n ∈ N.
• (X,F ) is sensitive if there exists ε > 0 such that for all δ > 0 and x ∈ X, there exists

y ∈ X and n ∈ N such that d(x, y) < δ and d(Fn(x), Fn(y)) > ε
• (X,F ) is N-expansive if there exists ε > 0 such that for all x 6= y there exists n ∈ N

such that d(Fn(x), Fn(y)) > ε.
In an intuitive sense, sensitivity and expansivity denote a certain complexity of the

dynamical system whereas equicontinuity denotes a strong regularity.
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1.2.3. Directional dynamics. In [Sab06], one adapts the dynamical classification of [Kůr97]
according to a direction α ∈ R. The study of such dynamics make appear some discrete
geometry in space time diagrams. We recall here the notion of equicontinuous points. In
this case the information is blocked between walls of slope α generated by blocking words.

Proposition 1.1 ([Sab06]). Let (AZ, F ) be a CA, let U = [r, s] be a neighborhood of F , and
let α ∈ R. A point x ∈ AZ is equicontinuous of slope α if ∀ε > 0,∃δ > 0 such that ∀y ∈ AZ,
if dC(x, y) < δ then dC(Fn ◦ σbαnc(x), Fn ◦ σbαnc(y)) < ε for all n ∈ N.

The existence of equicontinuous points is equivalent to the existence of a blocking word
u of slope α and width e ≥ max(bαc + 1 + s,−bαc + 1 − r). That is to say, there exists
p ∈ [0, |u| − e] such that:

∀x, y ∈ [u][0,|u|−1], ∀n ∈ N, σbnαc ◦ Fn(x)[p,p+e] = σbnαc ◦ Fn(y)[p,p+e].

A CA is equicontinuous of slope α if every x ∈ AZ is equicontinuous of slope α.
A CA is N-expansive of slope α if there exists ε > 0 such that for all x, y ∈ AZ, there

exists n ∈ N which verifies dC(Fn ◦ σbαnc(x), Fn ◦ σbαnc(y)) > ε.

2. Action of a cellular automaton on Mσ(AZ)

A natural σ-invariant object on which cellular automata can act, is the set of σ-invariant
probability measures Mσ(AZ). This approach is not only theoretical. Indeed, in simula-
tions, the action of a CA is observed on a random configuration chosen according to a
probability measure µ ∈ Mσ(AZ), but it is more easy to study directly the action of the
CA on the probability measure µ.

2.1. Measures on AZ

Let B be the Borel sigma-algebra of AZ. Denote by M(AZ) the set of probability
measures on AZ defined on the sigma-algebra B. Usually M(AZ) is endowed with the
weak∗ topology: a sequence (µn)n∈N of M(AZ) converges to µ ∈ M(AZ) if and only if for
all finite subset U ⊂ Z and for all pattern u ∈ AU, one has limn→∞ µn([u]U) = µ([u]U). In
the weak∗ topology, the set M(AZ) is compact and metrizable. A metric is defined by:

∀µ, ν ∈M(AZ), dM∗ (µ, ν) =
∑
n∈N

1
|A|n

∑
u∈A[0,n]

∣∣µ([u][−n,n])− ν([u][−n,n])
∣∣ .

Let F : AZ → AZ be a mesurable function. It is possible to consider the action of F on
M(AZ) defined by:

F∗µ(B) = µ(F−1(B)), for all µ ∈M(AZ) and B ∈ B.

A probability measure µ ∈M(AZ) is said σ-invariant if σ∗µ = µ. Denote Mσ(AZ) the set
of σ-invariant probability measures. It is a compact convex subset ofM(AZ) (see [DGS76]
for more details). A probability measure µ ∈M(AZ) is σ-ergodic if for all σ-invariant subset
B ∈ B (i.e. σ−1(B) = B µ-almost everywhere) are trivial (i.e. µ(B) = 0 or 1). The set of
σ-ergodic probability measures is denoted by Merg

σ (AZ).



THE ITERATES OF A RANDOM CONFIGURATION BY A CELLULAR AUTOMATON 165

Example 2.1. Let x ∈ AZ. Define the Dirac measure in x by δx(A) = 1 if x ∈ A and 0 if
not, where A ∈ B. The set of Dirac measures is dense in M(AZ) for the weak∗ topology.

One remarks that if the configuration is not σ-uniform, the Dirac measure associated
is not σ-invariant. However, if we take a σ-periodic configuration x of period p ∈ N, one
constructs a σ-ergodic measure by taking the mean of the Dirac’s measures of the σ-orbit:
δ̃x = 1

p

∑
m∈[0,p−1] δσm(x).

Example 2.2. For all a ∈ A, put pa ∈ [0, 1] a real such that
∑

a∈A pa = 1. Define the
Bernoulli measure according to the probability vector (pa)a∈A by λ(pa)a∈A([u]U) =

∏
m∈U pum

for all u ∈ LAZ([u]U). If all pa are equal to 1
Card(A) , one obtains the uniform Bernoulli

measure which is just denoted by λAZ .

2.2. Generic points

For some σ-invariant probability measures, there exist special points of AZ which rep-
resent the measure. That is to say the frequency of apparition of a pattern corresponds
to the measure of the cylinder centered on this pattern. This allows to give a symbolic
interpretation of the distance dM∗ .

A point x ∈ AZ is generic if for all U ⊂ Z finite and for every pattern u ∈ AU the
sequence (f(u, x, n))n∈N converges where

f(u, x, n) =
1

2n+ 1

∑
m∈[−n,n]

1[u]U(σm(x)),

is the frequency of apparition of the pattern u in x at the order n. The limit of this sequence
is denoted f(u, x), this is the frequency of apparition of the pattern u in x. Denote G the
set of generic points.

Let µ ∈ Mσ(AZ). Denote G(µ) the set of generic points of µ, this is the set of points
x ∈ G such that for every pattern, the frequency of this pattern in x is equal to the measure
of the cylinder centered on this pattern. When µ is σ-ergodic, the Birkhoff Theorem says
that µ(G(µ)) = 1.

Consider the function φ : (G, dB) → (Mσ(AZ), dM∗ ) which associates a generic point
x ∈ G to the measure µ ∈ Mσ(AZ) defined by µ([u]U) = f(u, x) for all pattern u ∈ AU. It
is easy to verify that φ is surjective and continuous. Moreover, the image of a generic point
by F is also a generic point. Thus the correspondence between Mσ(AZ) and G is summed
up in the following commutative diagram:

(G, dB) F−−−−→ (G, dB)yφ yφ
(Mσ(AZ), dM∗ ) F∗−−−−→ (Mσ(AZ), dM∗ )
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2.3. Action of a CA on Mσ(AZ)

Let (AZ, F ) be a CA. The map µ 7→ F∗µ is continuous for the weak∗ topology and
preserves convex combinations. Thus, F∗ :M(AZ)→M(AZ) defines a dynamical system.
However, for all x ∈ AZ one has F∗δx = δF (x). Thus the map x 7→ δx allows to consider
(AZ, F ) as a sub-system of (M(AZ), F∗), so the dynamics of F∗ :M(AZ)→M(AZ) contains
the dynamics of F : AZ → AZ. Moreover, the weak∗ topology on M(AZ) privileges the
origin. Thus it is preferable to restrict the initial space.

Since F commutes with the shift, if µ ∈ Mσ(AZ) then F∗µ ∈ Mσ(AZ). Thus one can
study the dynamical system defined by:

F∗ : Mσ(AZ) −→ Mσ(AZ)
µ 7−→ F∗µ such that F∗µ(B) = µ(F−1(B)) ∀B ∈ B.

Remark 2.3. If (AZ, F ) is a surjective CA, λAZ is F -invariant (see [Hed69]). One deduces
that λAZ is a fixed point of F∗.

3. Sensitivity to initial conditions of F∗ :Mσ(AZ)→Mσ(AZ)

A natural question in the study of dynamical systems is the sensitivity to initial con-
ditions. This point of view could be interesting when we use cellular automata to simulate
in order to characterize distributions which are unstable.

3.1. Expansivity of F∗

The function F∗ preserves convex combinations in Mσ(AZ). In [BS07], we use this
property to show that there are not CA which acts N-expansively on (Mσ(AZ), dM∗ ). This
shows that inMσ(AZ), the information cannot be transporting to distinguish initial points.

Theorem 3.1. [BS07] F∗ cannot act N-expansively on (Mσ(AZ), dM∗ ).

3.2. Equicontinuity

If (AZ, F ) is equicontinuous of slope α, according to [Sab06], it is periodic in this
direction. Thus it is the same for F∗. One deduces the next proposition.

Proposition 3.2. Let (AZ, F ) be an equicontinuous CA of slope α. Then F∗ is equiconti-
nous in (Mσ(AZ), dM∗ ).
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3.3. Equicontinuous points

For some CA it is possible to characterize the set of equicontinuous points. These
measures are stable for perturbations. The next example shows that there exist cellular
automata with equicontinuous and sensitive points in (Mσ(AZ), dM∗ ).

Example 3.3. Consider the CA defined on A = Z/2Z by F (x)i = xi−1 · xi · xi+1 for all
x ∈ AZ and i ∈ Z. It is easy to see that for all σ-ergodic probability measure µ which
verifies µ([0]) > 0, the sequence (Fn∗ µ)n∈N converges toward δ∞0∞ in (Mσ(AZ), dM). So,
one has:

EqdM∗ (F∗) ∩Merg
σ (AZ) =Merg

σ (AZ) \ {δ∞1∞}.
For CA with equicontinuous points of slope α, we characterize a large class of measures

which are equicontinuous points in the space (Mσ(AZ), dM∗ ).

Theorem 3.4. Let (AZ, F ) be a CA and let B ∈ A∗ be a blocking word of slope α ∈ R. Then
every σ-ergodic probability measure µ ∈Merg

σ (AZ) such that µ([B]) > 0 is an equicontinuous
point of F∗ : (Mσ(AZ), dM∗ )→ (Mσ(AZ), dM∗ ).

Proof. Let ε > 0, let µ be a σ-ergodic probability measure which charges B and let ν be a
σ-invariant measure. For n ∈ N, one defines Xk

i,n, the set of points x ∈ AZ such that there
is an occurrence of B in [−k−bnαc,−bnαc] and another in [i− 1−bnαc, k+ i− 1−bnαc].

Let i0 be such that
∑∞

i=i0+1
1
|A|i ≤ ε and let n ∈ N. Since B is charged by µ, by

σ-ergodicity, there exists k ∈ N such that µ(Xk
i,n) ≥ 1− ε for all i ≤ i0. Moreover Xk

i,n can
be written as an union of cylinders centered on [−k − bnαc, k + i − 1 − bnαc] of words of
Ai+2k. By σ-invariance, one deduces that |µ(Xk

i,n)− ν(Xk
i,n)| ≤ |A|i+2kd(µ, ν), so:

ν(Xk
i,n) ≥ 1− ε− |A|i+2kd(µ, ν).

Let i ≤ i0 and let u ∈ Ai. Put Xk
u,n = F−n ◦ σ−bαnc([u][0,i−1]) ∩Xk

i,n. Taking the lower
bounds of µ(Xk

i,n) and ν(Xk
i,n), one deduces:

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])| ≤ |Fn∗ µ([u][0,i−1])− µ(Xk
u,n)|+ |µ(Xk

u,n)− ν(Xk
u,n)|

+|Fn∗ ν([u][0,i−1])− ν(Xk
u,n)|

≤ ε+ |µ(Xk
u,n)− ν(Xk

u,n)|+ ε+ |A||u|+2kd(µ, ν).

A summation gives for all i ≤ i0 the following inequality:∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])| ≤ 2ε|A|i + |A|2i+2kd(µ, ν)

+
∑
u∈Ai

|µ(Xk
u,n)− ν(Xk

u,n)|.

Let Y k
u,n be the set of words v ∈ A|u|+2k such that there exists y ∈ F−n◦σ−bαnc[u][0,i−1]∩

[v][−k−bnαc,k+|u|−bnαc] ∩Xk
|u|,n. Since B is a blocking word of slope α, for all v ∈ Y k

u,n, for all

x ∈ [v][−k−bnαc,k+|u|−bnαc], one has Fn(x) ◦ σbαnc(x)[0,|u|−1] = u. One deduces that:

Xk
u,n = F−n ◦ σ−bαnc([u][0,i−1]) ∩Xk

|u|,n =
⋃
Y k

u,n

[v][−k−bnαc,k+|u|−bnαc].
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Figure 1: Blocking word of slope α and dM∗ -equicontinuity.

Thus, it is possible to decompose the sets Xk
u,n to obtain a sum of measures of cylinders

centered on V = [−k − bnαc, k + |u| − bnαc] with words in Ai+2k:∑
u∈Ai

|µ(Xk
u,n)− ν(Xk

u,n)| =
∑
u∈Ai

∣∣∣ ∑
v∈Y k

u,n

µ([v]V)− ν([v]V)
∣∣∣

≤
∑

v∈Ai+2k

|µ([v][0,i−1])− ν([v][0,i−1])|.

By summation of previous inequalities, it follows that:

dM∗ (Fn∗ µ, F
n
∗ ν) =

∑
i≤i0

1
|A|2i

∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])|

+
∑
i>i0

1
|A|2i

∑
u∈Ai

|Fn∗ µ([u][0,i−1])− Fn∗ ν([u][0,i−1])|

≤ 2ε
|A| − 1

+ |A|2k(1 + |A|i0)d(µ, ν) + ε.

This shows that the orbits (Fn∗ µ)n∈N and (Fn∗ ν)n∈N stay close to each other when µ
and ν are close enough.

3.4. The case of algebraic CA

The uniform Bernoulli measure (see example 2.2) has an important role in the study
of σ-invariant measures. It is known that for a large class of algebraic CA and a large
class of measures, the Cesàro mean of the iterates of a measure by the CA converges to the
uniform Bernoulli measure. This result was proved with tools from stochastic processes in
[FMMN00], and with harmonic analysis tools in [PY02] and [PY04]. We use this result to
show the dM∗ -sensitivity of linear CA.
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Theorem 3.5. Let A be an Abelian finite group and let (AZ, F ) be a non trivial linear CA
(that is to say a group endomorphism on the product group AZ which is not a product of
shifts). Then EqdM∗ (F∗) = ∅.
Proof. Since (AZ, F ) is a non trivial linear CA, there exist p prime, a surjective endomor-
phism π : A → Z/pZ and a factor CA (Z/pZ, F̂ ) such that π ◦ F = F̂ ◦ π (where π is
extended coordinate to coordinate). It is easy to verify that F̂ is a non-trivial linear CA on
Z/pZ. Since π∗ is open, it is sufficient to prove the sensitivity for this factor of F∗. Thus
we assume that we are in this case.

Let ((Z/pZ)Z, F ) be a nontrivial linear CA with p prime. In [PY02], they show that
there is a weak∗ dense set inM(AZ), the harmonic measures set denoted H, such that every
measure µ ∈ H verifies

lim
n∈J→∞

dM∗ (Fn∗ µ, λAZ) = 0,

where λAZ is the uniform Bernoulli measure and J is a subset of N of upper density 1.
Let P be the set of (σ, F )-periodic points, it is a dense subset of AZ [BK99]. According

to example 2.1, it is easy to see that the set {δ̃x : x ∈ P} is weak∗ dense in Mσ(AZ).
Let µ ∈ Mσ(AZ) such that µ 6= λAZ and let ε < 1

2d
M∗ (λAZ , µ). For all δ < ε. There

exists µ′ ∈ H and x ∈ P such that dM∗ (µ, µ′) < δ and dM∗ (µ, δ̃x) < δ. Thus one has
limn∈J→∞ dM∗ (Fn∗ µ′, λAZ) = 0, where J is a subset of N of density 1. Moreover, if p is the
(σ, F )-period of x, one has F pn∗ δ̃x = δ̃x for all n ∈ N. Since J has upper density 1, there exists
n ∈ N such that pn ∈ J and dM∗ (F pn∗ µ′, λAZ) < ε. Thus one has dM∗ (F pn∗ δ̃x, F

pn
∗ µ′) > ε.

One deduces that µ /∈ EqdM∗ (F∗).
If µ = λAZ there exists µ′ such that the sequence (Fn∗ µ′)n∈AZ has at least two adherence

points: one of them is µ = λAZ [PY02], denote µ′′ another. Since µ = λAZ is F∗-invariant,
it is possible to find in the sequence (Fn∗ µ′)n∈AZ a point close to µ but µ′′ is a closure point
of the orbit of this point. So µ /∈ EqdM∗ (F∗).

Thus EqdM∗ (F∗) = ∅, but this method do not allow to obtain an uniform sensitive
constant. There is a problem around of λAZ .

4. Quantity of information in a µ-generic configuration

4.1. Problematic

Let (AZ, F ) be a CA. A configuration x ∈ AZ converges generally to the limit set ΛF =⋂
n∈N F

n(AZ). However, when you look the simulation of a CA on points chosen according
to a σ-invariant probability measure µ ∈ Mσ(AZ), the limit set capture so many points.
This does not correspond to the observation. That is why P. Kůrka and A. Maass [KM00]
introduce the concept of µ-limit set, denoted ΛF (µ), defined by:

u /∈ L(ΛF (µ))⇐⇒ lim
n→∞F∗([u][0,|u|−1]) = 0.

Naturally, one has ΛF (µ) ⊂ ΛF . In symbolic dynamics, the complexity of a subshift Σ
is mesured thanks to the topological entropy:

htop(Σ) = lim
n→∞

log(Card(Ln(Σ)))
n

.
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Let µ ∈Mσ(AZ). It is also possible to define the metric entropy of σ relative to µ by:

hµ(σ) = lim
n→∞−

1
n

∑
u∈An

µ([u]) log(µ([u])).

We refer to [DGS76] for more general definitions and main properties.
In fact, the information contained in a µ-generic configuration can be expressed by the

entropy of the shift. A comparative study of the entropy of the shift and the Kolmogorov
complexity was carried out by A. Brudno [Bru82]. It could be interesting to study the
sequence (hFn∗ µ(σ))n∈N which corresponds to the evolution of the quantity of information
when we start with a random configuration chosen according to µ.

Let U ⊂ Z be finite, put PU = {[u]U : u ∈ AU}. The quantity of information in the
partition PU is defined by HFn∗ µ(PU) = −∑u∈AU Fn∗ µ([u]U) log(Fn∗ µ([u]U)).

To symplify the notation, denote Pk = P[0,k−1], thus hFn∗ µ(σ) = limk→∞ 1
kHFn∗ µ(Pk)

corresponds to the metric entropy after n iterations of F . If U = [r, s] is a neighborhood of
F , it is easy to see that HFn+1∗ µ(P0,k−1) ≤ HFn∗ µ(P[r,s+k−1]). One deduces:

Proposition 4.1. Let (AZ, F ) be a CA and µ ∈ Mσ(AZ). If n1 ≤ n2 then hFn1∗ µ(σ) ≥
hFn2∗ µ(σ).

Thus the quantity of information in a random configuration decreases under the action
of a CA. It is natural since a CA does not create explicitly information. One deduces that
(hFn∗ µ(σ))n∈N decrease, so it is possible to define the infinite entropy of (AZ, F ) by:

h∞µ (F ) = lim
n→∞hF

n∗ µ(σ) = inf
n∈N

hFn∗ µ(σ) = lim
n→∞ lim

k→∞
1
k
HFn∗ µ(Pk).

One problem of this definition is that at each time, we consider arbitrary long patterns:
we take the limit according to the parameter k before the time parameter n. So it is
difficult to detect the correlations between paterns of the same length under the action
of F . However, if we observe the evolution of a CA, we just look a fixed window of the
space-time diagram. Thus, the entropy observed would be naturally defined as the inversion
of limits in the formula of h∞µ (F ). That is why B.Martin defines in [Mar00] the apparent
entropy:

haµ(F ) = lim
k→∞

lim sup
n→∞

1
k
HFn∗ µ(Pk).

In [Mar00], the author exhibits the link between haµ(F ) and the rate of compression by gzip
of space-time diagrams where the initial configuration are µ-generic configurations.

4.2. Problem of gap between h∞µ (F ) and haµ(F )

We propose to exhibit links between the different notions of complexity: h∞µ (F ), haµ(F )
and htop(ΛF (µ)). Theorem 4.2 shows a natural inequality between the different values, in
particular it can appear a phenomenon of gap between h∞µ (F ) and haµ(F ). This means that
for a CA F and an initial distribution µ, the complexity which is observed in the space-time
diagram (i.e. haµ(F )) is different from the expected value (i.e. h∞µ (F )). Theorem 4.3 proves
that for each CA there exists a dististribution such that the complexity observed in the
space time diagram corresponds to the disorder spreaded by the CA.
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Theorem 4.2. Let (AZ, F ) be a CA and µ ∈Mσ(AZ), one has:

htop(ΛF ) ≥ htop(ΛF (µ)) ≥ haµ(F ) ≥ sup
ν∈V

hν(σ) ≥ inf
ν∈V

hν(σ) ≥ h∞µ (F ),

where V is the set of closure points of (Fn∗ µ)n∈N.

Proof. Let k and n in N, one has:

HFn∗ µ(Pk) = −
∑

u∈Lk(AZ)

Fn∗ µ([u][0,k−1]) log(Fn∗ µ([u][0,k−1]))

= −
∑

u∈Lk(ΛF (µ))

Fn∗ µ([u][0,k−1]) log(Fn∗ µ([u][0,k−1]))

−
∑

u∈Lk(AZ)\L(ΛF (µ))

Fn∗ µ([u][0,k−1]) log(Fn∗ µ([u][0,k−1])).

By definition of ΛF (µ), one has
∑

u∈Lk(AZ)\L(ΛF (µ)) F
n∗ µ([u][0,k−1]) log(Fn∗ µ([u][0,k−1]))→

0 when n→ 0. We deduce that htop(ΛF (µ)) ≥ haµ(F ).
Let ν ∈ V be a limit of a subsequence (Fniµ)i∈N (there exist such subsequences since

(Mσ(AZ), dM∗ ) is compact). By continuity of µ 7→ Hµ(Pk), one has:

lim sup
n→∞

HFn∗ µ(Pk) ≥ lim sup
i→∞

HFniµ(Pk) = Hν(Pk).

So one obtains haµ(F ) ≥ hν(σ).
Let ν ∈ V be a limit of a subsequence (Fniµ)i∈N, by upper semi-continuity of µ 7→ hµ(σ)

(see [DGS76]), one has hν(X,σ) ≥ lim supi→∞ hFniµ(X,σ) = h∞µ (F ).

Theorem 4.3. Let (AZ, F ) be a CA. There exists µ ∈Mσ(AZ) such that:

h∞µ (F ) = haµ(F ) = htop(ΛF (µ)) = htop(Λ(F )).

Proof. Let n ∈ N, since the subshift Fn(AZ) is intrinsically ergodic (that is to say, there
exists an unique σ-ergodic measure of maximal entropy, see [DGS76]), there exists νn such
that hνn(σ) = htop(Fn(AZ)). Moreover the operator Fn∗ :Mσ(AZ)→Mσ(Fn(AZ)) defined
by µ 7→ Fn∗ µ is surjective, thus there exists µn ∈M(AZ) such that νn = Fn∗ µn for all n ∈ N.

Let µ be a limit of a subsequence (µni)i∈N of (µn)n∈N. Let ε > 0, there exists n ∈ N
such that h∞µ (F ) + ε ≥ hFn∗ µ(σ). Moreover by upper semi-continuity of the entropy, there
exists i0 ∈ N such that hFn∗ µ(σ) ≥ hFn∗ µni

(σ)− ε for all i ≥ i0. So if we choose i such that
ni ≥ n one has:

h∞µ (F ) + 2ε ≥ hFn∗ µni
(σ) ≥ hFni∗ µni

(σ) = htop(Fni(AZ)) ≥ htop(Λ(F )).

The inequality is true for every ε > 0, we deduce that h∞µ (F ) ≥ htop(Λ(F )). The
equality follows by the previous theorem.

Remark 4.4. If (AZ, F ) is surjective, λAZ is a fixed point of F∗, but it is also the unique
measure of maximal entropy, so ΛF (λAZ) = AZ. The measure λAZ verifies the case of
equality in Theorem 4.2.
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4.3. Illustration for some class of cellular automata

By Theorem 4.3, for all CA there exists a measure µ such that h∞µ (F ) = haµ(F ). In this
subsection we search to link between the dynamic of a cellular automaton and the case of
equality in Theorem 4.2.

Proposition 4.5. Let (AZ, F ) be an equicontinuous CA of slope α and µ ∈Mσ(AZ). Then
there exists m ∈ N such that h∞µ (F ) = haµ(F ) = hFm∗ µ(σ).

Proof. By Theorem 4.3 of [Sab06], there exist a period p ∈ N and a preperiod m ∈ N
such that σb(m+p)αc ◦ Fm+p(x) = σbmαc ◦ Fm. One deduces that V, in Theorem 4.2, is
{Fm+n∗ µ : n ∈ [0, p− 1]}. Thus h∞µ (F ) = haµ(F ).

Proposition 4.6. Let (AZ, F ) be a CA which has two blocking word B′ and B′′ of slope
respectively α′ and α′′. Let µ ∈ Merg

σ (AZ) such that µ(B′) > 0 and µ(B′′) > 0. Then
h∞µ (F ) = haµ(F ) = htop(ΛF (µ)) = 0.

Proof. Since µ charges two blocking words of different slope, (AZ, F ) has two directions
of µ-almost equicontinuity. According to Theorem 4.8 of [Sab06], one deduces that there
exists A∞ ⊂ A such that ΛF (µ) = {∞a∞ : a ∈ A∞}. One deduces the result.

Proposition 4.7. Let (AZ, F ) be an algebraic CA. There is a dense set of measures H such
that for all µ ∈ H one has h∞µ (F ) 6= haµ(F ) = log(Card(A)).

Proof. In [PY02], they show that there is a weak∗ dense set in M(AZ), the harmonic
measures set denoted H, such that every measure µ ∈ H verifies limn∈J→∞ dM∗ (Fn∗ µ, λAZ) =
0, where λAZ is the uniform Bernoulli measure and J is a subset of N of upper density 1.
By Theorem 4.2, one deduces that haµ(F ) = hλAZ (σ) = log(Card(A)). However, if µ 6= λAZ ,
one has h∞µ (F ) ≤ hµ(σ) < log(Card(A)).

Thus there is a phenomenon of gap between h∞µ (F ) and haµ(F ). This means that the
space-time diagram of algebraic CA looks more complex than the initial configuration. In
fact, the combinatory involved by the local rule is so important and it seems to appear
information. On the contrary, when h∞µ (F ) = haµ(F ), this means that the CA cannot mix
suffisently the informations contained in a µ-random configuration.
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TWO-DIMENSIONAL CELLULAR AUTOMATA RECOGNIZER
EQUIPPED WITH A PATH

VÉRONIQUE TERRIER

GREYC, Campus II, Université de Caen, F-14032 Caen Cedex, France

Abstract. In this paper, two-dimensional cellular automata as one-dimensional language
recognizers are considered. Following the approach of M. Delorme and J. Mazoyer to
embed one-dimensional words into two-dimensional array, we deal with two-dimensional
cellular automata equipped with a path. In this context, we investigate regular language
recognition.

1. Introduction

Cellular automata (CA) is a major model of massively parallel computation. Famous
examples [1, 3] illustrate the ability of CA to distribute and synchronize the information
in a very efficient way. However, to determine to which extent CA can fasten sequential
computation is not simple. In this context, a lot of interest has been devoted to evaluate the
computation ability of one-dimensional CA as language recognizer. A question is whether
increasing the dimension allows to increase the computation ability. Actually, the combina-
torial capabilities of CA become more complex and new problems arise. The first ambiguity
is in the way the one-dimensional input words are fed into higher dimensional arrays. For
two-dimensional array, several manners have been considered. In this paper, we follow the
approach introduced by M. Delorme and J. Mazoyer in [2]. They embed the input words
along a path coded in an additional layer of the two-dimensional array. They prove that
such CA equipped with an Archimedian path or an Hilbert path are able to recognize in
real time regular languages. Here we get rid of some obstacles in considering von Neumann
neighborhood instead of Moore neighborhood and especially in assuming that all cells know
the position of the output. In this context, we present below such CA equipped with a path
which recognize regular languages in real time whatever the path is like. The basic features
of the algorithm exploit shrinking techniques.

Key words and phrases: Two-dimensional cellular automata, language recognition, regular languages.
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2. Definitions

First we recall the definitions. They are mainly following the ones introduced in [2].

Definition 2.1. A deterministic finite automaton (FA) is specified by a quintuplet
(Σ, Q, δ, qinit, Qaccept) where Σ represents the input alphabet, Q the finite set of states,
qinit ∈ Q the initial state, Qaccept ⊂ Q the set of accepting states and δ : Q × Σ 7→ Q the
transition function.
Extending the transition function to strings over Σ∗, the language recognized by a finite
automaton F = (Σ, Q, δ, qinit, Qaccept) is defined as L(F) = {w ∈ Σ : δ(qinit, w) ∈ Qaccept}.
Definition 2.2. A two-dimensional cellular automaton is a two-dimensional array of iden-
tical finite automata (cells) indexed by Z2. In vector notation each cell is identified to
its vector position c = (xc, yc). The communication links are finite and uniform for ev-
ery cell. They are specified by a finite subset of Z2 called the neighborhood. Each cell
takes on a value from a finite set, the set of states. All cells evolve synchronously at dis-
crete time steps according to the states of their local neighborhood. Formally the behavior
of a two-dimensional cellular automaton is specified by a triplet (S, V, δ) where S repre-
sents the set of states, V ⊂ Z2 the neighborhood of size k, δ : Sk 7→ S the transition
function. Here we will restrict the neighborhood to the von Neumann one (of size 5):
V =

{
v ∈ Z2 : |xv + yv| ≤ 1

}
.

Definition 2.3. The vector notations n, e, s,w will denote the four directions : the north
n = (−1, 0), the east e = (0, 1), the south s = (1, 0) and the west w = (0,−1). A
four-connected oriented path is any sequence of positions c1, · · · , cn in Z2 where any two
successive positions are four-adjacent: ci+1 − ci ∈ {n, e, s,w}. In addition, we will restrict
to simple path. That means that repeated positions are forbidden: if i 6= j then ci 6= cj.
In particular, the path is non-looping. In the sequel, we will refer to a simple and four-
connected oriented path as simply a path.

Definition 2.4. A CA equipped with a path p is a CA with an additional layer which
records the path p. Formally, it is specified by a quadruplet (P, S, V, δ) with P = {n, s, e,w, ]}×
{n, s, e,w, ]}\{(n, s), (s,n), (e,w), (w, e)} the set of the symbols recording the path, S the
set of the states, V the von Neumann neighborhood and δ : (S × P )5 7→ S the transition
function. Given p = (c1, · · · , cn), on the additional layer, the symbol recorded at the cell c
will be (], ]) if c /∈ p , (], c2−c1) if c = c1 , (cn−cn−1, ]) if c = cn or (ci−ci−1, ci+1−ci)
otherwise. It indicates how the path enters and exits the cell c.

Definition 2.5. To specify language recognition by CA, we need to distinguish three subsets
of the set of states S: Σ the input alphabet, Saccept the set of accepting states and Sreject
the set of rejecting states. We also identify the cell 0 = (0, 0) as the output cell which
determines the acceptance. And we have to precise the input mode. For a CA with a path,
the input word is fed in parallel along this path: the i-th symbol of the input word is gotten
on the i-th position of the path. Precisely, given the input word w = w1 · · ·wn ∈ Σ∗ and
the path p = (c1, · · · , cn), the cells are set up at initial time in these states:

〈c, 0〉 =


((], ]), ε) if c /∈ p
((], c2 − c1), w1) if c = c1

((cn − cn−1, ]), wn) if c = cn

((ci − ci−1, ci+1 − ci), wi) otherwise
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We say that L is recognized by a CA A with a path p if on input w ∈ Σ∗, the output cell
enters an accepting state if w ∈ L or a rejecting state if w /∈ L at some time t0; and for all
time t < t0, the output cell is neither in an accepting or rejecting state.

Definition 2.6. The diameter of the path relatively the von Neumann neighborhood and
the cell 0 is the minimal radius of the von Neumann ball of center 0 which encompasses
the path. L is recognized in real time by A with p if the output cell 0 enters an accepting
or rejecting state at step diameter(p)− 1. That is the minimal time that the output cell 0
knows the whole path.

3. The algorithm

While dealing with two-dimensional CA recognizer, specific problems arise when the cells
do not know the position of the output cell. To avoid the problems, we suppose that every
cell knows the relative distances of its neighbors from each other relatively to the output
cell. By instance, with von Neumann neighborhood, a cell in the positive quadrant knows
that its closest neighbors relatively to the output cell 0 are its north and west ones, and its
farthest neighbors are its south and east ones.

Proposition 3.1. Providing each cell knows the position of the output cell, any regular
language is recognized in real time modulo a constant by a CA equipped with a path, whatever
the path may be.

3.1. The outline

For the sake of simplicity, we may suppose that the path is in the positive quadrant and so
that each cell involved in the computation knows that the position of the output cell is in
the direction of the northwest. The approach is based on the strategy used by Levialdi [4, 5]

EN −> NE

ENW −> N

Figure 1: The rewriting rules

which applies local transformations in parallel to shrink object in such a way the diameter
of the object decreases of one at each step. Here the CA will shrink the path in applying
local rewriting rules to its sequence of moves: sen → e , swn → w , enw → n , esw → s
, sw → ws , en → ne; and for the extremities of the path, ]n → ] , ]w → ] , s] → ] ,
e]→ ]. See Figure 1.
In the same time, the CA will record, above the path, all possible transitions induced locally
by the finite automata. Initially, that is, for the cell ci which gets the input symbol wi, the
set of transitions {(q, δ(q, wi)) : q ∈ Q}. Remark that, given the computation which starts
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in initial state qinit, passes through the states q1, · · · , qn−1 and ends in state f of the input
word w, the tuples (qinit, q1), (q1, q2), · · · , (qn−2, qn−1), (qn−1, f) will be recorded on the cells
c1, c2, · · · , cn−1, cn respectively. Together with the shrinkage of the path, the aim will be
to update and reduce this sequence of transitions until it will be shorten to the transition
(qinit, f). Then, according f is or not an accepting state, the result will be transmitted to
the output cell.

? e
n

1 2

(r,s)

(p,r)(q,p)

4 3
?

Figure 2: Carrying the rewriting rule en→ ne

Let us have a look on the rewriting rule en → ne performed at some time t. See
Figure 2. Consider c, c + e, c + s, c + e + s the four cells involved in the process. At time
t − 1, the path is coded by the three tuples (?, e), (e,n) and (n, ?) recorded respectively
on the cells c + e, c + e + s and c + s. In addition, the cells record sets of transitions.
For example, (q, p) belongs to the set of c + e, (p, r) to c + e + s and (r, s) to c + s. Now
at step t, the four cells have all the required information to perform the rewriting rule
en → ne, in particular the cell c can compute the tuple (n, e) but it needs one more
step to compute the transition (p, r). To avoid this slowdown, we will introduce the two
following moves: the eastnorth move ẽn = (−1, 1) and the southwest s̃w = (1,−1). And
every two consecutive moves e and n (respectively s and w) will be coded by only one move
ẽn (respectively s̃w). By the way, the rewriting rules will be modified in this following
manner: n ẽnk n → n n ẽnk , e ẽnk n → ẽnk+1 , s ẽnk n → ẽnk , n ẽnk w → n n ẽnk−1

, e ẽnk w → ẽnk , s ẽnk w → ẽnk−1 , n ẽnk e → n n ẽnk−1e e , e ẽnk e → ẽnk e e ,
s ẽnk e→ ẽnk−1e e and with all the dual rewriting rules ( s s̃wk s→ s̃wk s s , ...) obtained
in inverting the direction of the path. Now, at the initialization, we will lose one step to
code the path in the right way. But, after, the sequences of transitions will be updated at
the same rhythm than the shrinkage of the path.

3.2. The description of the CA

Let be given a FA F = (Σ, Q, δ, qinit, Qaccept). The purpose of this section is to describe a
CA A = (P, S, V, δA) equipped with a path which recognizes the language L(F).

3.2.1. The set of states. First let us define the set of states. It is S = Σ∪R×P(Q2) where
R = {n, s, e,w, ẽn, s̃w, ]}×{n, s, e,w, ẽn, s̃w, ]}\{(n, s), (s,n), (e,w), (w, e), (e,n), (s,w),
(ẽn, s), (n, s̃w), (w, ẽn), (s̃w, e), (ẽn, s̃w), (s̃w, ẽn)}. Note that the states s belonging to Σ
only occur at initial time 0. For states s = (sdir, strans) belonging to R × P(Q2), the first
component sdir in R codes how the path enters and exits the cell. Because the initial path is
simple as well as its rewritings, some consecutive moves never occur. The second component
strans in P(Q2) records the set of transitions.
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3.2.2. The preliminary step. Second let us describe the first step. At initial time 0, the
additional layer codes the initial path p = (c1, · · · , cn) using the set of symbols P =
{n, s, e,w, ]}×{n, s, e,w, ]} \ {(n, s), (s,n), (e,w), (w, e)} and the input words symbols wi
are gotten on the cells ci. The aim of this preliminary step is to replace every consecutive
moves e and n (respectively s and w) of the path by the unique move ẽn (respectively
s̃w). And moreover to record above this path, the transitions induced locally by the FA F .
Actually, in one step, all cells have the required information to do the job:

• If the cell c is outside of the path or the path enters from the East on the cell c and
exits to the North or the path enters from the South and exits to the West (in other
words the symbol on the additional layer is (], ]), (e,n) or (s,w)) then the cell c
enters the quiescent state: 〈c, 1〉dir = (], ]) and 〈c, 1〉trans = {}.
• In case c is the starting extremity c1 of the path, if the symbols on the addi-

tional layer at position c and c + e (respectively c and c + s) are (], e) and (e,n)
(respectively (], s) and (s,w)) then 〈c, 1〉dir = (], ẽn) (respectively (], s̃w)) and
〈c, 1〉trans = {(qinit, δ(qinit, w1w2))}. Otherwise 〈c, 1〉dir takes as value the symbol
on the additional layer and 〈c, 1〉trans = {(qinit, δ(qinit, w1))}.
• In case c is the ending extremity cn of the path, if the symbols on the additional

layer at position c and c + s (respectively c and c + e) are (n, ]) and (e,n) (respec-
tively (w, ]) and (s,w)) then the first component 〈c, 1〉dir is (ẽn, ]) (respectively
(s̃w, ])) otherwise it takes as value the symbol on the additional layer. The second
component 〈c, 1〉trans is {(q, f) ∈ Q2 : δ(q, wn) = f}.
• For the remaining cells ci on the path, the first component 〈ci, 1〉dir is defined in the

same way as for the extremities. The second component 〈ci, 1〉trans is {(q, δ(q, wiwi+1)) :
q ∈ Q} if the symbols on the additional layer at position c and c + e (respectively
c and c + s) are (], e) and (e,n) (respectively (], s) and (s,w)) and {(q, δ(q, wi)) :
q ∈ Q} otherwise.

3.2.3. The transition function relative to the first component. Third let us describe the
transition function relative to the first component. The different situations required by
our CA are depicted in Figure 3. Observe that the north and the west neighbors have no
impact in the shrinking process as the output cell is situated in the northwest. Moreover, no
direction is given as the rewriting process does not depend on the orientation of the path.
For example, the first rule depicts the case where 〈c, t〉dir = (], ]), 〈c + s, t〉dir = (n, ẽn)
and 〈c + e, t〉dir = (ẽn, e) as well as the case where 〈c, t〉dir = (], ]), 〈c + e, t〉dir = (w, s̃w)
and 〈c + s, t〉dir = (s̃w, s). All other possible combinations lead to the quiescent tuple (], ]).
Actually some combinations never occur because the initial path is simple as well as its
rewritings. We also omit combinations where the extremities are involved. They can be
performed in a similar way.

3.2.4. The transition function relative to the second component. Finally let us define the
updating of the second component of the state. We have to specify how locally the sequence
of transitions is either shortened, expanded or shifted according the rewriting of the path.
As a state of a FA has at most one successor but possibly several predecessors, the transitions
are not symmetrical and their updating depends on the orientation of the path. Below we
consider only northeast orientation.
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1 * * *

! ! ! ! 2

! ! * *

! ! * *

3 * *

4 * *

5 * * * *

6 * * *

7 8 9 10

11 12 13 14

15 16 *

17 18 *

*

a
b

c

d e

a

Figure 3: The rules relative to the first component

• For the rules marked with a ’∗’ in Figure 3, there is no change: 〈c, t + 1〉trans =
〈c, t〉trans.
• For the only rule numbered 1, it is an expansion: 〈c, t + 1〉trans = {(q, q) ∈ Q2 :
∃p, r such that (p, q) ∈ 〈c + s, t〉trans and (q, r) ∈ 〈c + e, t〉trans}.
• For the rules marked with a ’s’, it is a shift: 〈c, t+ 1〉trans = 〈c + e, t〉trans.
• For the remaining rules, it is a shrinkage. Precisely 〈c, t + 1〉trans = {(p, q) ∈ Q2 :
∃r such that (p, r) ∈ 〈a, t〉trans and (r, q) ∈ 〈b, t〉trans} with a = c + e and b = c
for the rules 2, 3, 5, 7, 8, 15, with a = c and b = c + s for the rules 4, 6, 11, 12, 17,
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with a = c + s and b = c for the rules 9, 10, and with a = c and b = c + e
for the rules 13, 14. And 〈c, t + 1〉trans = {(p, q) ∈ Q2 : ∃r, s such that (p, r) ∈
〈a, t〉trans and (r, s) ∈ 〈b, t〉trans and (s, q) ∈ 〈d, t〉trans} with a = c + s, b = c + e,
d = c for the rule 16 and a = c, b = c + s, d = c + e for the rule 18.

An example is given in Figure 4. The tuples of letters along the path represent the compu-
tation of the finite automaton. Note that each tuple is just an element of the set of tuples
recorded by the second component.

time 0 time 1

a,cd,e

c,d
h,i

f,g

i,k

g,h

e,f o,p

p,q
q,r

r,ss,tt,u

u,v

v,w

k,m

m,o

a,bd,e

b,cc,d
h,i

f,g

i,j

g,h

j,k

e,f

l,m
k,l

m,n

n,o

o,p

p,q
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r,ss,tt,u

u,v
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f,g

g,h

e,f

p,q
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a,e
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f,g

g,m

a,f

r,ss,tt,w

m,o

o,p

p,r
a,f

r,ss,tt,w

o,p

p,r

f,o

t,w

p,r

r,t

a,p

a,r

r,w
a,w

Figure 4: The shrinking process

3.2.5. Correctness of the algorithm. According the transition function relative to the first
component given in Figure 3, the algorithm rewrites a connected path into a connected
path. Moreover, we observe that, if at step t the path does not pass through the south and
east borders of the cells c + s and c + e, then at step t+ 1 the path does not pass through
the south and east borders of the cell c. Hence, in one step, the algorithm turns a path of
diameter d into a path of diameter d−1. Finally, remark that the connectivity between the
initial state and the final state of the computation of the FA, is preserved by the updating
of the second component.

4. Conclusion

The algorithm presented in this paper is based on the strong assumption that each cell
knows the relative positions of its neighbors from the output cell. At first glance, it seems
unlikely to get rid of this hypothesis. Actually, this problem of orientation is a rather gen-
eral question concerning CA recognizers in dimension 2 and deserves to be clarified.
We have also assumed that the paths are simple. Clearly the algorithm may be adapted for
any path which can go through the same cell more than once but it remains the essential
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condition that the path does not cross itself. What happens when we authorize constant
bounded crossings of the paths? The algorithm should be modified to avoid unbounded col-
lisions: it will achieve as many rewriting rules as possible (as allowed by the state capacity
of the CA) and it will delay the other ones for the next steps. A question is to what extent
is the slowdown of the global process linked to these local delays.
Another simplification made was to deal with von Neumann neighborhood instead of Moore
neighborhood as it was considered in [2]. So we may wonder whether this shrinking algo-
rithm can be extended to Moore neighborhood.
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Abstract. In this paper, we study amalgamations of cellular automata (CA), i.e. ways
of combining two CA by disjoint union. We show that for several families of CA obtained
by simple amalgamation operations (including the well-known families of majority and
minority CA), the density of a large class of properties follows a zero-one law. Besides, we
establish that intrinsic universality in those families is always non-trivial and undecidable
for some of them. Therefore we obtain various syntactical means to produce CA which
are almost all intrinsically universal. These results extend properties already obtained for
captive cellular automata. We additionally prove that there exists some reversible captive
CA which are (intrinsically) universal for reversible CA.

1. Introduction

Cellular automata (CA) are discrete dynamical systems made of an infinite lattice of
cells evolving synchronously and uniformly according to a common local rule. The model of
cellular automata offers a minimal formal setting to tackle the broad questioning from the
field of complex systems: how repetitions of a simple local rule can lead to complex global
behaviour?

It is well known through numerous undecidability results [8, 9] that determining global
behaviour of CA from their local rule is very challenging. However, the inverse problem of
constructing a local rule to achieve a given global behaviour has received a lot of attention
in the literature with some success. Hence, one of the most celebrated result of CA theory
is the existence of small universal CA (see [2, 3, 15] for smallest known examples in various
settings). Historically, the notion of universality used for CA was a more or less formalised
adaptation from classical Turing-universality. Later [1, 10, 6, 13], a stronger notion called
intrinsic universality was proposed: a CA is intrinsically universal if it is able to simulate
step by step any other CA. This definition relies on a notion of simulation which, in addition
to defining intrinsic universality, provides a sharp formal tool (an infinite pre-order) to
classify cellular automata.

As said before, the existence of intrinsically universal CA is clearly established and
the present paper (in the continuation of previous work of the author [17]) aims at going
further by showing that this property, although highly non-trivial, is in fact very common

Key words and phrases: cellular automata, amalgamation, density, zero-one law, universality.
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and “malleable”. More precisely, we will show that one can define various families of CA,
by purely syntactical constraints on local rules, which have simultaneously the following
properties:

• almost all CA of the family are intrinsically universal,
• intrinsic universality is undecidable in the family.

To achieve this, we study various notions of amalgamation of CA. By amalgamation, we
mean an operation which combines two CA by disjoint union. More precisely, an amalga-
mation operation consists in defining the behaviour of the local rule for transitions involving
states from both CA (see definition 2.4 below). These operations are interesting on their
own and some were already specifically studied from different points of view [4, 5]. We give
several natural examples of amalgamation operations in section 3 and consider associated
families of CA (obtained as the cloture by amalgamation of a finite set of CA). We then
show in section 4 that they all satisfy a zero-one law for a large class of properties (in-
cluding intrinsic universality): a property has either probability 0 or probability 1 in the
family. Finally, in section 5, we focus on the class of intrinsically universal CA and show
that its intersection with the families above is complex (notably undecidable) although
probabilistically trivial. Besides, we prove the existence of reversible captive CA which are
(intrinsically) universal for reversible CA (i.e. able to simulate any reversible CA). This last
result gives another indication of the “malleability” of the notion of (intrinsic) universality.

2. Definitions

For clarity of exposition and although some of the following results extends to any
dimension, we assume throughout the paper that dimension is 1. Moreover, we consider
only centered connected neighbourhoods. In this setting, a CA is triple F = (QF , r, δF )
where QF is a finite set of states, r (the neighbourhood’s radius) is a positive integer δF
is a map from Q2r+1

F to QF . Configurations are maps from Z to QF . The local transition
function δF induces a global evolution rule on configurations denoted QF and defined as
follows: ∀c ∈ QZ

F , ∀i ∈ Z, F (c)(i) = δF
(
c(i− r), c(i− r + 1), . . . , c(i+ r)

)
.

Let F be any CA with state set QF . A subset Q ⊆ QF is F -stable if F
(
QZ) ⊆ QZ.

Then F induces a cellular automaton on QZ, denoted by F|Q. G with state set QG is a
sub-automaton of F , denoted by G v F , if there is a F -stable subset Q such that G is
isomorphic to F|Q: formally, there is a one-to-one map ι : QG → Q such that

ι ◦G(x−r, . . . , xr) = F|Q(ι(x−r), . . . , ι(xr))

for any x−r, . . . , xr ∈ QG.
In the sequel, we denote by F ≡ G the fact that F and G are isomorphic (both F v G

and G v F ). Moreover, we say that a state q is quiescent for F if the set {q} is F -stable.
The relation v provides a local comparison relation on CA which is very restrictive.

We now define a pre-order relation generalizing v by allowing some rescaling operations in
the CA to be compared. Our formalisation below follows1 that of [14]. Rescaling trans-
formations considered are very simple: they allow grouping several cells in one block and

1To be precise, we don’t use the shift parameter present in [14] in order to simplify notations. However
all our proofs remains correct when using this parameter in rescaling transformations.
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running several steps at a time. Formally, for any finite set A and any m ∈ N (m 6= 0), let
bm : AZ → (Am)Z be the map such that

∀c ∈ AZ, ∀z ∈ Z :
(
bm(c)

)
(z) =

(
c(mz), c(mz + 1), . . . , c(m(z + 1)− 1)

)
.

We denote by F<m,t> the CA bm ◦ F t ◦ b−1
m . Once rescaling transformation are defined, the

simulation relation is simply the relation v up to rescaling.

Definition 2.1 (simulation). F simulates G, denote by G � F , if there are parameters m, t
and m′, t′ such that G<m,t> v F<m′,t′>.

From a dynamical systems point of view, if G � F then there exists a set of configu-
rations Σ such that the dynamical system

(
Gt, QZ

G

)
is isomorphic to

(
F t

′
,Σ
)
. Using the

pre-order � as a tool to measure complexity of CA, we will particularly focus on prop-
erties which are increasing for �. A property P is increasing if whenever F � G then
F ∈ P ⇒ G ∈ P. A property is decreasing if its complement is increasing.

As evoked in the introduction, the notion of universality used throughout this paper is
defined as the global maximum class of �.

Definition 2.2 (universality). • F is universal if for any G we have G � F .
• F is reversible-universal if it is reversible and for any reversible G we have G � F .

We denote by U the set of universal CA.

Throughout this paper we consider several families F of CA and we are interested in
the typical properties of elements of F when their state set gets larger and larger. This
is formalised by the notion of density, that is, the limit probability (of some property) for
cellular automata with increasing state set but fixed neighbourhood. Unless it is specified in
the context, the neighbourhood radius r is arbitrary and the arity of local rules is denoted
by k with k = 2r + 1.

Any alphabet considered in this paper is a subset of N. We denote by CA the set of CA
and by CAn the set of CA on state set {0, . . . , n− 1}. Given a CA F we denote by |F | the
cardinal of its state set. Moreover, we fix once for all a collection of bijections between state
sets of same size (which are always subsets of N): we choose the only bijection which is
increasing according to the natural order of N. Thus we get a standard renaming function
std() such that for any F ∈ CA and any set X with |X| = |F | we have stdX(F ) ≡ F and
the state set of stdX(F ) is X.

Definition 2.3 (density). • Given a family F and a property P (both are sets of
CA), we define dF (P), the density of P in F , as the following limit (if it exists):

lim
n∈IF
n→∞

|P ∩ Fn|
|Fn| ,

where Fn = F ∩ CAn and IF = {n : F ∩ CAn 6= ∅}.
• In the sequel, when F = CA, dF (P) is abbreviated to d (P).

The present paper is devoted to families of CA obtained by amalgamation. Intuitively,
an amalgamation consists in making the (disjoint) union of two CA and completing the
transition table in some way (i.e. choosing a value for each transition involving states from
both CA). Precisely, given two CA of size n and p, there are (n+ p)k − nk − pk transitions
to fix in order to completely define an amalgamation of them. An amalgamation operation
is a description of allowed completion for any pair of CA.
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Definition 2.4 (amalgamation). An amalgamation operation Γ is function from pair of
CA to sets of CA verifying for all F,G ∈ CA:

(1) Γ(F,G) 6= ∅,
(2) |Γ(F,G)| is a function of |F | and |G| only,
(3) if H ∈ Γ(F,G) then

(a) H ∈ CAp+q,
(b) H|Q = stdQ(F ) and
(c) H|Q′ = stdQ′(G)

where p = |F |, q = |G|, Q = {0, . . . , p− 1} and Q′ = {p, . . . , p+ q − 1}.
Γ is said associative if for any F , G, H it verifies:

Γ
(
F,Γ(G,H)

)
= Γ

(
Γ(F,G), H

)
,

where the notation Γ is naturally extended to sets of CA.

Given an amalgamation operation Γ, and a finite set of CA G, called generators, we
consider the set FG,Γ (or simply F when the context is clear) which is the smallest set
containing G and closed by Γ.

For any F1, . . . , Fn ∈ G, we denote by Γ(F1, . . . , Fn) the set

Γ (F1,Γ(F2, . . . ,Γ(Fn−1, Fn) · · · )) .
If Γ is associative, any F ∈ F belongs to some Γ(F1, . . . , Fn) for a convenient choice of
F1, . . . , Fn. Moreover, if F ∈ Γ(G,H) ∩ Γ(G′, H ′) then we have necessarily either G v G′
or G′ v G. Therefore, if we suppose that there is no G,G′ ∈ G with G v G′, then, for
any F ∈ F , there is a unique list of generators F1, . . . , Fn ∈ G such that F ∈ Γ(F1, . . . , Fn)
(straightforward by induction on the size of F ).

In the sequel, any family FG,Γ with such properties will be called an unambiguous
amalgamation family.

3. Examples

We will establish some properties shared by all unambiguous and associative amalga-
mation families in section 4. The present section gives several examples of amalgamation
families interesting in their own to illustrate the previous definitions. Before giving exam-
ples of amalgamation operations and considering the associated families, we will define 3
natural families of CA already considered in the literature which turn out to be amalga-
mation families. First, captive CA (introduced in [16]) are automata where the transition
function is constrained to always choose a state already present in the neighbourhood.

Definition 3.1. A captive CA of arity k is a CA where each transition verifies the captivity
constraint: δF (x1, . . . , xk) ∈ {x1, . . . , xk}. The set of such CA is denoted by K.

A cellular automaton with 2 states known has the majority vote CA has received a
lot of attention in the literature (see for instance [11]). Its transition rule simply consists
in choosing the state which has the greatest number of occurrences in the neighbourhood.
We will consider generalisations to any number of states of the majority vote CA and its
symmetric, the minority vote CA.

Definition 3.2. • A majority CA of arity k is a CA where each transition verifies the
majority constraint: δF (x1, . . . , xk) ∈

{
xi : ∀j, c(i) ≥ c(j)}, where c(i) = |{j : xj = xi}|.

The set of majority CA is denoted by MAJ .
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• The setMIN of minority CA is defined analogously, the condition on each transi-
tion becoming: δF (x1, . . . , xk) ∈

{
xi : ∀j, c(i) ≤ c(j)}.

We now proceed the opposite way and define natural amalgamation operations in order
to consider associated amalgamation families in the sequel.

First, we define the general amalgamation operation Γg as the one where all pos-
sible completion of transition tables are allowed. Γg is obviously non-associative since
there are some G ∈ Γg

(
F1,Γg(F2, F3)

)
having transitions involving only states correspond-

ing (through std()) to F1 and F2 which leads to some state corresponding to F3: this is
impossible in Γg

(
Γg(F1, F2), F3

)
.

Since associativity plays an important role in determining the density of properties in
amalgamation families, we define the amalgamation operation Γa obtained by adding the
following restriction: any completion of the transition table must ensure when possible that
the union of any pair of stable subsets is itself a stable subset.

Definition 3.3. Γa is defined as follows: for any F ∈ CAp and G ∈ CAq, Γa(F,G) is the set
of all automata G ∈ CAp+q such that if Q = {0, . . . , p− 1} and Q′ = {p, . . . , p+ q − 1}:

(1) H|Q = stdQ(F ) and H|Q′ = stdQ′(G),
(2) for any L ⊆ Q and R ⊆ Q′, if both L and R are H-stable then L ∪R is also H-stable.

Proposition 3.4. Γa is associative.

Proof. Let F1, F2, F3 ∈ CA and consider any G ∈ Γa(F1,Γa(F2, F3)). Denote by Q1, Q2

and Q3 the state sets corresponding to F1, F2 and F3 (respectively) in G. First it is
straigthforward to check that G|Q1∪Q2

∈ Γa(F1, F2).
Now consider any L ⊆ Q1 ∪Q2 and R ⊆ Q3 which are both G-stable. Let L1 = L ∩Q1

and L2 = L ∩Q2. L2 ∪R is G-stable because G|Q2∪Q3
∈ Γa(F2, F3). Therefore L ∪R

is G-stable because it is the union of stable sets L1 ⊆ Q1 and L2 ∪R ⊆ Q2 ∪Q3 and
G ∈ Γa(F1,Γa(F2, F3)). Hence G ∈ Γa(Γa(F1, F2), F3).

One can notice that the condition on stable subsets satisfied by Γa is a necessary condi-
tion for associativity (remark on Γg above). Thus, Γa is the largest associative amalgamation
operation.

The 3 families K,MIN ,MAJ rely on a constraint applying to each transition indi-
vidually. It is thus natural to consider for each one the amalgamation operation where any
completion in the transition table fulfils the constraint.

Definition 3.5. • ΓK is the amalgamation operation defined as follows: for any F ∈
CAp and G ∈ CAq, ΓK(F,G) is the set of all automata G ∈ Γa(F,G) such that any
transition involving states from both {0, . . . , p− 1} and {p, . . . , p+ q − 1} satisfy
the captivity constraint.
• The amalgamation operations ΓMIN and ΓMAJ are defined analogously using the

minority and majority constraint respectively.

Proposition 3.6. Let G0 be the set containing only the trivial CA with a single state. Each
of the sets K, MIN and MAJ forms an unambiguous amalgamation family associated to
G0 and ΓK, ΓMIN or ΓMAJ (respectively).

Proof. We consider the family K (proofs for MIN and MAJ are similar). First, it is
straightforward to check that ΓK is associative. Moreover, since any state q of any captive
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CA F is quiescent, it follows that F ∈ ΓK(G0, . . . ,G0︸ ︷︷ ︸
|F |

). Conversely, any F in ΓK(G0, . . . ,G0)

is a captive CA since it has only quiescent states and all other transitions fulfils the captivity
constraint by definition of ΓK.

4. Density of Properties

In this section, we are interested in typical properties of CA from a given amalgamation
family. First, one can establish that any amalgamation family is negligible in the set CA.
Therefore, the typical behaviour of CA from some amalgamation family is a priori not
related to the typical behaviour of CA in general. In the next section, we will establish that
typical behaviour of several amalgamation families is interesting (theorem 5.4), whereas
nothing is known for CA in general.

Proposition 4.1. If F is an amalgamation family then d (F) = 0.

Proof. This is a straightforward corollary of proposition 1 of [17] since by definition any
sufficiently large F ∈ F possesses a non-trivial sub-automaton.

We will now focus on unambiguous amalgamation families and establish the main result
of this section which gives a simple sufficient condition for a property to have density 1 in
such a family.

Definition 4.2. Given a set of generators G and an amalgamation operation Γ, we say
that a property P is malleable for G and Γ if the two following conditions hold:

(1) P is increasing,
(2) there is i such that, for any F1, . . . , Fi ∈ G, Γ(F1, . . . , Fi) ∩ P 6= ∅.
It is straightforward to check that for an associative amlgamation operation and a set

of generators which is a singleton, the malleable properties are exactly the increasing (non-
void) properties. this is the case for K,MIN andMAJ . Concerning Γa and a non-trivial
set of generators, we have the following proposition.

Proposition 4.3. Let G be any set of generators. Any increasing property P containing a
captive CA is a malleable property for G and Γa.

Proof. Consider any F ∈ P ∩ K and let {a1, . . . , ai} denotes its state set. Let F1, . . . , Fi ∈ G.
For any 1 ≤ j ≤ i there is a positive integer tj and a state qj of Fj such that qj is a
quiescent state of F tjj (because the phase space of Fj restricted to uniform configurations
necessarily contains a cycle). Now let m = lcm(tj) and denote by ej the state of any CA
from Γa(F1, . . . , Fi) corresponding to qj (for any 1 ≤ j ≤ i). Since F is captive, one can
choose H ∈ Γa(F1, . . . , Fi) such that : for any k-tuple j1, . . . , jk ∈ {1, . . . , i} with at least 2
distinct elements:

δF (aj1 , . . . , ajk) = aα =⇒ δH(ej1 , . . . , ejk) = eα.

Hence, although the set {e1, . . . , ei} may not be H-stable, the only potential obstruction to
this stability comes from the fact that states ej are not all quiescent for H. In any case, we
have:

Fm v Hm

and thus F � Hi and H ∈ P which concludes the proof.
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We now establish the central result of this section.

Theorem 4.4. Let F = FG,Γ be any unambiguous amalgamation family. Then, for any
malleable property P, we have dF (P) = 1.

Proof. Let α and β denote the minimum and maximum size (respectively) of elements of
G. By unambiguity of F , we can partition Fn for any n ∈ IF according to:

Fn =
⋃

n/β≤p≤n/α,
F1,...,Fp∈G,P|Fi|=n

Γ
(
F1, . . . , Fp

)
.

Let us fix some p with n/β ≤ p ≤ n/α and some list of generators F1, . . . , Fp ∈ G with∑ |Fi| = n. We will show that there exist some 0 ≤ λ < 1 depending only on P, G and Γ
such that we have for sufficiently large p:

|Γ(F1, . . . , Fp) \ P|
|Γ(F1, . . . , Fp)| ≤ λp.

By the above partition, this property implies
|Fn \ P|
|Fn| ≤ λn/β

which concludes the proof.
By malleability of P there exists i such that we have Γ(Fji+1, . . . , F(j+1)i) ∩ P 6= ∅ for

any 0 ≤ j < ⌊pi ⌋. Moreover, since Γ is associative, one has the following partition

Γ(F1, . . . , Fp) =
⋃

Gj∈Γ(Fji+1,...,F(j+1)i)

∀j, 0≤j<b pi c

Γ
(
G0, . . . , Gb pi c−1,Γ(Fib pi c+1, . . . , Fp)

)
.

By definition of amalgamation operations, each set of the above partition has the same
cardinal. Therefore, if we denote by ε the proportion of

⌊p
i

⌋
-tuples (G0, . . . , Gb pi c−1) from

the above list such that Gj 6∈ P for every j, then we have:

|Γ(F1, . . . , Fp) \ P|
|Γ(F1, . . . , Fp)| ≤ ε.

Finally, let m depending only on G, Γ and P be defined by

m = max{|G| : G ∈ Γ
(
G, . . . ,G︸ ︷︷ ︸

i

)}.
By choice of i (malleability of P), we have for any sufficiently large p:

ε ≤
(
m− 1
m

)b pi c
.

Thus, choosing λ =
(
m−1
m

) 1
2i , we have the desired property.
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Given a family F of CA, we say that it has the zero-one law for monotone properties
if any property P which is non-trivial in F (i.e. both F ∩ P 6= ∅ and F \ P 6= ∅) verifies:

• if P is increasing then dF (P) = 1,
• if P is decreasing then dF (P) = 0.

We have shown that malleable properties are of density 1 in unambiguous amalgamation
families (theorem 4.4), and that some sets of increasing properties are malleable for some
unambiguous amalgamation families (proposition 4.3 and remark above). Therefore we
have the following corollary.

Corollary 4.5. Each of the following families has the zero-one law for monotone properties:
(1) K,
(2) MIN ,
(3) MAJ .

Moreover, any unambiguous family associated to Γa verifies the zero-one law for monotone
properties which are non-trivial in K.

5. Universality

In this section, we are interested in the intersection of U with the different families
considered until now. In order to show that these intersection are generally non-empty,
we will study the general problem of how to encode CA from a family into CA of another
family preserving the intersection with U .

Formally, given two families of CA F1 and F2, a computable injective function Φ : F1 → F2

is an encoding form F1 into F2 if for all F1 ∈ F1 we have: F1 � Φ(F1). It is faithful if we
additionally have F1 ∈ U ⇐⇒ Φ(F1) ∈ U .

Recall that our convention throughout the paper is to consider CA of fixed neighbour-
hood. Thus, an encoding send CA of a family to CA of another family with the same
neighbourhood. In the sequel we will use the following alternative characterisation of uni-
versal CA proved in [12].

Proposition 5.1. F ∈ U if and only if for any G, there are parameters m, t such that
G v F<m,t>.

We now give encoding results of captive cellular automata into different families.

Proposition 5.2. There exists an encoding from K to MAJ and an encoding from K to
MIN .

Proof. Let F ∈ K and let Q its state set. Denote by H the CA from MAJ defined as
follows2:

δH(x1, . . . , xk) = max
{
xi : ∀j, c(i) ≥ c(j)},

where c(i) = |{j : xj = xi}|. Now let Q′ = Q× {1, . . . , k} and denote by π1 and π2 the
projection from Q′ to Q and from Q′ to {1, . . . , k} (respectively). We furthermore denote

2This particular choice of H is not important to establish the proposition. However we conjecture that
this particular choice ensure that the encoding is faithful.
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by X the set of words on alphabet {1, . . . , k} of the form i · (i+ 1) · · · k · 1 · · · (i− 1). We
define the CA G (in a computable way) as follows:

δG(x1, . . . , xk) =

{(
δF (π1(x1), . . . , π1(xk)), π2(xb k2c+1)

)
if π2(x1) · · ·π2(xk) ∈ X,

δH(x1, . . . , xk) else.

Since the first case of the above definition implies that there are no two occurrences of a
same state in the neighbourhood, and by choice of H, we have G ∈ MAJ . Moreover,
considering the set of configuration whose second component is periodic of period 1 · 2 · · · k,
one verifies that definition of G implies F<k,1,0> v G<k,1,0> and therefore F � G.

The construction of an encoding from K toMIN is very similar. Indeed, the simulation
takes place on a set of configuration where the minority/majority constraints reduce to the
captivity constraint.

Concerning unambiguous amalgamation families associated to Γa, one can establish a
stronger result.

Proposition 5.3. Let G be a set generators such that G ∩ U = ∅ and let F be the family
associated to G and Γa. There exists a faithful encoding from K to F .

Proof. The faithful encoding relies on a modified version of the construction in the proof
of proposition 4.3. Let F ∈ K with state set {a1, . . . , ai} and consider any F1, . . . , Fi ∈ G.
Using the same notation let Qj = {nj , . . . , nj + |Fj | − 1} and E = {e1, . . . , ei}

}
. With the

same construction method, one can easily prove that there exists Hi ∈ F such that:
(1) for any k-tuple j1, . . . , jk ∈ {1, . . . , i} with at least 2 distinct elements we have

δF (aj1 , . . . , ajk) = aα =⇒ δHi(ej1 , . . . , ejk) = eα,

(2) for any k-tuple x1, . . . , xk with {x1, . . . , xk} 6⊆ Qj (for all j) and {x1, . . . , xk} 6⊆ E
we have

δHi(x1, . . . , xk) = max
{
xj : xj 6∈ E

}
,

(3) Fm0 v Hm0
i .

Now suppose Hi ∈ U and consider some Gu ∈ U with only 2 states (but with a neigh-
bourhood possibly larger than k). Since by hypothesis Gu � Hi, proposition 5.1 implies that
there are parameters m, t such that Gu v Hi

<m,t>. Denote by Σ the set of configurations of
Hi where the simulation occurs. First, we have Σ 6⊆ QZ

j (for all j) since otherwise it would
imply that Fj ∈ U . Moreover, if we suppose Σ 6⊆ EZ, then there is some configuration c ∈ Σ
and some position z ∈ Z such that {cz, . . . , cz+k−1} 6⊆ Qj and {cz, . . . , cz+k−1} 6⊆ E. Then
condition 2 of the definition of Hi applies at position z. Intuitively, starting from position
z, a region of states all in Qj for the same j will grow unless it meets some state in Qj′
with j′ > j in which case a larger Qj′ region appears. Applying this reasoning until the
maximal j is reached, it is straightforward to show that there is t0 such that ∀t+ ≥ t0 the
configuration d = H

t+
i (c) has for some z′ ∈ Z and some j the property:

∀z′′, z′ ≤ z′′ ≤ z′ + 2m : d(z′′) ∈ Qj .
It means that some state of Gu is simulated by group of states of Hi all in Qj for the same
j. This implies either Σ ⊆ Qj or that Gu has a spreading state (a state x such that each
cell with x in its neighbourhood turns into state x). The two cases being contradictory
with hypothesis (Fj 6∈ U and Gu ∈ U and has only two states), we conclude that Σ ⊆ EZ.
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Therefore, by condition 3 of the definition of Hi, we have Gu v F<mm0,t> and thus F ∈ U
which concludes the proof.

Using results, one can prove the following theorem showing that the intersection with
U of families K, MAJ , MIN and any unambiguous F associated to Γa are non-trivial.

Theorem 5.4. There exists r0 such that for any fixed Von Neumann neighbourhood of
radius r ≥ r0, and for any family F among K, MIN , MAJ or an unambiguous family
associated to Γa, then we have dF (U) = 1.

Moreover if F is neither MIN nor MAJ , we have also:
• U is undecidable in F ,
• for any F ∈ F \ U there is G ∈ F \ U with F � G but G 6� F .

Proof. The first part of the theorem follows from propositions 5.2 and 5.3, from the existence
of universal captive CA (proven in [17] for r ≥ 7) and from corollary 4.5.

The second part is proved in theorem 2 and corollary 3 of [17] for the family K. It
generalises to unambiguous families associated to Γa by propositions 5.3 above.

Much less is known about the structure of � concerning reversible CA. However, as
we will show below, there exists reversible-universal captive CA. This naturally raises the
question (unanswered in this paper) of the density of reversible-universal CA among captive
reversible CA. The existence of reversible-universal captive CA relies on the existence of
reversible-universal CA of a special kind, equipped with an unalterable state.

Proposition 5.5. There exists a reversible-universal F such that F and its inverse F−1

possesses a common wall state, i.e. a state q such that any cell in state q remains in state
q under both the action of F and F−1.

Proof. Consider any reversible-universal CA G (see [7] for an existence proof) of state set
QG and radius r. Let q be an additional state not in QG and let Q = QG ×QG ∪ {q} (it
is straitghtforward to translate this state set into a subset of N, but we don’t for clarity).
We will see any configuration c ∈ QZ as the disjoint union of configurations from QZ

G corre-
sponding to zones between occurrences of state q. A finite zone between two occurrences of
q will be seen as a torus of states from QG, semi-infinite zones as bi-infinite configuration
in QZ

G and bi-infinite zones as pair of configurations in QZ
G. We formalise this through

functions L↑, L↓, R↑, R↓ which give the state of the “logical” neighbours of a “logical” cell
(according to the previous description): L/R stand for left/right neighbours and ↑/↓ for
up/down layers (in a zone without q, cells contain 2 layers of “logical” cells).

Formally, for any z ∈ Z and c ∈ QZ such that c(z) 6= q these functions are defined by:
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L↑(z, p) =


ε if p = 0
L↑(z − 1, p− 1) · a if c(z − 1) = (a, b) ∈ Q2

G

L↓(z, p− 1) · β if c(z − 1) = q and c(z) = (α, β)

L↓(z, p) =


ε if p = 0
L↓(z + 1, p− 1) · b if c(z + 1) = (a, b) ∈ Q2

G

L↑(z, p− 1) · α if c(z + 1) = q and c(z) = (α, β)

R↑(z, p) =


ε if p = 0
a ·R↑(z + 1, p− 1) if c(z + 1) = (a, b) ∈ Q2

G

β ·R↓(z, p− 1) if c(z + 1) = q and c(z) = (α, β)

R↓(z, p) =


ε if p = 0
b ·R↓(z − 1, p− 1) if c(z − 1) = (a, b) ∈ Q2

G

α ·R↑(z, p− 1) if c(z − 1) = q and c(z) = (α, β)

Now define F on any c ∈ QZ by:(
F (c)

)
(z) =

{
q if c(z) = q,(
δG(L↑(z, r)c(z)R↑(z, r)), δG(L↓(z, r)c(z)R↓(z, r))

)
else.

F is a well-defined CA since L↑(z, r), R↑(z, r), (L↓(z, r) and R↓(z, r) depend only on the
2r + 1 cells surrounding z. It is clear from the definition that G � F since F behave like
the product of G and its symmetric on configuration without q.

To show that F is reversible, it is sufficient to notice that applying the same construction
to G−1, one gets a CA F ′ such that for any c ∈ QZ: F ′

(
F (c)

)
= c.

Proposition 5.6. There exists a reversible-universal captive CA.

Proof. Let F be any CA of radius r, state set QF = {q1, . . . , qn} and having a wall state q.
One defines the captive CA Fκ on state set Q = QF ∪ {L,R} with radius r′ = (n+ 3)(r + 1)
as follows. Let u = Lq1q2 · · · qnR. Any word w = w−r′ · · ·w0 · · ·wr′ of length 2r′ + 1 over Q
such that w0 ∈ QF can be written in the form:

w = vluxiuxi−1u · · ·u︸ ︷︷ ︸
r′

x0 ux1u · · ·xjuvr︸ ︷︷ ︸
r′

where xp ∈ QF for all p and i and j are maximal for this form. To the word w we associate
the word π(w) = qr−ixi · · ·x0 · · ·xjqr−j . Now we define Fκ by:

δFκ
(
e−r′ , . . . , er′

)
=

{
e0 if e−(n+2) · · · en+2 6∈ uQFu,
δF
(
π(e−r′ · · · er′)

)
else.

For any c ∈ QZ, let A(c) = {z ∈ Z : c(z) · · · c(z + n+ 1) = u}. It is straightforward from the
definition of Fκ to check that A(c) = A

(
Fκ(c)

)
. Therefore we also have B(c) = B

(
Fκ(c)

)
where B(c) = {z ∈ Z : c(z − (n+ 2)) · · · c(n+ 2) ∈ uQFu} . Now, if we apply this construc-
tion to F and F−1 obtained by proposition 5.5, we have from the above remark that Fκ ◦ F−1

κ

is the identity and therefore Fκ is reversible.
Finally, one can easily check that F � Fκ by considering configurations of the form

ω(uQF )ω and the proposition follows.
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6. Perspectives

This paper leaves many question unanswered. First, although it was not directly ad-
dressed in this paper, determining the density of U in the whole set of CA remains a
completely open problem of prior interest.

Concerning the amalgamation operations themselves, it would be interesting to follow
[4] and [5] and define new amalgamation operations where the way of completing transition
tables is controlled by a two-state CA. For such amalgamation operations (and for Γg
also) we believe that the zero-one law is still valid (at least when the set of generators is
unambiguous). However, for the amalgamation of J. Mazoyer et al., knowing when and how
universality can be achieved starting from non-universal generators seems very difficult.

More generally, for any amalgamation operation, the associated family has only a finite
set of nilpotent. Therefore nilpotency is a decidable property in the family and many clas-
sical undecidable problems are to be reconsidered when restricted to such families. Among
them, we think that reversibility and surjectivity in dimension 2 and properties of limit sets
are particularly intersting.

Concerning reversible CA in dimension 1, we wonder whether it is possible to define
a non-trivial amalgamation family made of reversible CA only and for which density of
reversible-universality is 1. To that extent, we remark that no majority CA is reversible and
there are reversible-universal captive CA, so amalgamation families lying between MAJ
and K are worth being considered.

Finally, even if some amalgamation families share many properties concerning the class
U , there is no reason why typical CA from two different families should have a similar
dynamical behaviour. A possible formalization of this could be to study the µ-limit sets
of typical CA from different families. For instance, one can establish that µ-limit sets of
majority CA consists in fixed-point configuration only (proposition omitted from the present
paper due to lack of space). We believe that non-trivial properties of µ-limit sets of typical
CA from K or other families could be established.
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Abstract. Here we present a new non-recursive minimal-time solution to the Firing
Squad Synchronization Problem which does not use any recursive process. In 1962, E. Goto
designed an iterative algorithm which uses Minsky-McCarthy’s solutions to synchronize
in minimal-time. Our solution does not use any standard recursion process, only some
“fractal computation”, making it a purely iterative synchronization algorithm.

Introduction

The firing squad synchronization problem (FSSP for short) has been the subject of
many studies since 1957 when Myhill stated it and Moore reported it (see [Mo64]). We can
state the problem as follows:

Does there exist a finite automaton such that a chain of n (whatever n
could be) such automata would be synchronized at some time T (n) after
being initiated at time t = 0? Each automaton is connected with its two
neighbors and is assumed to be structurally independent of the number n.
The synchronization is a configuration such that each automaton is in a so-
called firing state which was never used before time T (n) and the ignition
configuration is a configuration such that every automaton but the first one
of the chain is in a quiescent state.

Besides the fact that numerous papers were published about it and many different solutions
were designed to solve the problem in various conditions, one of the very first solution made
by Goto remained mythical for a long time. His courses notes are not available and Goto
has not published his solution elsewhere. Many years later, Umeo (see [Um96]) was the first
who tried to reconstruct it as he was able to talk to Goto himself who then gave him some
old incomplete drawing. After that, Mazoyer (see [Ma98]) made a possible reconstruction
of it but did not published it.

Key words and phrases: parallel computations, synchronization, firing squad, cellular automata.
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In this paper we do not try to strictly reconstruct Goto’s solution but to use his main
idea to build a new minimal-time solution with the following interesting characteristics in
mind:

• the iterative process ensures that we do not need a complex discretization process;
• the set of signals used is small; we will see that an implementation will give us the

opportunity to use only two different signals (slope 1 and slope 3);
• there is only one “cut” of the line;
• we want to obtain a solution whose energy consumption is lower than n2;

1. The schema

Figures 4, 5 , 6 illustrate the overall mechanism involved. Roughly speaking, we can
say that the main idea, due to Goto (see [Go62]) is to split the line into successive sublines
the lengths of which are a sequence of powers of 2 (20, 21, 22, etc.), from the left and from
the right. We will use this iterative decomposition to place some minimal-time firing squad.
Of course it is possible to use any minimal-time solution, even the one we are constructing
as Gerken did, but we choose to use some specific solutions able to efficiently synchronize
powers of 2 - see [Yu08].

As it is not always possible to cover the line with such left and right sublines something
must be built in the middle to ensure that the residue is also correctly synchronized, either
ensuring some overlapping or filling the hole.

Different constructions are involved:
• splitting the line into successive sublines of length powers of 2 from the left;
• starting appropriate minimal-time solutions on the left sublines;
• splitting the line into successive sublines of length powers of 2 from the right;
• starting appropriate minimal-time solutions on the right sublines;
• filling the empty space in the middle of the line when necessary.

In the following we will always consider that cells of the chain are numbered from 0
(the left cell) to n− 1 (the right cell) and that the time starts at 0.

2. Splitting the line into successive sublines of length 2i from the left

Splitting a line into successive power of 2 is easy and is illustrated in Figure 1(a).
Suppose that length l has already been constructed in space, i.e., the distance between the
abscissas of the two sites P ′

i and P ′
i−1 is l.

From P ′
i two signals are issued. The first, of slope 1, goes to the left until it meets the

previous stationary signal issued from P ′
i−1, then bounces back in the reverse direction until

it meets the signal of slope 2 issued from P ′
i to the right. That crossing point P ′

i+1 is the
new starting point of the next construction. If we start with l = 1, then it is easy to see
that all powers of 2 are successively constructed in space.

The previous construction is due to Goto, but for different reasons that we will explain
later, we need to also use another construction illustrated in Figure 1(b). Suppose that
length l has been constructed and that Pi and P ′

i are located on the same vertical and
distant by l. Then, the meeting of the signal of slope 1 issued from P ′

i and the signal of
slope 3

2 issued from Pi is Pi+1 and is exactly at distance 2l (in space) from Pi. At the same
time if we start a signal of slope 2 from P ′

i , it meets the stationary signal issued from Pi+1
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P ′
i−1

P ′
i

P ′
i+1

l 2l

Qi

(a) from below

l

Pi

Pi+1

P ′
i+12l

P ′
i

P ′′
i

2l

(b) from above

Figure 1: Constructing Pi’s, P ′
i ’s

at point P ′
i+1 distant from Pi+1 by 2l. Then again it is easy to see that if we start with

l = 1, all powers of 2 are successively constructed in space.
We shall also need the midle P ′′

i of P ′
iPi+1 which in obtained by starting a signal of

slope 2 from Pi.
Starting from P ′

1 = [1,1] then, with the preceding constructions, one can see that, for
all i ≥ 2, the constructed points have the following coordinates:

Pi = [ 2i − 1 , 3.(2i−1 − 1) ] (2.1)

P ′
i = [ 2i − 1 , 2i+1 − 3 ] (2.2)

P ′′
i = [ 3.2i−1 − 1 , 5.2i−1 − 3 ] (2.3)

Qi = [ 2i−1 − 1 , 5.2i−1 − 3 ] (2.4)

The previous signals and the above equations are more easily viewed with the help of Pascal’s
triangle modulo 2 (which is obtained via Wolfram’s rule 60) as one can see in Figure 2.

3. Synchronizing left sublines

To synchronize the cells of the left constructed sublines, one can use the schema illus-
trated by Figure 3(a).

Every stationary signal issued from Pi meets the return of the main signal (a line of
equation y = 2n − x) at Si = [2i − 1,2n− 2i + 1] where a minimal-time solution can be
started with an initiator at right using the stationary signal issued from Si−1 as a border.

4. Splitting the line into successive sublines of length 2i from the right and
synchronizing them

The construction is illustrated by Figure 3(b). As one can see, we use the left construc-
tion to build the right sublines. From every Qi a signal of slope 1 is started to the right
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Pi

Qi P’’i

P’i

Figure 2: Rule 60 helps

until it meets the return of the main signal, then at that point a stationary signal is set up
which will meet the symmetric counterpart of the return of the main signal issued from the
middle of the line at a point named S′

i. From each of those points, a minimal-time solution
can be started with an initiator at left, using the stationary signal issued from S′

i−1 as a
border.

5. Filling the empty space

Depending on the length of the line it is necessary to carefully consider what happens
in the middle of the line. Points Si and S′

i are symmetric relative to the middle of the line.
Depending whether Si, is left or right to S′

i, the last left and right sublines overlap or not. A
simple analysis shows that there exists three different cases to consider about the position
of points P , P ′, P ′′ relatively to the return of the main signal (signal of slope 1 issued from
the left cell which bounces back from the right border).

Whatever be n, there exists i such that one and only one of the following cases occurs:
(1) Pi, P ′

i and P ′′
i are all constructed before the main signal has returned and Pi+1 is

not;
(2) Pi and P ′

i are constructed before the main signal has returned and P ′′
i is not;

(3) Pi is constructed before the main signal has returned and P ′
i is not.

5.1. Case 1: P, P’ and P” before

Figure 4 illustrates the case where there is an index i such that P ′′
i has been built

before the main signal has returned and it is not the case for Pi+1. With the help of Eqs 2.1
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Qi

Q2

P2

Pi

S1

S2

Si

1 2 li = 2i

P ′
1

P ′
2

P ′
i

(a) from left

2 1li = 2i

Qi

Q2

P ′
1

S′i

S′2

S′1

P2

Pi

P ′
i

P ′
2

(b) from right

Figure 3: Synchronizing sublines

and 2.3, these two conditions lead to:{
5.2i−1 − 3 ≤ 2n− 3.2i−1 + 1

2n− 2i+1 + 1 < 3.(2i − 1)

then to {
2i+1 − 2 ≤ n

n < 2i+1 + 2i−1 − 2
and the following equation holds

2i+1 − 2 ≤ n < 2i+1 + 2i−1 − 2 (5.1)

In that case synchronization is achieved by constructing the following firing squads:
• i minimal-time FS are started on sites Sk = [2k − 1,2n− 2k − 1] (1 ≤ k ≤ i);
• i minimal-time FS are started on sites S′

k = [n− 2k − 1,2n− 2k − 1] (1 ≤ k ≤ i). A
special case has to be considered for S′

i as P ′
i+1 has not been built by definition. To

build S′
i it is sufficient to compute Qi = [2i−1 − 1,5.2i−1 − 3] and its meeting point

with the return of main signal, i.e. the meeting point of L : y = x + 2i+1 − 2 and
L′ : y = 2n− x which has abscissa n− 2i + 1;

• an additional minimal-time FS can be started on site Si, propagates to the right
and uses the stationary signal issued from P ′′

i as its end-of-line.
For this schema to work we must verify that:

• S′
i can always be built on time (it must appear before the middle of the line)
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• S′
i must appear at the left of P ′′

i , so that all cells in between Si and S′
i can be

synchronized by an appropriate FS.
We know that S′

i has coordinates n − 2i + 1 and that P ′′
i has abscissa 5.2i−1 − 3 then we

must have: {
n
2 ≤ n− 2i + 1

n− 2i + 1 < 5.2i−1 − 3
which is {

2i+1 − 2 ≤ n
n < 7.2i−1 − 4

which is implied by Equation 5.1

1 2 li = 2i

Qi

Q2

2 1li = 2i

P ′′
i

S′1

S′2

S′i

S1

S2

Si

Pi

P2

P ′
1

P ′
2

P ′
i

(a) general case

Qi

Q2

li = 2i 2 11 2 li = 2i

S′2

S′1

Pi

P2

P ′
1

P ′
2

P ′
i

S′i

S2

S1

Si

(b) limit case

Figure 4: P, P’ and P” before

5.2. Case 2: P and P’ stricly before, P” after

Figure 5 shows what is constructed when there is an index i such that P ′
i has been built

strictly before the return of the main signal and that it is not the case for P ′′
i . With the

help of Equations 2.2 and 2.3, these conditions lead to:{
2i+1 − 3 < 2n− 2i + 1

2n− 3.2i−1 + 1 < 5.2i−1 − 3
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which gives {
3.2i−1 − 2 < n

n < 2i+1 − 2
and the following equation holds

3.2i−1 − 2 < n < 2i+1 − 2 (5.2)

In that case synchronization is achieved by the following constructions:
• i minimal-time FS are started on sites Sk = [2k − 1,2n− 2k − 1] (1 ≤ k ≤ i);
• i−1 minimal-time FS are started on sites S′

k = [n− 2k − 1,2n− 2k − 1] (1 ≤ k < i);
• a minimal-time FS is started from Si propagating to the right and using the sta-

tionary signal issued from P ′′
i as its end-of-line.

For this schema to work some conditions must be verified:
• P ′′

i must be constructible;
• S′

i−1 must be at the left of P ′′
i so that the appropriate FS started at site Si synchro-

nizes at least the cells in between Si and S′
i−1.

We know that the abscissa x of S′
i−1 is solution of 2n − x = x− 2i + 1 + 2i+1 − 3, so that

x = n− 2i−1 + 2. So we must have:{
3.2i−1 − 1 ≤ n

n− 2i−1 + 2 ≤ 3.2i−1 − 1

which gives {
3.2i−1 − 1 ≤ n

n ≤ 2i+1 − 3
which is exactly the condition of Equation 5.2.

S2

S′1

Si

S′i−1

P ′′
i

Pi

P2

P ′
1

P ′
2

P ′
i

S1

(a) general case

P ′′
i

Pi

P2

P ′
1

P ′
2

P ′
i

Si

S′i−1

(b) limit case

Figure 5: P, P’ before, P” after
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5.3. Case 3: P before, P’ and P” after

Figure 6 illustrates the construction when there is an index i such that Pi has been
built before the return of the main signal and that it is not the case for P ′

i . Then with the
help of Equations 2.1 and 2.2, we have:{

3.(2i−1 − 1) ≤ 2n− 2i + 1
2n− 2i + 1 ≤ 2i+1 − 3

thus {
2i + 2i−2 − 2 ≤ n

n ≤ 3.2i−1 − 2
and the following equation holds

2i + 2i−2 − 2 ≤ n ≤ 3.2i−1 − 2 (5.3)

In that case synchronization is achieved by constructing the following firing squads:
• i minimal-time FS are started on Sk = [2k − 1,2n− 2k − 1] (1 ≤ k ≤ i);
• i− 1 minimal-time FS can be started on S′

k = [n− 2k − 1,2n− 2k − 1] (1 ≤ k < i).
Note that S′

i−1 is built by a special process issued from Qi−1 as done in case 1.
For all this to work correctly, some conditions must be verified:

• S′
i−1 must appear on the left of Si, such that an every cell will be synchronized.

• S′
i−1 must appear on time (before the middle cut of the line).

We know that the abscissa x of S′
i−1 is solution of 2n − x = x− 2i−2 + 1 + 5.2i−2 − 3 then

that x = n− 2i−1 + 1. So we must have:{
n− 2i−1 + 1 ≤ 2i − 1

n
2 ≤ n− 2i−1 + 1

which gives {
n ≤ 3.2i−1 − 2

2i − 2 ≤ n

which is implied by Equation 5.3.
As for every integer n , there exists i such that 2i−2 ≤ n < 2i+1−2, from Equations 5.1,

5.2, 5.3, this proves the main result of this paper.

Theorem 5.1 (Yunès). The schema synchronizes every line of length n ∈ N.

6. Conclusion

A strict implementation of the preceding schema is possible but we would like to show
how many interesting optimizations can be done.

First we can remark that if any minimal-time solution can be used to synchronize the
sublines, every subline has a length which is a power of 2. Then according to Yunès and
Umeo (see [Yu08] and [Um07]), we know that it is possible to synchronize a line of length
2k with only 4 states, such solutions are algebraic and do not use any signal. Thus using
such a construction will certainly lower down the total number of states.

But more than this, if we use one of these 4-state solutions then we can use them as
the support for the construction of all the interesting points P , P ′, P ′′ and Q as one can
see in Figure 2.
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(c) limit case

Figure 6: P before, P’ and P” after

Now one can remark that there are only two kind of signals: slope 1 and slope 3. And
the signal of slope 3 is only used to cut the main line into two equals parts. We actually do
not know if an explicit construction of this signal is necessary.

Besides the fact that such a schema is the very first one, one can observe that it has
many interesting characteristics which probably nobody never thought about.
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Abstract. Take a cellular automaton, consider that each configuration is a basis vector
in some vector space, and linearize the global evolution function. If lucky, the result could
actually make sense physically, as a valid quantum evolution; but does it make sense as
a quantum cellular automaton? That is the main question we address in this paper. In
every model with discrete time and space, two things are required in order to qualify as
a cellular automaton: invariance by translation and locality. We prove that this locality
condition is so restrictive in the quantum case that every quantum cellular automaton
constructed in this way — i.e., by linearization of a classical one — must be reversible. We
also discuss some subtleties about the extent of nonlocality that can be encountered in the
one-dimensional case; we show that, even when the quantized version is non local, still,
under some conditions, we may be unable to use this nonlocality to transmit information
nonlocally.

Introduction

After some tries [9, 4, 5, 1] at defining and studying quantum cellular automata, it is now
believed to be fairly well understood how reversible quantum cellular automata (RQCA)
should be defined, and what their basic properties are. As with classical cellular automata
(CA), there are two levels on which RQCA are defined: as local transition functions or as
global evolutions. The definition of RQCA proposed in [8] focuses only on the properties
of the global evolution, based on the two essential points of invariance by translation and
locality. It was also proved in the same paper that each reversible cellular automaton
could be “quantized” in a natural way, and the result would be a RQCA. Furthermore,
it was proved that RQCA can be implemented with local means, thereby reinforcing the
parallel with CA; this was first done in the one-dimensional case [8, 2], the result being later
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Key words and phrases: cellular automata, quantum cellular automata, open cellular automata, quanti-

zation, locality, localization.
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extended to the general case [3]. Also, they involve no measurement procedure; the global
evolution of a RQCA can be described by a unitary operator, while its decomposition as
layers of local operations consists only of small unitary transformations.

We would like now to extend this framework to include cases where the global evolution
is no longer described by a unitary operator, but by an isometry. This would be the first
step in the investigation of nonreversible quantum cellular automata (NRQCA). The main
problem with this topic, nowadays, is that there is no practical definition for such things.
Our aim is to provide such a definition and work out the basic properties of NRQCA.
Invariance by translation and locality as defined in [2] are still properties that NRQCA
should obviously have. In this paper we will ask and answer this question: when does the
quantization of a CA have these properties? Since the translational invariance comes freely,
the real question is: when is the quantization local?

Section 1 will be devoted to the mandatory definitions. We will be quick as we assume
the reader is familiar with the basics of CA and somewhat familiar with quantum computing.
We then show with theorem 2.1 that the locality — more precisely, the uniform locality,
cf. definition 1.7 — of the quantization is equivalent to reversibility, therefore extending
the results presented in [8, 2], and proving that no NRQCA can be constructed in this way.
In Section 3, we discuss the one-dimensional case. We show that, in some cases, even if
the quantization is not uniformly local, it can still be local in a weaker sense which forbids
some kinds of long-distance communications.

1. Definitions

We will now introduce the basic definitions of quantum cellular automata. For technical
reasons, we will work mainly with finite configurations. This is because they are countable,
as opposed to infinite configurations, and we want to have vector spaces of countable di-
mension, so as to simplify the formalism of [8]. This distinction between finite and infinite
configurations is not so important, as was shown in [2]; anyway, we are only interested in
locality conditions for quantizations of CA. We do not restrict the dimension of the space,
which will be some positive integer d. We denote q the quiescent state, and Σ the rest of
the alphabet, assuming q /∈ Σ; the union of Σ and {q} is denoted qΣ. The sets of finite
configurations is denoted Cf ; it contains the elements of (qΣ)Zd

that are equal to q almost
everywhere on Zd.

Whilst configurations hold the basic states of an entire line of cells, and hence denote
the possible basic states of the entire QCA, the global state of a QCA may well turn out
to be a superposition of these. The following definition works because Cf is a countably
infinite set.
Definition 1.1 (Superpositions of configurations).
Let HCf be the Hilbert space of configurations, defined as follows. To each finite configura-
tion c is associated a unit vector |c〉, such that the family (|c〉)c∈Cf is an orthonormal basis
of HCf . A superposition of configurations is then a unit vector in HCf .

We used here Dirac notation. Likewise, 〈c| denotes the dual of |c〉, i.e. the linear form on
HCf such that for all d ∈ Cf , 〈c| (|d〉), which is noted 〈c|d〉, is equal to δcd. These notations
may then be combined the other way around, |c〉〈c′| being the linear transformation of HCf
such that |c〉〈c′||d〉 is, quite naturally, equal to 〈c′|d〉|c〉.
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States on HCf are nonnegative hermitian operators of trace 1. For instance, for each
superposition of configurations |ψ〉, |ψ〉〈ψ| is a state, called in this case a pure state. Phys-
ically, states describe the actual state of matter; they bear all the information that can be
measured in the system. The cells of our CA are in the pure state |ψ〉〈ψ| when what lies
on them is, with certainty, the superposition |ψ〉. Actually, each state can be approximated
by convex combinations of pure states. It means that the actual physical state of our CA
at some moment can be described as a (possibly infinite) sum

∑
i
pi|ψi〉〈ψi|, where the pi’s

are positive,
∑
i
pi = 1 and the |ψi〉’s are pairwise orthogonal.

We will be manipulating isometries a lot. Unitary operators should be well-known, but
isometries are probably somewhat less familiar, so let us write down their definition. A
linear operator G : HCf −→ HCf is isometric if and only if {G|c〉 | c ∈ Cf} is an orthonormal
family of HCf . This can also be expressed simply using the adjoint G† of G. By definition,
when G is a endomorphism of HCf , G† is the endomorphism of HCf such that for every
|ϕ〉, |ψ〉 ∈ HCf , 〈ϕ|G|ψ〉 = 〈ψ|G†|ϕ〉. This way, G† is indeed always unique; however, it is
defined if and only if G is continuous. When G is isometric, G is of course continuous, and
actually, G is isometric iff G†G = IdCf . If, moreover, G is onto, it is said to be unitary; so
G is unitary if and only if G†G = GG† = IdCf .

Now, we are talking about CA, whose one important feature is shift-invariance. The
definition of shift-invariance in a quantum context, with all these linearizations, is actually
no more tedious than in the classical case; here it is.
Definition 1.2 (Shift-invariance).
Consider the shift operation which takes configuration . . . ci−1cici+1 . . . to . . . c′i−1c

′
ic
′
i+1 . . .

where, for all i, c′i = ci+1. Let σ : HCf −→ HCf be its linear extension. A linear operator
G : HCf −→ HCf is said to be shift invariant if and only if Gσ = σG.

The second important feature of CA is their locality. In the classical case, we know that
the locality is equivalent to the continuity of the global evolution on infinite configurations.
Unfortunately, there does not seem to be such a result in the quantum case; at least it is not
obvious what the right topology on superpositions of configurations should be. Therefore,
the definition of locality proposed in [8] is more concrete. It explicitly states that to know
the state of some region of the space after an iteration of the CA, you only need to know
the state of a slightly larger region beforehand. In the classical case, you would trivially
deduce from this property that the global evolution stems from a local transition rule. In
the quantum case however, things are not so simple as entanglement suddenly comes into
play, and when G is unitary it turns out [8, 2, 3] you need to keep things locally reversible.

To give the actual definition of locality, we first need to introduce some vocabulary.
First, we will make abundant use throughout this paper of the Minkowski sum. For
two subsets A and B of Zd, the Minkowski sum of A and B, noted A + B, is the set
{a+ b/a ∈ A, b ∈ B}. A− B is naturally the Minkowski difference, {a− b/a ∈ A, b ∈ B}.
HCf has a natural structure of tensor product. Namely, for a subset A of Zd, let

us note Cf (A) the set of the finite words on A. Then HCf is naturally isomorphic to
HCf (A)⊗HCf(A), where A denotes the complementary of A in Zd and HCf (A) is the Hilbert
space whose canonical basis is indexed by the elements of Cf (A). That being said, there
are two more definitions we need before moving on. The first one should be familiar, it
is also known as “trace out” and occurs whenever a quantum system can be divided into
two subsystems. Informally, if a system S can be written as the tensor product of two
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subsystems A and B, and given a state ρ on S, you can chose to ignore completely what is
going on B and restrict your universe to A. The state you get on A is then the restriction
of ρ to A.

Definition 1.3 (Reduction). Let ρ be a state over HCf and A a subset of Zd. One can
write ρ =

∑
i
σi ⊗ τi, where the σi’s and τi’s are respectively operators over HCf (A) and

HCf(A). Then ρ|A, the reduction of ρ to A, is a state on HCf (A) defined as
∑
i

Tr (τi)σi; this

does not depend on the way ρ was decomposed in the first place.

The following definition is the dual of the last one. Why it is its dual will appear in
proposition 1.6.

Definition 1.4 (Localization). A linear endomorphism of HCf is localized in a subset A of
Zd if it is of the form A⊗ Id, where A is an endomorphism of HCf (A) and Id is the identity
on HCf(A).

We can now explain the duality going on here with this lemma, which is stated and
proved as lemma 3 in [2].

Lemma 1.5 (Duality).
Let H0 and H1 be Hilbert spaces, with H0 of finite dimension p. Let A, ρ, ρ′ denote some
elements of L(H0⊗H1) with ρ, ρ′ having reductions ρ|0, ρ′|0 over H0. We then have that A
is localized in H0 iff

“for every states ρ and ρ′, if ρ|0 = ρ′|0 then Tr(Aρ) = Tr(Aρ′)”.
Moreover we have that ρ|0 = ρ′|0 is equivalent to

“if A is localized in H0, then Tr(Aρ) = Tr(Aρ′)”.

The proposition 1.6 we introduce next comes from theorem 3 in [2]. It entails structural
reversibility, i.e. the fact that the inverse function of a RQCA is also a RQCA. Since we want
now to talk about nonunitary operators, we have to restate it for general linear operators.
We also have to extend the domain of localization of this operator from one cell to a set
of cells. It will also serve as a definition of locality for linear endomorphisms over HCf —
which is not to be confused with localization. Note that the hypothesis of continuity for G
provides the existence of its adjoint G†.

It defines the locality “at somewhere” in the space. Intuitively, a global transition is
said to be local at some locus if the physical state in this locus after the transition depends
only on the physical state on a neighbourhood of this locus beforehand (this is point (i)
of the proposition). Equivalently, one could say that the result of each measure done on
this locus after the transition could be predicted beforehand by measures performed on its
neighbourhood (that would be point (ii)).
Proposition 1.6 (Structural reversibility).
Let G be a continuous linear endomorphism of HCf

, A and N respectively a subset and a
finite subset of Zd. Suppose G† The two properties are equivalent:

(i) For every states ρ and ρ′, if ρ|A+N = ρ′|A+N then
(
GρG†

) |A =
(
Gρ′G†

) |A.

(ii) For every operator A localized in A, G†AG is localized in A+N .
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When G satisfies these properties, we say that G is local at A with neighbourhood N .
If only A is given, we say that G is local at A if there exists a finite subset N of Zd such
that G is local at A with neighbourhood N .

If G is unitary, the following items are equivalent to (i) and (ii).
(iii) For every states ρ and ρ′ over the finite configurations, if ρ|A−N = ρ′|A−N then(

G†ρG
) |A =

(
G†ρ′G

) |A.

(iv) For every operator A localized in A, then GAG† is localized on the cells in A−N .

Proof.
[(i) ⇒ (ii)]. Suppose (i) and let A be an operator acting on cell 0. For every states ρ and
ρ′ such that ρ|N = ρ′|N , we have Tr

(
AGρG†

)
= Tr

(
AGρ′G†

)
, using lemma 1.5 and our

hypothesis that
(
GρG†

) |A =
(
Gρ′G†

) |A. We thus get Tr
(
G†AGρ

)
= Tr

(
G†AGρ′

)
. Since

this is true of every ρ and ρ′ such that ρ|A+N = ρ′|A+N , this means, again according to
lemma 1.5, that G†AG is localized on the cells in A+N .
[(ii)⇒ (i)]. Suppose (ii) and ρ|A+N = ρ′|A+N . Then, for every operator B localized on the
cells in N , lemma 1.5 gives Tr (Bρ) = Tr (Bρ′), so for every operator A localized on cell 0,
we get:

Tr
(
AGρG†

)
= Tr

(
G†AGρ

)
= Tr

(
G†AGρ′

)
Tr
(
AGρG†

)
= Tr

(
AGρ′G†

)
Again by lemma 1.5, this means

(
GρG†

) |0 =
(
Gρ′G†

) |0.
Let us now assume G is unitary.
[(ii) ⇒ (iv)]. Suppose (ii) and let A be an operator acting on cell 0. Consider some
operator M acting on a cell i which does not belong to −N . According to our hypothesis
we know that G†MG does not act upon cell 0, and hence it commutes with A. But
AB 7→ GAG†GBG† = GABG† is a morphism, hence GG†MGG† = M also commutes with
GAG†. Because M can be chosen amongst to full matrix algebra Md(C) of cell i, this entails
that GAG† must be the identity upon this cell. The same can be said of any cell outside
−N .
[(iv) ⇒ (ii)], [(iii) ⇒ (iv)], [(iii) ⇐ (iv)] are symmetrical to [(ii) ⇒ (iv)], [(i) ⇒ (ii)],
[(ii)⇐ (i)] just by interchanging the roles of G and G†.

We can now say that again in a mathematically rigorous way: a RQCA is a unitary
operator on HCf that is shift-invariant and local at the central cell. Indeed, in this case,
the assumption of locality at the central cell implies the locality at each finite subset A of
Zd. Moreover, this locality is uniform, in the sense that a same neihbourghood N can be
chosen for all A’s. However, if we remove this hypothesis of unitarity, things are not so
simple and we have to make stronger hypotheses; hence the following definitions.

Definition 1.7 (Locality). A continuous linear endomorphism G of HCf is everywhere local
if, for every finite subset A of Zd, G is local at A. It is uniformly local if there exists a finite
subset N of Zd such that for every finite subset A of Zd, G is local at A with neighbourhood
N .
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2. Linearization of Classical Automata

Let F : Cf → Cf be a cellular automaton on finite configurations, F̃ : HCf → HCf its
linearization. For it to have a physical meaning and earn its name of “quantization”, it
should be an isometry, i.e. F should be one-to-one. We will nevertheless make a seem-
ingly weaker assumption; we only assume F̃ † to be defined, in order to be able to apply
definition 1.7 and ask when F̃ is local; it turns out that this condition actually implies the
injectivity of F .

In order for F̃ † to be defined, we have to assume that F̃ is continuous. Beware that
this notion of continuity has nothing to do with any kind of topology on the set of words,
and is therefore not related to the continuity of F , which is true by definition of a CA. For
F̃ to be continuous means that it is bounded on the unit sphere of HCf . This is equivalent
to saying that F is one-to-one. To verify this, let us first assume F is one-to-one. Then F̃ †
is isometric, and consequently continuous. Let us now assume F is not one-to-one. Since F
is defined on the finite configurations, for every n, there exists xn ∈ Cf such that xn has a
number of antecedents µn greater than n — just repeat as many times as needed some finite
configuration having several antecedents. But then 1√

µn

∑
y∈Cf/F (y)=xn

|y〉 is a unit vector

whose image by F̃ ,
√
µn|xn〉, has norm

√
µn; hence, F̃ is not bounded on the unit sphere,

i.e. not continuous. To close this chapter on F̃ †, note that when it exists, it is defined as
such:

F̃ †|a〉 =
∑

u∈Cf/F (u)=a

|u〉.

We therefore assume from now on that F is one-to-one. So, if you are given a word
w in the image of F , there is a unique u ∈ Cf such that F (u) = w. In general though, u
can not be computed locally from w. If it were possible to do that, the cellular automaton
would be, by definition, reversible, and thus, according to [8], its linearization would be a
bona fide reversible quantum cellular automaton.

We will be monitoring XOR as an example, for which we will allow the quiescent state
q to be renamed 0, the only letter in Σ being 1. XOR acts exactly as the usual XOR:
it sums modulo 2 the bits in its neighbourhood {0; 1}. Of course, XOR is not reversible,
since 11 . . . 1 and 00 . . . 0 are sent locally on the same word. It is one-to-one on finite
configurations, though, while not surjective. It was already stated in proposition 1 of [2]
that the quantization of nonreversible automata that are bijective on finite configurations
could not be local, but that left the case of such automata as XOR unsettled. The following
theorem does the job.

Theorem 2.1. Suppose F is one-to-one. Then F̃ is uniformly local if and only if F is
reversible.

Proof. Let us first briefly justify that when F is reversible, F̃ is uniformly local. This
is essentially what states the lemma 4 of [8], though in this case it is the automaton as
defined on infinite configurations that is quantized. It is quite straightforward to adapt
the statement and the proof of this lemma to our formalism, to get the same result: if F
admits a neighbourhood NC and an inverse neighbourhood NI , then NC − NC + NI is a
neighbourhood N ; this is actually a direct consequence of lemma 3.2. However, there is a
much simpler proof that such a neighbourhood exists. First, decompose your automaton
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into block permutations, with auxiliary bits if needed. Linearize then each of these block
permutations. The composition of all these local unitary transformations is then F̃ ⊗ Id,
where Id is the identity on the auxiliary qubits, and the block decomposition from which it
is constructed is a witness that F̃ is uniformly local.

We now prove the other implication, in a way that can be seen as a generalization of
the argument presented page 7 of [2]. It proceeds by contraposition, so let us first of all
assume F is not reversible. We will prove that for every set N there exists a set A such that
F̃ cannot satisfy the condition (i) of proposition 1.6; this will mean that F̃ is not uniformly
local.

Let N be a finite subset of Zd. Since F is not reversible, there exists a finite subset B
of Zd such that F (x)|B−N = F (y)|B−N but x|B 6= y|B. Let A =

{
s ∈ Zd/F (x)|s 6= F (y)|s

}
;

since F (x) and F (y) both are finite configurations, A is finite.
Let |ϕ±〉 denote the superpositions of configurations |x〉±|y〉√

2
, and let ρ± be the pure

states |ϕ±〉〈ϕ±|. We are now going to prove that ρ+|A+N = ρ−|A+N , while
(
F̃ ρ+F̃

†
)∣∣∣
A
6=(

F̃ ρ−F̃ †
)∣∣∣
A

.

Since F (x) and F (y) are equal on B−N , A+N does not intersect B, so x and y differ
on some point on the complement of A+N . Considering the partition of Zd into A+N and
A+N , we can thus write |x〉 = |x1〉⊗ |x2〉 and |y〉 = |y1〉⊗ |y2〉, where x1, y1 ∈ Cf (A+N ),
x2, y2 ∈ Cf

(A+N ), and x2 6= y2. We then have

ρ±|A+N =
1
2

(|x〉〈x| ± |x〉〈y| ± |y〉〈x|+ |y〉〈y|) |A+N

=
1
2

( |x1〉〈x1| ⊗ |x2〉〈x2| ± |x1〉〈y1| ⊗ |x2〉〈y2|
±|y1〉〈x1| ⊗ |y2〉〈x2|+ |y1〉〈y1| ⊗ |y2〉〈y2|

)∣∣∣∣
A+N

ρ±|A+N =
1
2

(|x1〉〈x1|+ |y1〉〈y1|) .

Thus, the reductions of ρ+ and ρ− and A + N are indeed equal. Now, F̃ ρ±F̃ † =
|ψ±〉〈ψ±|, where |ψ±〉 = |F (x)〉±|F (y)〉√

2
. Since F (x) and F (y) coincide on A, we actually have

F̃ ρ±F̃ † = σ1 ⊗ σ±, where σ1 is a (pure) state over HCf(A), and the σ±’s are states over

HCf (A). The reductions of F̃ ρ±F̃ † to A are then σ±, which are distinct states since ρ+ and
ρ− where distinct to begin with.

Another way to present this proof is to appeal to the perennial Alice and Bob. We
start with the state ρ+. Alice and Bob have access to some cells of Zd, meaning that they
can conjugate the state on HCf with unitary operators, as long as these unitary operators
are localized in the region of the space they were assigned. So let Alice and Bob’s regions
be respectively A and B as encountered in the proof of theorem 2.1. We will see how they
can communicate through the use of F̃ , even though their regions could be at quite a large
distance from each other, depending on N .

Since x|B 6= y|B, Bob is able to transform at will ρ+ into ρ−, by performing a controlled
phase-shift on some cell where x and y differ. What that means informally is that, since
Bob is able to tell the difference between x and y in his area, he can introduce a dissimetry
between |x〉 and |y〉. Of course he could simply transform |y〉 by changing the letters of y is
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some cells or something like that, but that would not allow him to communicate any faster
than in the classical case. So what Bob does is to change |y〉 into −|y〉, something more
immaterial, purely quantum and, in a way “delocalized”, that will allow Alice to catch his
message, which is one bit of information : “did I or didn’t I change ρ+ into ρ−?”. After
Bob did his thing, F̃ is applied to the state.

Now, Alice being able to actually read the message is due to the fact that her region
contains all the cells where F (x) and F (y). As explained in the proof of theorem 2.1, the
state after F̃ has been applied is a tensor product of a state on A and a state on A, the state
on A not depending on the prior actions of Bob; therefore, the state on A does depend on
them, so Alice must have a way to distinguish between them — in this case she just has to
perform a so-called swap-test. Let us see for instance what happens with XOR. Consider
these two words in Cf :

x = . . . 0000000000000000 . . .
y = . . . 0011111111111100 . . .

Their images are

F (x) = . . . 0000000000000000 . . .
F (y) = . . . 0100000000000100 . . .

Now put Bob on the middle of the stripe, and Alice at the two cells where the 1’s are
in F (y). By following the protocol described in the proof of theorem 2.1, Bob can indeed
send a bit of information to Alice. There is no doubt that this is a correct proof that X̃OR
is not uniformly local, but one might argue that this idea of an “Alice” surrounding Bob
makes little sense: surely if Alice can be present at two faraway places in the stripe at the
same time, it means he must have some way to go from one place to the other, and since
in the middle stands Bob, why would she bother using X̃OR to send her message? Cannot
we find another protocol where Alice stands either on the left or on the right of Bob, but
on only one side at a time? Actually, no, we cannot, and this is related to the fact that
X̃OR, while not uniformly local, is still everywhere local: if Bob is forbidden the access to
the cells located between Alice’s positions, then he cannot transmit her any message. The
proof of this assertion is the object of the next section.

3. Everywhere Locality in the One-dimensional Case

The question is: when is the quantization of a one-to-one CA everywhere local? We are
going now to give a proof that in the one-dimensional case, it is equivalent to the openness
of F∞, the extension of F to the set C∞ of infinite configurations; so let us fix the dimension
d to 1 for this section.

First, it might be useful to remind what it means for F∞ to be open. C∞ comes with
the usual topology; namely, a base of open sets is given by the sets {v ∈ C∞/vA = wA}, for
w ∈ C∞ and A a finite subset of Zd. By definition, F∞ is open if for every open subset O
of C∞, F∞(O) is open.

Proposition 3.1. F̃ is everywhere local if and only if F∞ is open.

Proof. We will appeal to [7]. According to its theorem 5.45, F∞ is open iff it is left and
right-closing. The definitions of left and right-closingness may be found in definition 5.38.
First, x and y in C∞ are said to be left-asymptotic (respectively right-asymptotic) when
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there is some n ∈ Z such that for every k < n (resp. k > n), xk = yk. By definition, F∞ is
left-closing (respectively right-closing) if, for every x, y ∈ C∞ that are left-asymptotic (resp.
right-asymptotic), if F (x) = F (y) then x = y. We now translate these conditions on de
Bruijn diagrams.

Let us recall briefly what we mean by Bruijn diagrams. Let n be an integer such
that [−n;n+ 1] is a neighbourhood for F . We note F0 the function from (qΣ)[−n;n+1] to
qΣ which computes locally F on cell 0, from the knowledge of the stripe on [−n;n+ 1].
Then the associated de Bruijn diagram is a graph whose vertices are indexed by the pairs
(u, v) ∈ qΣ[−n;n] × qΣ[−n;n]. There is an edge from (u, v) to (u′, v′) if and only if

• for i ∈ [−n;n[, ui+1 = u′i and vi+1 = v′i
• F0(u−nu−n+1 . . . unu

′
n) = F0(v−nv−n+1 . . . vnv

′
n).

The first thing we want to note is that the strongly connected component (SCC) of (q, q)
in the de Bruijn diagram includes the diagonal ∆ of qΣ[−n;n] × qΣ[−n;n], i.e. the elements
of the form (u, u).

To each pair of words (u, v) ∈ C∞×C∞ such that F (u) = F (v) is associated a bi-infinite
path on the de Bruijn diagram, and vice-versa. In this respect, we see that “F∞ is left-
closing” is equivalent to “every infinite path starting from ∆ stays forever in ∆”, while “F∞
is left-closing” is the dual statement that “every bi-infinite path ending in ∆ is completely
included in ∆”. Thus, F∞ is open iff there is no connection, in or out, between ∆ and any
cycle of the de Brujin diagram not included in ∆.

Now, what does it mean on this diagram for F̃ to be everywhere local? If we follow the
proof of theorem 2.1, we see this means that there exists an integer k such that for every
integer n, if F (x) is known on [−n;n], then x ∈ Cf is determined on [−n− k;n+ k]. On
the de Bruijn diagram, it means that there exists an integer k such that any path starting
from (q, q) must stay in X until k steps before the end, and that every path ending in (q, q)
must stay in X after k steps. This also means that X is not connected to any cycle not
included in ∆.

Suppose F∞ is not open. Without loss of generality, we assume there is a path from
a cycle not included in ∆ to ∆. This cycle is given by two distinct finite words v and
v′ of same length such that F (. . . vvvv . . .) = F (. . . v′v′v′v′ . . .); the path from this cycle
to (q, q) is given by two words of same lenght w and w′, such that F (. . . vvvwqqq . . .) =
F (. . . v′v′v′w′qqq . . .) . Let [−n;n] be a neighbourhood for F and k a positive integer. Now
consider the finite configurations xk = . . . qqqvkwqqq . . . and yk = . . . qqqv′kw′qqq . . ., where
the first letter of the first v has position 0. Almost everywhere, (xk, yk) follows a path on the
de Bruijn diagram. The only points where (xk, yk) does not follow an edge of this diagram
is at the transition between cells −1 and 0. So Ak = {i ∈ Z/F (xk) 6= F (yk)} is included in
[−n − 1;n], and does not depend on k when k is large enough; let’s define A = lim

k→∞
Ak.

Let Bk ⊆ Z be the singleton consisting of the rightmost cell where xk and yk differ. Since
v 6= v′, its emplacement is at least k − 1. Let N be a finite subset of Z; for a large enough
k, we have the following properties:

• F (xk)|Bk−N = F (yk)|Bk−N
• xk|Bk

6= yk|Bk

• A = {i ∈ Z/F (xk) 6= F (yk)}.
Then, according to the proof of theorem 2.1, F̃ is not local at A with neigbourhood N .

Since we showed that there exists A such that this is true for any N , we have indeed just
proven that F̃ is not everywhere local.
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Now, what remains to prove is that when F∞ is open, F̃ is everywhere local. To do that
we will strengthen a little bit the lemma 4 of [8]. But first we need to explain a property
of one-dimensional open automata. Suppose F∞ is open and let A be a finite subset of Z
and x and y two words such that F (x)|A = F (y)|A. Say A is included in [−n;n], [−k; k] is
a neighbourhood for F and l is the number of vertices in the de Bruijn diagram. If we look
at (x, y) as a run in this diagram, then we follow edges except perhaps in [−n− k;n+ k].
But since there are no loops connected in one way or another do ∆, and we have to join ∆
at ±∞, this means we are always in ∆ except perhaps in [−n− k − l;n+ k + l], to give a
rough bound. So there exists a finite subset NI of Z, which does not depend on x nor y —
though it may depend on A — such that x|A+NI

= y|A+NI
. Now all is needed to complete

the proof is the next (and last) lemma, which, as announced, is but a gentle strengthening
of the lemma 4 of [8].

Lemma 3.2. Let F be a one-to-one automaton with neighbourhood NC . Let A and NI be
finite subsets of Z such that for all x, y ∈ Cf (Z), if F (x)|A = F (y)|A, then x|A+NI

= y|A+NI
.

Suppose NC and NI contain 0. Then F̃ is local at A with neighbourhood N = NC−NC+NI .
Proof. Let A ⊆ Zd. Let ρ and ρ′ be states over HCf such that ρ|A+N = ρ′|A+N . We have

to prove
(
F̃ ρF̃ †

)
|A =

(
F̃ ρ′F̃ †

)
|A.

Let us write ρ =
∑

a,b∈Cf
λa,b|a〉〈b| and ρ′ =

∑
a,b∈Cf

λ′a,b|a〉〈b|. Then

ρ|A+N =
∑

a,b/aA+N=bA+N

λa,b|aA+N 〉〈bA+N | =
∑

x,y∈AA+N

 ∑
u∈AA+N

λx.u,y.u

 |x〉〈y|.
Ergo, the hypothesis ρ|A+N = ρ′|A+N may be translated as

∀x, y ∈ AA+N ∑
u∈AA+N

λx.u,y.u =
∑

u∈AA+N

λ′x.u,y.u.

For x, y ∈ AA+N , let α(x, y) be the set of couples (a, b) of words in Cf such that
aA+N = x, bA+N = y and aA+N = bA+N . Then the hypothesis is equivalent to

∀x, y ∈ AA+N ∑
(a,b)∈α(x,y)

λa,b =
∑

(a,b)∈α(x,y)

λ′a,b. (3.1)

Let us now try translating our aim in the same way. First we have

F̃ ρF̃ † =
∑
a,b∈Cf

λa,b|F (a)〉〈F (b)| =
∑

c,d∈F(Cf)
λF−1(c),F−1(d)|c〉〈d|

(
F̃ ρF̃ †

)
|A =

∑
c,d∈F(Cf)/cA=dA

λF−1(c),F−1(d)|cA〉〈dA|

(
F̃ ρF̃ †

)
|A =

∑
z,t∈AA

∑
u∈AA

λF−1(z.w),F−1(t.w)

 |z〉〈t|.
So what we want to prove is that, for every z and t in AA,
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∑
w∈AA

λF−1(z.w),F−1(t.w) =
∑
w∈AA

λ′F−1(z.w),F−1(t.w),

with the convention that these numbers are 0 when F−1 is not appliable. For z, t ∈ AA,
let β(z, t) be the set of couples (a, b) of words in Cf such that F (a)A = z, F (b)A = t and
F (a)A = F (b)A. What we want to prove from (3.1) is the equivalent to

∀z, t ∈ AA
∑

(a,b)∈β(z,t)

λa,b =
∑

(a,b)∈β(z,t)

λ′a,b. (3.2)

We will prove this by showing that for each z, t ∈ AA, there is some set γ(z, t) such
that β(z, t) =

∐
(x,y)∈γ(z,t)

α(x, y), ie β(z, t) is the disjoint union of the α(x, y)’s for (x, y) in

γ(z, t).
On the one hand, it is quite immediate by definition that, when (x, y) 6= (x′, y′), α(x, y)

and α(x′, y′) are disjoint. On the other hand, by hypothesis, every (a, b) of β(z, t) is in some
α(x, y), so that γ(z, t) may be found in this simple way: for each (a, b) in β(z, t), find the
unique (xa,b, ya,b) such that (a, b) is in α (xa,b, ya,b), and then define γ(z, t) to be the set of
all these (x, y)’s you found. The only problem is that you could add unwanted (a, b)’s by
doing so; we need only checking that this is not the case. In other words, we have to prove
that whenever the intersection between α(x, y) and β(z, t) is nonempty, then the former is
included in the latter.

So, let (a, b) be an en element of α(x, y)∩β(z, t) and (a′, b′) an other element of α(x, y).
First of all, since a and a′ coincide on A+N (where they are equal to x), and in particular
on A + NC , then f(a) and f(a′) coincide on A, thus F (a′)A = F (a)A = z. Likewise, of
course, F (b′)A = t.

Then, by hypothesis and since A is finite and F (a)A = F (b)A, a and b coincide on
A+NI , not only on A+N . This implies that x and y must coincide on (A+N )∩A+NI ,
and as a consequence a′ and b′ do also coincide on A+NI ; thus F (a′) and F (b′) coincide
on A+NI −NC .

Lastly, since a and a′ coincide on A+N = A+NC−NC +NI , so do F (a) and F (a′) on
A−NC +NI . Likewise, F (b) and F (b′) coincide on that same interval. However, F (a) and
F (b) coincide on A, by hypothesis; ergo, F (a′) and F (b′) coincide on A ∩ (A−NC +NI).
Put it together, you finally get that F (a′) and F (b′) coincide on A; Q.E.D.

XOR∞ being, as can be checked easily on its de Bruijn diagram, open, it is thus
everywhere local, which also means Alice has to surround Bob in order to receive his long-
distance calls. On the contrary, the modified version of XOR that was defined in the
definition 11 of [2] is not open on the infinite configurations, which is why we were able to
find a protocol where Bob and Alice lie on two distinct sides of the stripe.

4. Conclusion

Starting only with the assumption that we should be able to use the adjoint of F̃ ,
this implied it should be isometric, thus convey a physical meaning as a valid quantum
evolution. If we then add the constraint that it should be uniformly local — something
that you would certainly expect a cellular automaton to verify in any model — it turns out
F has to be reversible, so that F̃ is part of the already well-known class of RQCA. This is
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good news in a way: the notion of a RQCA is a robust one; however, it could nevertheless
be considered a downside. Indeed, as stated in the introduction, RQCA are now believed
to be fairly well understood, so the next challenge is understanding nonreversible quantum
cellular automata. It would certainly have been of great help to be able to construct
such NRQCA by quantizing nonreversible CA. Alas, this paper shows that such a thing is
impossible. Quantizing one-dimensional open non-reversible automata certainly provides
puzzling entities, but no quantum CA; there remains however an interesting open question
about the generalization of proposition 3.1 to higher dimensions.

Then again, the most important question right now is: what are NRQCA? Can they be
defined from their global evolution in a reasonably simple way? This question, in its most
general form, includes the same one concerning randomized automata instead of quantum
ones, since classical randomness is part of the quantum world, and as far as we know this
question has been little studied. Let us ask it in a more precise way: what is the property
on the global evolution of probability distributions that characterizes randomized cellular
automata, i.e. those transformations that can be written as a finite number of layers, each of
them consisting of a tiling of identical blocks performing some local random transformation?
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[5] C. Dürr, M. Santha, A decision procedure for unitary quantum linear cellular automata, SIAM J. of

Computing, 31(4), 1076–1089, (2002).
[6] R. P. Feynman, Quantum mechanical computers, Found. Phys. 16, 507–531, (1986).
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Abstract. In this paper, we exhibit a strong relation between the sand automata con-
figuration space and the cellular automata configuration space. This relation induces a
compact topology for sand automata, and a new context in which sand automata are home-
omorphic to cellular automata acting on a specific subshift. We show that the existing
topological results for sand automata, including the Hedlund-like representation theorem,
still hold. In this context, we give a characterization of the cellular automata which are
sand automata.

1. Introduction

Self-organized criticality (SOC) is a common phenomenon observed in a huge variety
of processes in physics, biology and computer science. A SOC system evolves to a “critical
state” after some finite transient. Any perturbation, no matter how small, of the critical
state generates a deep reorganization of the whole system. Then, after some other finite
transient, the system reaches a new critical state and so on. Examples of SOC systems are:
sandpiles, snow avalanches, star clusters in the outer space, earthquakes, forest fires, load
balance in operating systems [2, 3, 16]. Among them, sandpiles models are a paradigmatic
formal model for SOC systems [8, 9].

In [4], the authors introduced sand automata as a generalization of sandpiles models
and transposed them in the setting of discrete dynamical systems. A key-point of [4] was
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to introduce a (locally compact) metric topology to study the dynamical behavior of sand
automata. A first and important result was a fundamental representation theorem similar
to the well-known theorem for cellular automata from Hedlund [10, 4]. In [5, 6], the authors
investigate sand automata by dealing with some basic set properties and decidability issues.

In this paper we continue the study of sand automata. First of all, we introduce a
different metric on configurations (i.e., spatial distributions of sand grains). This metric is
defined by means of the relation between sand automata and cellular automata [6]. With
the induced topology, the configuration set turns out to be a compact (and not only locally
compact), perfect and totally disconnected space. The “strict” compactness gives a better
topological background to study the behavior of sand automata (and in general of discrete
dynamical systems) [1, 12]. We show that all the topological results from [4], in particular the
Hedlund-like representation theorem, remain valid with the compact topology. Moreover,
with this topology, any sand automaton is homeomorphic to a cellular automaton defined on
a subset of its usual domain. We prove that it is possible to decide whether a given cellular
automaton represents, through that homeomorphism, a sand automaton.

The paper is structured as follows. In Section 2, we recall basic definitions and results
about cellular automata and sand automata. Then, in Section 3, we define the topology and
prove topological results, in particular the representation theorem.

2. Definitions

For all a, b ∈ Z with a ≤ b, let [a, b] = {a, a+ 1, . . . , b} and ˜[a, b] = [a, b] ∪ {+∞,−∞}.
For a ∈ Z, let [a,+∞) = {a, a+ 1, . . .} \ {+∞}. Let N+ be the set of positive integers.

Let A a (possibly infinite) alphabet and d ∈ N∗. Denote by Md the set of all the d-
dimensional matrices with values in A. We assume that the entries of any matrix U ∈Md are
all the integer vectors of a suitable d-dimensional hyper-rectangle [1, h1]×· · ·× [1, hd] ⊂ Nd

+.
For any h = (h1, . . . , hd) ∈ Nd

+, let Md
h ⊂ Md be the set of all the matrices with entries

in [1, h1]× · · · × [1, hd]. In the sequel, the vector h will be called the order of the matrices
belonging toMd

h. For a given element x ∈ AZd , the finite portion of x of reference position
i ∈ Zd and order h ∈ Nd

+ is the matrix M i
h(x) ∈ Md

h defined as ∀k ∈ [1, h1] × · · · × [1, hd],
M i
h(x)k = xi+k−1. For any r ∈ N, let rd (or simply r if the dimension is not ambiguous) be

the vector (r, . . . , r).

2.1. Cellular automata and subshifts

Let A be a finite alphabet. A CA configuration of dimension d is a function from Zd
to A. The set AZd of all the CA configurations is called the CA configuration space. This
space is usually equipped with the Tychonoff metric dT defined by

∀x, y ∈ AZd
, dT (x, y) = 2−k where k = min

{
|j| : j ∈ Zd, xj 6= yj

}
.

The topology induced by dT coincides with the product topology induced by the discrete
topology on A. With this topology, the CA configuration space is a Cantor space: it is
compact, perfect (i.e., it has no isolated points) and totally disconnected.

For any k ∈ Zd the shift map σk : AZd → AZd is defined by ∀x ∈ AZd
,∀i ∈ Zd,

σk(x)i = xi+k. A function F : AZd → AZd is said to be shift-commuting if ∀k ∈ Zd,
F ◦ σk = σk ◦ F .
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A d-dimensional subshift S is a closed subset of the CA configuration space AZd which
is shift-invariant, i.e., for any k ∈ Zd, σk(S) ⊂ S. Let F ⊆Md and let SF be the set of con-
figurations x ∈ AZd such that all possible finite portions of x do not belong to F , i.e., for any
i, h ∈ Zd, M i

h(x) /∈ F . The set SF is a subshift, and F is called its set of forbidden patterns.
Note that for any subshift S, it is possible to find a set of forbidden patterns F such that
S = SF . A subshift S is said to be a subshift of finite type (SFT) if S = SF for some finite set
F . The language of a subshift S is L(S) =

{
U ∈Md : ∃i ∈ Zd, h ∈ Nd

+, x ∈ S,M i
h(x) = U

}
(for more on subshifts, see [13] for instance).

A cellular automaton is a quadruple 〈A, d, r, g〉, where A is the alphabet also called the
state set, d is the dimension, r ∈ N is the radius and g :Md

2r+1 → A is the local rule of the
automaton. The local rule g induces a global rule G : AZd → AZd defined as follows,

∀x ∈ AZd
, ∀i ∈ Zd, G(x)i = g

(
M i−r

2r+1(x)
)
.

Note that CA are exactly the class of all shift-commuting functions which are (uniformly)
continuous with respect to the Tychonoff metric (Hedlund’s theorem from [10]). For the
sake of simplicity, we will make no distinction between a CA and its global rule G.

The local rule g can be extended naturally to all finite matrices in the following way.
With a little abuse of notation, for any h ∈ [2r+ 1,+∞)d and any U ∈Md

h, define g(U) as
the matrix obtained by the simultaneous application of g to all theMd

2r+1 submatrices of
U . Formally, g(U) = Mr

h−2r(G(x)), where x is any configuration such that M0
h(x) = U .

2.2. SA Configurations

A SA configuration (or simply configuration) is a set of sand grains organized in piles
and distributed all over the d-dimensional lattice Zd. A pile is represented either by an
integer from Z (number of grains), or by the value +∞ (source of grains), or by the value
−∞ (sink of grains), i.e., it is an element of Z̃ = Z ∪ {−∞,+∞}. One pile is positioned in
each point of the lattice Zd. Formally, a configuration x is a function from Zd to Z̃ which
associates any vector i = (i1, . . . , id) ∈ Zd with the number xi ∈ Z̃ of grains in the pile of
position i. Denote by C = Z̃Zd the set of all configurations.

When the dimension d is known without ambiguity we note 0 the null vector of Zd and
|i| the infinite norm of a vector i ∈ Zd. A measuring device βmr of precision r ∈ N and
reference height m ∈ Z is a function from Z̃ to [̃−r, r] defined as follows

∀n ∈ Z̃, βmr (n) =

 +∞ if n > m+ r ,
−∞ if n < m− r ,
n−m otherwise.

A measuring device is used to evaluate the relative height of two piles, with a bounded
precision. This is the technical basis of the definition of cylinders, distances and ranges
which are used all along this article.

In [4], the authors equipped C with a metric in such a way that two configurations are
at small distance if they have the same number of grains in a finite neighborhood of the
pile indexed by the null vector. The neighborhood is individuated by putting the measuring
device at the top of the pile, if this latter contains a finite number of grains. Otherwise
the measuring device is put at height 0. In order to formalize this distance, the authors
introduced the notion of cylinder, that we rename top cylinder. For any configuration x ∈ C,
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for any r ∈ N, and for any i ∈ Zd, the top cylinder of x centered in i and of radius r is the
d-dimensional matrix C ′ir(x) ∈Md

2r+1 defined on the infinite alphabet A = Z̃ by

∀k ∈ [1, 2r + 1]d ,
(
C ′ir(x)

)
k

=

 xi if k = r + 1 ,
βxi
r (xi+k−r−1) if k 6= r + 1 and xi 6= ±∞ ,
β0
r (xi+k−r−1) otherwise.

In dimension 1 and for a configuration x ∈ C, we have

C ′ir(x) = (βxi
r (xi−r), . . . , βxi

r (xi−1), xi, βxi
r (xi+1), . . . , βxi

r (xi+r))

if xi 6= ±∞, while

C ′ir(x) =
(
β0
r (xi−r), . . . , β0

r (xi−1), xi, β0
r (xi+1), . . . , β0

r (xi+r)
)

if xi = ±∞.
By means of top cylinders, the distance d′ : C ×C → R+ has been introduced as follows:

∀x, y ∈ C, d′(x, y) = 2−k where k = min
{
r ∈ N : C ′0r(x) 6= C ′0r(y)

}
.

Proposition 2.1 ([4, 6]). With the topology induced by d′, the configuration space is locally
compact, perfect and totally disconnected.

2.3. Sand automata

For any integer r ∈ N, for any configuration x ∈ C and any index i ∈ Zd with xi 6= ±∞,
the range of center i and radius r is the d-dimensional matrix Rir(x) ∈Md

2r+1 on the finite

alphabet A = [̃−r, r] ∪ ⊥ such that

∀k ∈ [1, 2r + 1]d ,
(
Rir(x)

)
k

=
{ ⊥ if k = r + 1 ,
βxi
r (xi+k−r−1) otherwise.

The range is used to define a sand automaton. It is a kind of top cylinder, where the
observer is always located on the top of the pile xi (called the reference). It represents what
the automaton is able to see at position i. Sometimes the central ⊥ symbol may be omitted
for simplicity sake. The set of all possible ranges of radius r, in dimension d, is denoted by
Rdr .

A sand automaton (SA) is a deterministic finite automaton working on configurations.
Each pile is updated synchronously, according to a local rule which computes the variation of
the pile by means of the range. Formally, a SA is a triple 〈d, r, f〉, where d is the dimension,
r is the radius and f : Rdr → [−r, r] is the local rule of the automaton. By means of the
local rule, one can define the global rule F : C → C as follows

∀x ∈ C, ∀i ∈ Zd, F (x)i =
{
xi if xi = ±∞ ,
xi + f(Rir(x)) otherwise.

Remark that the radius r of the automaton has three different meanings: it represents at
the same time the number of measuring devices in every dimension of the range (number
of piles in the neighborhood), the precision of the measuring devices in the range, and the
highest return value of the local rule (variation of a pile). It guarantees that there are only
a finite number of ranges and return values, so that the local rule has finite description.

The following example illustrates a very simple sand automaton. For more examples,
we refer to [6].
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Example 2.2 (the automatonN ). This automaton destroys a configuration by collapsing all
piles towards the lowest one. It decreases a pile when there is a lower pile in the neighborhood
(see Figure 1). Let N = 〈1, 1, fN 〉 of global rule FN where

∀a, b ∈ [̃−1, 1], fN (a, b) =
{ −1 if a < 0 or b < 0 ,

0 otherwise.

Figure 1: Illustration of the behavior of N .

When no misunderstanding is possible, we identify a SA with its global rule F . For
any k ∈ Zd, we extend the definition of the shift map to C, σk : C → C is defined by
∀x ∈ C,∀i ∈ Zd, σk(x)i = xi+k. The raising map ρ : C → C is defined by ∀x ∈ C, ∀i ∈ Zd,
ρ(x)i = xi + 1. A function F : C → C is said to be vertical-commuting if F ◦ ρ = ρ ◦ F .
A function F : C → C is infinity-preserving if for any configuration x ∈ C and any vector
i ∈ Zd, F (x)i = +∞ if and only if xi = +∞ and F (x)i = −∞ if and only if xi = −∞.

Theorem 2.3 ([4, 6]). The class of SA is exactly the class of shift and vertical-commuting,
infinity-preserving functions F : C → C which are continuous w.r.t. the metric d′.

3. Topology and dynamics

In this section we introduce a compact topology on the SA configuration space by means
of a relation between SA and CA. With this topology, a Hedlund-like theorem still holds
and each SA turns out to be homeomorphic to a CA acting on a specific subshift. We
also characterize CA whose action on this subshift represents a SA. Finally, we study some
topological properties of SA in this new setting.

3.1. A compact topology for SA configurations

From [6], we know that any SA of dimension d can be simulated by a suitable CA of
dimension d+ 1 (and also any CA can be simulated by a SA). In particular, a d-dimensional
SA configuration can be seen as a (d + 1)-dimensional CA configuration on the alphabet
A = {0, 1}. More precisely, consider the function ζ : C → {0, 1}Zd+1

defined as follows

∀x ∈ C, ∀i ∈ Zd,∀k ∈ Z, ζ(x)(i,k) =
{

1 if xi ≥ k ,
0 otherwise.

A SA configuration x ∈ C is coded by the CA configuration ζ(x) ∈ {0, 1}Zd+1

. Remark that
ζ is an injective function.

Consider the (d + 1)-dimensional matrix K ∈ Md+1
( 1, . . . , 1, 2) such that K1,...,1,2 = 1

and K1,...,1,1 = 0. With a little abuse of notation, denote SK = S{K} the subshift of
configurations that do not contain the pattern K.
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Proposition 3.1. The set ζ(C) is the subshift SK .

Proof. Each d-dimensional SA configuration x ∈ C is coded by the (d + 1)-dimensional
CA configuration ζ(x) such that for any i, h ∈ Zd+1,M i

h(ζ(x)) 6= K, then ζ(C) ⊆ SK .
Conversely, we can define a preimage by ζ for any y ∈ SK , by ∀i ∈ Zd, xi = sup{k : y(i,k) =
1}. Hence ζ(C) = SK .

Figure 2 illustrates the mapping ζ and the matrix K =
(

1
0

)
for dimension d = 1.

The set of SA configurations C = Z̃Z can be seen as the subshift SK = ζ(C) of the CA
configurations set {0, 1}Z2

.

(a) Valid configuration. (b) Invalid configuration.

Figure 2: The configuration from Figure 2(a) is valid, while the configuration from Fig-
ure 2(b) contains the forbidden matrix K: there is a “hole”.

Definition 3.2. The distance d : C × C → R+ is defined as follows:

∀x, y ∈ C, d(x, y) = dT (ζ(x), ζ(y)) .

In other words, the (well defined) distance d between two configurations x, y ∈ C is
nothing but the Tychonoff distance between the configurations ζ(x), ζ(y) in the subshift
SK . The corresponding metric topology is the {0, 1}Zd+1 product topology induced on SK .

Remark 3.3. Note that this topology does not coincide with the topology obtained as
countable product of the discrete topology on Z̃. Nevertheless, if you consider the topology
T on Z̃ based on singletons {a} where a ∈ Z and infinite intervals [a,∞] or [−∞, a], where
a ∈ Z, then d corresponds to its product topology. In other words, for any i ∈ Zd, the ith
projection πi : C → Z̃ defined by πi(x) = xi is continuous for T .

By definition of this topology, if one considers ζ as a map from C onto SK , ζ turns out
to be an isometric homeomorphism between the metric spaces C (endowed with d) and SK
(endowed with dT ). As an immediate consequence, the following results hold.

Proposition 3.4. The set C is a compact and totally disconnected space where the open
balls are clopen (i.e., closed and open) sets.
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Proposition 3.5. The space C is perfect.

Proof. Choose an arbitrary configuration x ∈ C. For any n ∈ N, let l ∈ Zd such that |l| = n.
We build a configuration y ∈ C, equal to x except at site l, defined as follows

∀j ∈ Zd \ {l} , yj = xj and yl =
{

1 if xl = 0 ,
0 otherwise.

By Definition 3.2, d(y, x) = 2−n.

Consider now the following notion.

Definition 3.6 (ground cylinder). For any configuration x ∈ C, for any r ∈ N, and for any
i ∈ Zd, the ground cylinder of x centered on i and of radius r is the d-dimensional matrix
Cir(x) ∈Md

2r+1 defined by

∀k ∈ [1, 2r + 1]d ,
(
Cir(x)

)
k

= β0
r (xi+k−r−1) .

For example in dimension 1,

Cir(x) =
(
β0
r (xi−r), . . . , β0

r (xi), . . . , β0
r (xi+r)

)
.

Figure 3 illustrates top cylinders and ground cylinders in dimension 1. Remark that the
contents of the two kinds of cylinders is totally different.

(a) Top cylinder centered on xi = 4:
C′ir(x) = (+1,−∞,−3,4,−2,−2, +1).

(b) Ground cylinder, at height 0:
Ci

r(x) = (+∞,−2, +1, +∞, +2, +2, +∞).

Figure 3: Illustration of the two notions of cylinders on the same configuration, with radius 3.

From Definition 3.2, we obtain the following expression of distance d by means of ground
cylinders.

Remark 3.7. For any pair of configurations x, y ∈ C, we have

d(x, y) = 2−k where k = min
{
r ∈ N : C0

r (x) 6= C0
r (y)

}
.

As a consequence, two configurations x, y are compared by putting boxes (the ground
cylinders) at height 0 around the corresponding piles indexed by 0. The integer k is the
size of the smallest cylinders in which a difference appears between x and y. This way of
calculating the distance d is similar to the one used for the distance d′, with the difference
that the measuring devices and the cylinders are now located at height 0. This is slightly
less intuitive than the distance d′, since it does not correspond to the definition of the local
rule. However, this fact is not an issue all the more since the configuration space is compact
and the representation theorem still holds with the new topology (Theorem 3.11).
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Finally, for a cylinder U , denote by [U ]r =
{
x ∈ C, C0

r (x) = U
}
the open ball of radius

2−r centered on U . We may write [U ] when the radius of the ball can be omitted.

3.2. SA as CA on a subshift

Let (X,m1) and (Y,m2) be two metric spaces. Two functions H1 : X → X, H2 : Y →
Y are (topologically) conjugated if there exists a homeomorphism η : X → Y such that
H2 ◦ η = η ◦H1.

We are going to show that any SA is conjugated to some restriction of a CA. Let F
a d-dimensional SA of radius r and local rule f . Let us define the (d + 1)-dimensional
CA G on the alphabet {0, 1}, with radius 2r and local rule g defined as follows (see [6]
for more details). Let M ∈ Md+1

4r+1 be a matrix on the finite alphabet {0, 1} which does
not contain the pattern K. If there is a j ∈ [r + 1, 3r] such that M(2r+1,...,2r+1,j) = 1 and
M(2r+1,...,2r+1,j+1) = 0, then let R ∈ Rdr be the range taken from M of radius r centered on
(2r+1, . . . , 2r+1, j). See figure 4 for an illustration of this construction in dimension d = 1.

Figure 4: Construction of the local rule g of the CA from the local rule f of the SA, in
dimension 1. A range R of radius r is associated to the matrix M of order 4r + 1.

The new central value depends on the height j of the central column plus its variation.
Therefore, define g(M) = 1 if j + f(R) ≥ 0, g(M) = 0 if j + f(R) < 0, or g(M) = M2r+1

(central value unchanged) if there is no such j.
The following diagram commutes:

C F−−−−→ C
ζ

y yζ
SK −−−−→

G
SK

, (3.1)

i.e., G ◦ ζ = ζ ◦ F . As an immediate consequence, we have the following result.

Proposition 3.8. Any d-dimensional SA F is topologically conjugated to a suitable (d+1)-
dimensional CA G acting on SK .

Being a dynamical submodel, SA share properties with CA, some of which are proved
below. However, many results which are true for CA are no longer true for SA; for instance,
injectivity and bijectivity are no more equivalent, as proved in [5]. Thus, SA deserve to be
considered as a new model.

Corollary 3.9. The global rule F : C → C of a SA is uniformly continuous w.r.t distance d.

Proof. Let G be the global rule of the CA which simulates the given SA. Since the dia-
gram (3.1) commutes and ζ is a homeomorphism, F = ζ−1 ◦G◦ζ. The map G is continuous
and, by Proposition 3.4, C is compact, which proves the corollary.
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For every a ∈ Z, let Ca = π−1
0 ({a}) be the clopen (and compact) set of all configurations

x ∈ C such that x0 = a.

Lemma 3.10. Let F : C → C be a continuous and infinity-preserving map. There exists an
integer l ∈ N such that for any configuration x ∈ C0 we have |F (x)0| ≤ l.
Proof. Since F is continuous and infinity-preserving, the set F (C0) is compact and included
in π−1

0 (Z). From Remark 3.3, π0 is continuous on the set π−1
0 (Z) and in particular it is

continuous on the compact F (C0). Hence π0(F (C0)) is a compact subset of Z̃ containing no
infinity, and therefore it is included in some interval [−l, l], where l ∈ N.

Theorem 3.11. A mapping F : C → C is the global transition rule of a sand automaton if
and only if all the following statements hold

(i) F is (uniformly) continuous w.r.t the distance d;
(ii) F is shift-commuting;

(iii) F is vertical-commuting;
(iv) F is infinity-preserving.

Proof. Let F be the global rule of a SA. By definition of SA, F is shift-commuting, vertical-
commuting and infinity-preserving. From Corollary 3.9, F is also uniformly continuous.

Conversely, let F be a continuous map which is shift-commuting, vertical-commuting,
and infinity-preserving. By compactness of the space C, F is also uniformly continuous. Let
l ∈ N be the integer given by Lemma 3.10. Since F is uniformly continuous, there exists an
integer r ∈ N such that

∀x, y ∈ C C0
r (x) = C0

r (y)⇒ C0
l (F (x)) = C0

l (F (y)) .

We now construct the local rule f : Rdr → [−r, r] of the automaton. For any input range
R ∈ Rdr , set f(R) = F (x)0, where x is an arbitrary configuration of C0 such that ∀k ∈
[1, 2r + 1], k 6= r + 1, β0

r (xk−r−1) = Rk. Note that the value of f(R) does not depend on
the particular choice of the configuration x ∈ C0 such that ∀k 6= r + 1, β0

r (xk−r−1) = Rk.
Indeed, Lemma 3.10 and uniform continuity together ensure that for any other configuration
y ∈ C0 such that ∀k 6= r + 1, β0

r (yk−r−1) = Rk, we have F (y)0 = F (x)0, since β0
l (F (x)0) =

β0
l (F (y)0) and |F (y)0| ≤ l. Thus the rule f is well defined.

We now show that F is the global mapping of the sand automaton of radius r and local
rule f . Thanks to (iv), it is sufficient to prove that for any x ∈ C and for any i ∈ Zd with
|xi| 6= ∞, we have F (x)i = xi + f

(
Rir(x)

)
. By (ii) and (iii), for any i ∈ Zd such that

|xi| 6=∞, it holds that

F (x)i =
[
ρxi ◦ σ−i (F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
σ−i

(
F (σi ◦ ρ−xi(x))

)]
i

= xi +
[
F (σi ◦ ρ−xi(x))

]
0
.

Since σi ◦ ρ−xi(x) ∈ C0, we have by definition of f

F (x)i = xi + f
(
R0
r(σ

i ◦ ρ−xi(x))
)
.

Moreover, by definition of the range, for all k ∈ [1, 2r + 1]d,

R0
r(σ

i ◦ ρ−xi(x))k = β[σi◦ρ−xi (x)]0
r (σi ◦ ρ−xi(x)k) = β0

r (xi+k − xi) = βxi
r (xi+k) ,

hence R0
r(σ

i ◦ ρ−xi(x)) = Rir(x), which leads to F (x)i = xi + f
(
Rir(x)

)
.
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We now deal with the following question: given a (d + 1)-dimensional CA, does it
represent a d-dimensional SA, in the sense of the conjugacy expressed by diagram 3.1? In
order to answer to this question we start to express the condition under which the action of
a CA G can be restricted to a subshift SF , i.e., G(SF ) ⊆ SF (if this fact holds, the subshift
SF is said to be G-invariant).

Lemma 3.12. Let G and SF be a CA and a subshift of finite type, respectively. The
condition G(SF ) ⊆ SF is satisfied iff for any U ∈ L(SF ) and any H ∈ F of the same order
than g(U), it holds that g(U) 6= H.

Proof. Suppose that G(SF ) ⊆ SF . Choose arbitrarily H ∈ F and U ∈ L(SF ), with g(U)
and H of the same order. Let x ∈ SF containing the matrix U . Since G(x) ∈ SF , then
g(U) ∈ L(SF ), and so g(U) 6= H. Conversely, if x ∈ SF and G(x) /∈ SF , then there exist
U ∈ L(SF ) and H ∈ F with g(U) = H.

The following proposition gives a sufficient and necessary condition under which the
action of a CA G on configurations of the G-invariant subshift SK = C preserves any
column whose cells have the same value.

Lemma 3.13. Let G be a (d+1)-dimensional CA with state set {0, 1} and SK be the subshift
representing SA configurations. The following two statements are equivalent:

(i) for any x ∈ SK with x(0,...,0,i) = 1 (resp., x(0,...,0,i) = 0) for all i ∈ Z, it holds that
G(x)(0,...,0,i) = 1 (resp., G(x)(0,...,0,i) = 0) for all i ∈ Z.

(ii) for any U ∈ Md
2r+1 ∩ L(SK) with U(r+1,...,r+1,k) = 1 (resp., U(r+1,...,r+1,k) = 0) and

any k ∈ [1, 2r + 1], it holds that g(U) = 1 (resp., g(U) = 0).

Proof. Suppose that (1) is true. Let U ∈Md
2r+1∩L(SK) be a matrix with U(r+1,...,r+1,k) = 1

and let x ∈ SK be a configuration such that x(0,...,0,i) = 1 for all i ∈ Z and M−r
2r+1(x) = U .

Since G(x)(0,...,0,i) = 1 for all i ∈ Z, and M0
2r+1(x) = U , then g(U) = 1. Conversely, let

x ∈ SK with x(0,...,0,i) = 1 for all i ∈ Z. By shift-invariance, we obtain G(x)(0,...,0,i) = 1 for
all i ∈ Z.

Lemmas 3.12 and 3.13 immediately lead to the following conclusion.

Proposition 3.14. It is decidable to check whether a given (d+ 1)-dimensional CA corre-
sponds to a d-dimensional SA.

3.3. Some dynamical behaviors

SA are very interesting models, whose complexity lies between that of d-dimensional
and d+ 1-dimensional CA. Indeed, we have seen in the previous section that the latter can
simulate SA, and it was shown in [6] that SA could simulate the former. A classification of
one-dimensional cellular automata in terms of their dynamical behavior was given in [11].
Things appear to be very different as soon as we get into the second dimension, as noted in
[15, 14]. This classification is based on the following notions.

Let (X,m) be a metric space and let H : X → X be a continuous application. An
element x ∈ X is an equicontinuity point for H if for any ε > 0, there exists δ > 0 such
that for all y ∈ X, m(x, y) < δ implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. The map H is
equicontinuous if for any ε > 0, there exists δ > 0 such that for all x, y ∈ X, m(x, y) < δ
implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. An element x ∈ X is ultimately periodic
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for H if there exist two integers n ≥ 0 (the preperiod) and p > 0 (the period) such that
Hn+p(x) = Hn(x). H is ultimately periodic if there exist n ≥ 0 and p > 0 such that
Hn+p = Hn. H is sensitive (to the initial conditions) if there is a constant ε > 0 such that
for all points x ∈ X and all δ > 0, there is a point y ∈ X and an integer n ∈ N such that
m(x, y) < δ but m(Fn(x), Fn(y)) > ε. H is positively expansive if there is a constant ε > 0
such that for all distinct points x, y ∈ X, there exists n ∈ N such thatm(Hn(x), Hn(y)) > ε.

We consider these notions in the setting of sand automata with the metric topology
induced by d. First we complete the definitions of equicontinuity and ultimate periodicity.

Proposition 3.15. A SA F is equicontinuous if and only if all configurations of C are
equicontinuity points.

Proof. Suppose that all configurations are equicontinuity points. Let ε > 0. For all x ∈ C,
there is some δx such that for every configuration y such that d(x, y) < δx, we have ∀n ∈
N, d(Fn(x), Fn(y)) < ε

2 . From the open covering C =
⋃
x∈C

{
y|d(x, y) < δx

2

}
, we can extract

a finite covering C =
⋃
x∈D

{
y|d(x, y) < δx

2

}
, where D ⊂ C is finite. Let δ = minx∈D δx

2 . Then
for every x, y ∈ C, such that d(x, y) < δ, there is some z ∈ D such that d(x, z) < δz

2 . We
also have d(y, z) < δ+ δz

2 ≤ δz. Hence, for any n ∈ N, d(Fn(x), Fn(y)) < d(Fn(x), Fn(z)) +
d(Fn(y), Fn(z)) < ε. Since this is true for any ε > 0, F is equicontinuous. The converse is
trivial.

We introduce a helpful lemma, used to refine the notion of ultimate periodicity.

Lemma 3.16. Any covering C =
⋃
k∈N Σk by closed shift-invariant subsets Σk contains

C = Σk for some k ∈ N.

Proof. If C =
⋃
k∈N Σk where the Σk are closed, then by the Baire Theorem, some Σk has

nonempty interior. Hence, it contains some ball [U ] where U is a cylinder. If it is shift-
invariant, then it contains

⋃
k∈Zd σk([U ]), which is the complete space.

Proposition 3.17. A SA F is ultimately periodic if and only if all configurations of C are
ultimately periodic points for F .

Proof. Let F be a SA such that all configurations x ∈ C are ultimately periodic for F . For
any n ≥ 0 and p > 0, let Dn,p be the closed shift-invariant subset {x : Fn+p(x) = Fn(x)}.
Since C =

⋃
n,p∈NDn,p, by Lemma 3.16, C = Dn,p for some n ≥ 0 and some p > 0. The

converse is obvious.

Using the new compact topological framework, it is possible to prove that equicontinuity
and ultimate periodicity are equivalent (proof in [7]).

Proposition 3.18 ([7]). A SA is equicontinuous if and only if it is ultimately periodic.

Despite these classical results, it appears that the classification from [11] into four classes
(equicontinuous CA, non equicontinuous CA admitting an equicontinuity configuration, sen-
sitive but not positively expansive CA, positively expansive CA) becomes irrelevant for
one-dimensional SA. In particular, none of them satisfy the last topological concept of the
classification (positive expansivity).

Proposition 3.19 ([7]). There are no positively expansive SA.
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It also seems that the trichotomy between the other classes might be false. We conjecture
that there exist non-sensitive SA without equicontinuity points, which would lead to another
classification into four classes: equicontinuous, admitting an equicontinuity configuration
(but not equicontinuous), non-sensitive without equicontinuity configurations, sensitive.

4. Conclusion

In this article we have continued the study of sand automata, by introducing a compact
topology on the SA configurations set. In this new context of study, the characterization
of SA functions of [4, 6] still holds. Moreover, a topological conjugacy of any SA with a
suitable CA acting on a particular subshift might facilitate future studies about dynamical
and topological properties of SA.

In particular, injectivity and surjectivity and their corresponding dimension-dependent
decidability problems could help to understand if SA look more like CA of the same dimen-
sion or of the following one. Still in that idea is the open problem of the dichotomy between
sensitive SA and those with equicontinuous configurations. A potential counter-example
would give a more precise idea of the specificities of the dynamical behaviors represented by
SA.
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Abstract. The problem of compact tables is to maximise the overlap when building a
word that is to include permutations of every given words (all the words being the same
length). This problem is shown to be NP-complete in the general case, and some specific
restrictions are studied.

1. Presentation of the problem

1.1. Informal description and examples

In several fields, it can be helpful to give a compact representation of a two dimensional
table. We are interested in the case of random output tables, where the table is used to
express the possible outcomes in n different initial conditions, where results can be described
qualitatively with several results. These results can be represented several times for a given
initial condition (to express discrete probabilities). We shall suppose that the number of
possible outcomes (with multiple occurrences counted multiple times) is always the same
(it could be 100 for a simplified percentage scheme, for example). This common number is
called the amplitude of the table (`).

For example, one can have the following table (on the left) where each row corresponds
to a different set of initial conditions and each column corresponds to a different result. The
numbers correspond to the possible outcomes, i.e. in case A, outcome α happens 30% of
the time, outcome β happens 40% of the time and outcome γ happens with a probability
of 30%. The same table can also be explicitly expanded (on the right).

α β γ δ
A 30% 40% 30% 0%
B 10% 30% 20% 40%
C 10% 0% 60% 30%
D 20% 20% 40% 20%

1 2 3 4 5 6 7 8 9 10
A α α α β β β β γ γ γ
B α β β β γ γ δ δ δ δ
C α γ γ γ γ γ γ δ δ δ
D α α β β γ γ γ γ δ δ

Now, to find the outcome in, e.g. case B, one can computes a random number between 1
and 10 and directly look into the table for the corresponding result in the ’B’ line.

2000 ACM Subject Classification: 68Q17, 68Q45, 91A90.
Key words and phrases: Probabilistic automaton, NP-completeness, Gaming theory.
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If some of these results are common to several initial conditions, then it is possible to
give a compact representation of the table. Instead of a n×` bi-dimensional table, we could
express each initial condition as an offset in a one-dimensional table, that would cover all
possible cases. It is always possible to do such a transformation as follows: give an offset of
i× ` to initial condition number i, and simply put all possible outcomes in a single table (in
the order of the initial conditions). Initial condition 0 will use the 0 to ` − 1 first possible
outputs, initial condition 1 will use the ` to 2`− 1 outputs, etc. It is quite obvious that the
two formulations are equivalent.

The previous table can be “linearised” as follows :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
α α α β β β β γ γ γ α β β β γ γ δ δ δ δ

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
α γ γ γ γ γ γ δ δ δ α α β β γ γ γ γ δ δ
Then the result, e.g for case C can be directly read in the table by computing a random

number between 21 and 30, or, rather, by computing a random number between 1 and 10
and adding an offset of 20.

Obviously, this linearised table is as big as the previous explicit table (40 results) and
nothing have been gained that way.

The order of the initial conditions, however, is not important to the user of the table.
The order of the outcomes is also not important. Therefore, one could move around initial
conditions and outcomes so that some overlapping between results may appear.

Consider the following table :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
δ δ δ δ γ γ α β β β β α α γ γ γ γ δ δ δ γ γ

Now, the result in each case can be read by computing a random number between 1 and 10
and adding an offset equal to:
A: +6, B: +0, C: +12, D: +9.

The resulting table is much smaller than the previous one (22 boxes instead of 40).
This kind of tables is, among other, used in simulation processes with simple models,

such as the one you can find in e.g. wargames (historical simulation games). In wargames,
a single action (such as a battle between armies) is usually resolved by rolling a die and
looking for the result in a table. In this case, the initial conditions of the action (such
as the relative strength of each army) determine the specific case and several outcomes
(such as winning or loosing the battle with more or less casualties) can happen. To make
things as unambiguous as possible between all players, it is better to have an explicit table
rather than simply listing the probabilities of each outcome (which would be perfect in
a computer-driven simulation but can lead to unnecessarily complicated computations as
well as arguments over interpretation of the result in case of humans actually rolling dice).
Obviously, compacting the tables allows to gain space and can thus be of great interest.
Multi-dimensional tables are also very complex to remember (when several characteristics
such as terrain, weather, strengths, etc. come into play in a single outcome) and linearised
tables add to the playability in such games.

This is this kind of compact tables that this article studies (e.g. the assault table in [3]).
If the number of cases is less than or equal to the number of possible outcomes, this

problem can be seen as the way of compacting transition tables for probabilistic automata.
A probabilistic automaton is a normal (usually non-deterministic) automaton with weights
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on the various transitions; when a transition is made from some state, the probability a
given transition will occur is given by the normalised weights of all possible transitions
starting from the current state. If the normalised weights can be expressed as fractions
with a common denominator, then the transition table of the probabilistic automaton can
be expressed with partial overlaps as described above. In this case, the set of results and the
set of initial conditions will be the same, namely the set of possible states of the automaton.
For example, one can consider the previous table to be the transition table of a probabilistic
automaton with 4 states. In state D, the automaton can goes to state A (result α) with
probability 20%, in state B (result β) with probability 20% and so on.

The whole automaton can be depicted as follows:

A

B

C

D

30%

10%

40%

20%

40% 10% 30% 40%

30%

30%

60%

20%

20%

20%

The problem can also be seen as finding the shortest word containing a permuta-
tion of each of the words given as input. With our running example, there will be 4
words: A = αααββββγγγ, B = αβββγγδδδδ, C = αγγγγγγδδδ and D = ααββγγγγδδ
and there exists a word of length 22 containing a permutation of each of these words:
δδδδγγαββββααγγγγδδδγγ. Of course, the letters in each of the words (A,B,C,D) do not
need to be ordered in each instance of the problem.

This leads to other applications to this problem: giving the shortest possible string
that can contain permutations of a set of given strings may be of interest in the field of
biology. A DNA molecule (or a strand of proteins) could be replicated several times, and
separated in many sequences by a physical process. With simple weight analysis techniques,
the composition (with no knowledge of the order of the components) of each string could be
determined. From there, the shortest (and thus most likely) original string can be computed
by looking for possible overlaps in the outcomes.

For example, consider a DNA molecule whose composition is unknown. Since the four
bases have different weights1, the weight of the molecule gives indication on its composition
(especially if the molecule is small). However, this is not sufficient to precisely determine
the molecule (that is, the order in which the bases appear in it).

By well known physical methods, it is possible to replicate the molecule several times.
Then, each copy can be split into smaller parts. The parts can be sorted by weight using
centrifugation. Hopefully, the parts will be small enough so that the exact composition of
each part can be deducted from its weight (otherwise, one need to cut them again).

1Adenine weights 135.127g/mol, Thymine weights 126.113g/mol, Cytosine weights 111.300g/mol and
Guanine weights 151.126g/mol.
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Now, we have a set of words (the parts, whose composition is known) and we want to
find a larger word (the whole molecule) such that it contains a permutation of each of the
original words. The shortest solution is the more likely because a longer solution would
probably have generated more different parts2. This is exactly the compact table problem.

1.2. Formal definition

The formal definition of the compact table problem is as follows:

Function Problem 1 (Compact table).
Instance: An alphabet Σ, an integer `, a set of words S ⊂ Σ`

Answer: The minimal length k of a word τ ∈ Σk such that for any word u ∈ S, there
exists a permutation σ and words v and w such that τ = v · σ(u) · w.

This problem is naturally associated to a decision problem, which we will show to be
NP-complete in the general case.

Decision Problem 1 (Compact table).
Instance: An alphabet Σ, an integer `, a set of words S ⊂ Σ`, an integer k
Answer: Yes if there exists a word τ ∈ Σk such that for any word u ∈ S, there exists

a permutation σ and words v and w such that τ = v ·σ(u) ·w, No in all other cases.

2. General Case

To show that Compact Table is NP-complete, we shall first show that it is in the NP
complexity class, and then that any instance of Hamiltonian Path can be transformed
in an instance of Compact Table, such that the answer to the two problems is the same
(Hamiltonian Path is a well-known NP-complete problem, see [10, 8]).

Decision Problem 2 (Hamiltonian path).
Instance: A graph G = (V,E) (n = |V |)
Answer: Yes if there exists a path (v1, e1, v2, e2 . . . , en−2, vn−1, en−1, vn) (such that
ei = (vi, vi+1)) passing through all vertices of G, No if not.

Compact Table is in NP:
• The size of the inputs is no smaller than |S|×` because there are |S| words of length
` each. The size of the result, τ , is smaller than |S| × ` because there always exists
a solution of length |S| × ` (as shown in the examples above).
• Given τ (guessed non-deterministically), one first computes all the sub-words of τ

of length ` (there are |τ | − `+ 1 such words) and compare each of them to each of
the words in S (leading to (|τ | − `+ 1)× |S| comparisons between words).
• Each comparison between words can be done by first sorting the letters of the two

words and then comparing the sorted words letter by letter. This require O(` log(`))
comparisons for sorting and ` comparisons afterwards.
• Hence, the total number of comparisons (between letters) is O(((|τ |− `+ 1)×|S|)×

(` log(`))) = O(|S|2 × `2 × log(`)).

2This means that the parts must not be too short, otherwise the same part may come from different
places of the original molecule. However, this can be detected while weighting: if one part appear twice as
many time as each other, then this is probably two identical parts.
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Let us describe now how we shall transform an instance of Hamiltonian Path in an
instance of Compact Table. Let G = (V,E) be a graph, ` be the maximum degree of G
and n = |V | be the number of vertices in G.

Construction: We define Σ to be the set E∪V . Each vertex v is associated to a word τv of
Σ` which is the set of edges adjacent to v (in no particular order) and completed (since G is
not forced to be regular) by as many occurrences of v as deemed necessary. k is determined
to be n(`− 1) + 1.

The following graph (on the left) is thus transformed into the words on the right:

A

B

C

D E

FG

a

b c

d

e

f

g
h

i
j

• τA = abdf
• τB = BBbc
• τC = cdeh
• τD = Daeg
• τE = EEgi
• τF = Fhij
• τG = GGjf

This graph admits a Hamiltonian path ABCDEFG corresponding to the word (of length
n(`− 1) + 1 = 22) τ = adfbBBcdheDagEEiFhjGGf ; we build τ by choosing overlapping
letters (shown in bold) corresponding to the edge linking consecutive vertices.

If τ exists and satisfies all conditions. We have to show that G admits a Hamiltonian
path. Given the definition of the set S, the only way two words τv and τv′ may overlap
(even with permutations) is if v and v′ share an edge (all other symbols are distinct). They
can, at this point, overlap by one letter (edge (v, v′)). The only way the final string τ can
be of length n(`− 1) + 1 is if there are n− 1 overlaps (all words have to be present, and this
is a total of n` letters). If this is the case, one can find a sequence of edges that join vertices
and thus a sequence (v0, e0, . . . , en−2, vn−1) of adjacent vertices and edges. This path passes
through all vertices exactly once: if the string were redundant (one has not n but m > n
vertices), its length would be m` −m + 1. This is larger than k for all m > n. Thus, if τ
exists, there exists a Hamiltonian path in G.

If G admits a Hamiltonian path. We have to show that there exists a word τ of length
n(` − 1) + 1 that contains at least some permutation of the word associated to any vertex
v of G. Consider one of the Hamiltonian paths (v1, e1, v2, e2, . . . , vn−1, en−1, vn) and define
τ as follows: 

τ = u1 · e1 · u2 · e2 · u3 · . . . · un
ui = τvi with ei and ei−1 removed, (1 < i < n)
u1 = τv1 with e1 removed
un = τvn with en−1 removed

It is quite straightforward that τ is of length (n − 2)(` − 2) + 2(` − 1) + (n − 1), i.e.
n(`− 2) + 2 + n− 1 = n(`− 1) + 1 and contains a permutation of τv for any vertex v (just
write τv with the edge preceding v in the Hamiltonian path first and the edge following v
in the Hamiltonian path last).
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#P-completeness. We shall not introduce the counting problems versions of all these
problems, but we mention the result here for the sake of completeness. The counting
problem associated to Hamiltonian Path is a #P-complete problem, as shown for example
by theorem 18.2 of [13]. However, our transformation does not preserve the number of
solutions (it is not parcimonious), and as such is not usable to determine whether Compact
Table is a #P-complete problem. This is because of the allowed permutations: in our
example above, the word τ ′ = dafbBBcdheDagEEiFhjGGf (remark the difference in
the beginning of the word) is another solution of the Compact Table instance, but is
in correspondance to the exact same solution of Hamiltonian Path. The number of
solutions of Compact Table matching one precise Hamiltonian Path solution is easy to

compute (and they do not overlap), it is (`−1)2
∏

1≤i≤n

(`− 2)!
(`− d(i))!

(there are (`−2)!
(`−d(i))! allowed

permutations for the part of the word corresponding to each vertex, and (`− 1) times more
for the initial/ending vertices). This number does however depend only on the chosen initial
instance of Hamiltonian Path, which means that Compact Table is #P-hard (if one
can count the number of solutions of any instance of Compact Table, one can count the
number of solutions of any instance of Hamiltonian Path).

3. The fixed-amplitude case

3.1. Amplitude larger than 3

Let us consider the following family of decision problems (indexed by `):

Decision Problem 3 (Compact table of order `).
Instance: An alphabet Σ, a set of words S ⊂ Σ`, an integer k
Answer: Yes if there exists a word τ ∈ Σk such that for any word u ∈ S, there exists

a permutation σ and words v and w such that τ = v ·σ(u) ·w, No in all other cases.

It is obvious that the case ` = 1 is polynomial. We can show that for any ` > 2,
Compact Table of order ` is still NP-complete, since the following family of problems
is also NP-complete for all d > 2 (see [9, 12]):

Decision Problem 4 (Hamiltonian path in d-bounded degree graphs).
Instance: A graph G = (V,E) (n = |G|) of maximal degree d
Answer: Yes if there exists a path (v0, e0, . . . , en−2, vn−1) (such that ei = (vi, vi+1))

passing through all vertices of G, No if not.

The very same construction we used shows that for any ` > 2, the Compact Table
of order ` remains NP-complete.

3.2. Amplitude 2

We prove that in the case of amplitude 2, the problem becomes polynomial. In this
case, each initial condition leads to an alternative between two results. We will reduce the
problem to the following graph problem:

Function Problem 2 (Eulerian path).
Instance: An undirected G = (V,E)
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Answer: A minimum set E′ such that G′ = (V,E ∪ E′) is Eulerian.

Let us consider an instance of Compact Table of order 2: let Σ be an alphabet
and S ⊂ Σ2 be a set of words3 of length 2. Let n = |S| be the number of words and m = |Σ|
be the number of letters of the alphabet.

We build a graph G with m vertices and n edges in the following way:
• There is a vertex α for each letter of the alphabet α ∈ Σ.
• There is an edge between α and β if and only if the word αβ is in S.

We shall now prove that the instance of Compact Table of order 2 admits a solution
of length n+ k + 1 if and only if G can be made Eulerian by adding k edges.

First, let G′ be an Eulerian graph obtained by adding k edges to G. Consider an
Eulerian path in G′. By enumerating the vertices traversed by the path, we obtain a word
in Σ∗ of length n+k+1 (there are n+k edges, hence n+k+1 vertices). This word contains
a permutation of each of the words in S because each of these words correspond to an edge
in G, hence an edge in G′, and the path has to go through all edges of G′ by definition of
Eulerian paths. Hence, if G can be made Eulerian by adding k edges to it, then Compact
Table of order 2 admits a solution of length n+ k + 1.

Conversely, if Compact Table of order 2 admits a solution τ of length n + k + 1.
Let G′′ be the smallest complete graph containing G. τ is the description of a path in G′′
going through n + k edges. Since τ contains a permutation of every word in S, all the
edges of G belong to this path. Let G′ be the graph obtained from G′′ by keeping only the
edges along this path. By construction, G′ is Eulerian and contains all the edges in G plus
k additional edges. Hence, if Compact Table of order 2 admits a solution of length
n+ k + 1, G can be made Eulerian by adding k edges to it.

For example, the table on the left (in each case, both results have the same probability)
leads to the graph on the right:

α β γ δ ε
A 1 1
B 1 1
C 1 1
D 1 1
E 1 1
F 1 1
G 1 1

α

β γ

δ ε

A B

C

D
E F

G
Here, the graph is not Eulerian but can be made so by adding a single edge, H, between β
and γ. This leads, among other, to the Eulerian path EHABFGCD corresponding to the
word δγβαγεδβε of length 9 with the offsets:

A: +2, B: +3, C: +6, D: +7, E: +0, F: +4, G: +5.
Let G be a graph. The minimum number of edges ones need to add to make it Euler-

ian4 can be computed in polynomial time. Let us describe graphs as having c connected
components and 2n vertices of odd degree. We separate the connected components between
those with vertices of odd degree (A, a = |A|) and the others (B, b = |B|). A graph is

3We consider here that the words in S are all different. Identical words can be dealt with by considering
multigraphs instead of graphs.

4The resulting graph may in fact be a multigraph, but this does not matter for our problem
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Eulerian when (a, b, n) is (1, 0, 1) or (0, 1, 0). We shall suppose that we are not in one of
those two cases.

If one edge is added to G, these are all the possible moves (we consider the variation of
(a, b, n) as moves in a three-dimensional space):

α: Adding one edge going from one component to itself: either [0, 0, 1] between two
even vertices, [0, 0, 0] between an even vertex and an odd vertex, [0, 0,−1] between
two odd vertices. There is a special case for the last one: the move could also be
[−1, 1,−1].

β: Adding one edge between two components of A: [−1, 0, 1] between two even vertices,
[−1, 0, 0] between an even vertex and an odd vertex, [−1, 0,−1] between two odd
vertices.

γ: Adding one edge between one component of A and one of B: [0,−1, 1] if the vertex
in the component in A was of even degree, [0,−1, 0] otherwise. There is always an
even number of odd-degree vertices in a component, so a never decreases this way.

δ: Adding one edge between two components of B: [1,−2, 1] (always).
The number of edges to be added (if not zero), is at least b+ n− 1 (no move decreases

b + n by more than one, and the goal is of value 1). We exhibit a greedy (polynomial)
algorithm that adds exactly b+ n− 1 edges, and is therefore optimal.

• If a = 0, then n = 0 and b > 1. The transformation δγb−2 leads us to the final state
and is of length b+ n− 1 = b− 1.
• If a > 0, then transformation βa−1γbαn−a leads us to the final state and is of length
b+ n− 1.
• In each case, there is only one subcase that decreases b + n; there may be some

choice for the exact edge to be added.
This is the smallest number of edges one must add to make the graph Eulerian as shown
by Fleury’s algorithm (see [4, 5, 6]). Remark that this is related to the Chinese postman
problem [11] and the rural postman problem.

4. Limited number of results

4.1. The 2-results case

We would like to point out that the Compact Table of order ` problem with a
limited number of possible results becomes trivial (solvable in constant time), because with
a limited number of results and a fixed amplitude, the number of different words is finite.

Even the general Compact Table problem is polynomial in the case of only two
possible results, namely success and failure (compare this to a toss of coin, with different
probabilities of win according to some initial conditions). One can use a sequence of m1

times the first result “0” followed by m2 times the second result “1”, where m1 is the largest
number of “0” for any initial condition and m2 is the largest number of “1”. Each initial
condition can be associated to an offset that sets the number of possible “0” and “1”. This
word is the shortest possible since any satisfying word must have at least m1 “0” and m2

“1”. For example, if the amplitude is 4 and the words are: 0000, 1101, 1001 then the word
0000111 is the shortest one admitting permutations of 0000, 0111 and 0011 as continuous
sub-words (with offsets 0, 3 and 2 respectively).
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However, it should be remarked that giving a whole table for such a problem is not
the best way to implement it. Since there are only two results, it is sufficient to give the
amplitude and the offsets which correspond to the probabilities of “1”, all other cases being
“0”. This means that the problem remains the same if, instead of words, one is simply given
the number of “0” and “1” in each case (a more compact representation than then “unary”
one used above).

This 2-results case is also of practical use. In genetic epidemiology, when introducing
a new method to detect which genes can cause a disease, one has to test the method. This
test is usually done on a simulated population. Each member of it is generated from a
pre-existing pool of genotypes, respecting actual ratio observed in the population. Each
member is then assigned a disease status (either affected or not). The probability of being
affected depends on the genotype (corresponding to pre-existing observations made on the
same disease, if the test validate the method, then it can later be carried over to not yet
studied diseases) [2]. This corresponds exactly to the 2-results case: there are only two
possible outcomes (affected or not) and the probability of each outcome depends on the
input (the genotype).

4.2. With 3 or more results

For the case of a restricted alphabet (3 or more), the question is still open (about
whether the problem remains NP-complete). However, the first remark still stands: if
enough distinct words are given, all possible outputs finally appear. The number of such
words (with k being the number of results and ` being the amplitude of the words) is(
`+k−1
`

)
. A simple proof of this: a word is given by the number of occurrences of each

result, including 0. This is in bijection to the words on alphabet {x, y} of length `+ k − 1,
in which one chooses k − 1 delimiters “y” separating runs of “x” (a run can be of length 0).
The distance between any two delimiters is the number of occurrences of the corresponding
result (the first result at the beginning of the word, followed by the second, etc.).

However, the question of whether there exists a word that contains all possible combi-
nations of length

(
`+k−1
`

)
+ ` − 1 (which would be the minimal length of such a word) is

still open, and is too complex to fit in this paper. The authors conjecture that it is at least
possible to do it for three results.

5. Conclusion and Future Works

We would like to remark that the similar albeit different problem where the initial words
are given but no permutation is allowed to find them in the final word τ is also NP-complete
in the general case.

Decision Problem 5 (Compact ordered table).
Instance: An alphabet Σ, an integer `, a set of words S ⊂ Σ`, an integer k
Answer: Yes if there exists a word τ ∈ Σk such that for any word u ∈ S, there exist

words v and w such that τ = v · u · w, No in all other cases.

The associated function problem was shown to be NP-hard in [7], and several approxi-
mation have been shown since (see e.g. [1]).

We have restricted ourselves here to words of the same length (`). Obviously, if the
input words can be of any length the problem is more general, hence harder (the reduction
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from Hamiltonian Path still works) and the problem is also NP-complete (the proof of
being in NP is the same as the one we present).

The question of whether or not the original problem is approximable is open. The
heuristics for the compact ordered table may apply, but they are probably not very efficient.
The originality of this work is that the permutations allowed might have been an ease to
solve the problem, but being able to choose the order of overlapping sequences does not
break the NP-hardness of the problem.
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Abstract. After emphasizing on the use of discrete signals in the literature on cellular
automata, we show how these signals have been considered on their own. We then present
their continuous counterpart: abstract geometrical computation and signal machines. Fi-
nally we relate them to other models of computation, classical and analog.

Key-words. abstract geometrical computation, analog/continuous computation, black
hole model, cellular automata, computability and signal machines.

1. Introduction

Cellular automata (CA) were introduced in the 1950’s and have been used as a model
for self-replication, computation, hardware, physics, economics. . . They are composed of
identical automata, called cells displayed on a regular lattice and communicating only with
neighbors. The dynamics, defined by the transition function of a cell, is parallel and syn-
chronous. Different points of view are commonly used: considering a single cell or an entire
configuration or the whole space-time diagram.

In the past decades, a new point of view has emerged: the cells are just a substrata on
which information travels. The atomic pieces of information are signals: patterns that keep
repeating regularly. The dynamics can then be understood as well as conceived in terms of
signals.

In this paper, we show that this signal approach is quite usual both for describing CA
generated from modeling and for designing special purpose CA. Then we recall some con-
structions on discrete signals and present signals in a continuous setting, abstract geometrical
computation before stating some of their computing capabilities.

Signals are embedded inside a discrete structure: both space and time are discrete. On
space-time diagrams they correspond more or less to discrete lines. On the one side, the
granularity of space is often exploited to get a natural scale and to get a halting condition
(for example to finish a Firing squad synchronization). On the other side it imposes a quite
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cumbersome setting: discrete geometry; for example halfway between two cells is either on
a cell or between two cells.

To generate special purposed CA, usually an Euclidean setting is used for conception
and then brute force and technical skills are used to discretize. The other way round, to
explain dynamics, one often forgets about the discreteness and moves on to a continuous
setting for an easier explanation. Both approaches rely on scaling invariance: if the gran-
ularity is thinner or thicker, the same phenomenon happens so that it does not depend on
the number of cells.

These observations led us to consider the continuous case on its own. On the one hand,
there is no problem with finding the middle; all positions are available. On the other hand,
there is no granularity on which to rely for an absolute scale or to ensure a correct stop.

The discrete and continuous cases have similarities; for example, both can compute (in
the classical sense) and thus have numerous related undecidability problems. Nevertheless,
the continuous model is quite different and addresses different topics. For example, the
signal approach have been very fruitful to solve the Firing squad synchronisation problem
but the constructions lead to “monsters” on the continuous side (like accumulations on a
Cantor set).

Signal machines can compute anything in the classical understanding as well as CA. In
the continuous setting, Zeno effect (infinitely many steps in a finite duration) can appear
and be used efficiently to decide semi-decidable problems, whereas in CA it is impossible.
In another direction, since it works in a continuous setting it can handle real numbers with
exact precision and be related to other analog models of computation like the Blum, Shub
and Smale one.

The paper is articulated as follows. Section 2 briefly recalls what cellular automata,
space-time diagrams and discrete signals are. Section 3 provides examples from the literature
where signals are used a mean of explanation. Section 4 presents the approach and results
on discrete signals, whereas Sect. 5 presents its continuous counterpart and some results on
its computing capabilities. Conclusion and perspectives are gathered in Sect. 6.

2. Cellular automata

This section grounds the notations. Only CA with one dimension are addressed, almost
everything naturally extends to higher dimensions.

Definition 2.1. A cellular automaton (CA) is defined by (Q, r, f) where Q is a finite set
of states, the radius, r, is a positive integer, and the local function, f , is a function from
Q2r+1 to Q. A configuration is an element of QZ. The global function, G : QZ → QZ, is
defined by: G(c)i = f(ci−r, ci−r+1 . . . ci . . . ci−r−1, ci−r) .

Definition 2.2. A space-time diagram, D, is the orbit of a configuration, c0. It is an
element of QZ×N, D(., 0) is c0 and D(i, t) is Gt(c)i.

Unless noted otherwise, space-time diagrams are represented with time increasing up-
ward. Each configuration is set right above the previous one.

The following definition is empirical. It may vary according to articles and is more
conceptual that formal.
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Definition 2.3. A background is a state pattern that may legally tile a whole space-time
diagram. A signal is a pattern that is periodically repeating over a background. Its speed
is defined as the spacial shift divided by the number of iterations to repeat.

For example, if 0 is a quiescent state (i.e. f(0, . . . , 0) = 0) then a configuration filled
with 0 is mapped onto itself and the resulting space-time diagram is filled with 0, so that 0
is a background. If the dynamics is such that a configuration with only 0’s except for 1 on
three consecutive cells, is regenerated every other iteration shifted by one cell on the right,
then 111 is a signal and its speed is 1/2.

The speeds are bounded by the radius. This is a speed-of-light-like limitation. In space-
time diagrams, the more a signal is vertical, the more it is slow. Signals have a width: the
length of the pattern. The generated ones are generally 1-cell thin, but the ones observed
are frequently not that thin.

3. Informal use of signals

Signals are information conveyors. The dynamics is driven by the information received,
proceeded and sent.

3.1. Analysing the dynamics

3.1.1. Particles and solitons. Signals can be thought of as moving objects. This leads to
the vocabulary of “particles”. The term “soliton” is also used, but it implies that they can
cross one another unaffected, like waves. Figure 1 shows some examples from the literature.
This approach is important in physical modeling to ensure that studied objects could exist.

(a) [BNR91, Fig. 7]

(b) [HSC01, Fig. 7]

(c) [Siw01, Fig. 5]

(Time is increasing downward.)

Figure 1: Examples of particles and solitons.
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(Time is increasing downward.)

Figure 2: Signals to build an universal Turing machine [LN90, Fig. 3 and 4].

3.1.2. Computing capability. In computer science, before computing better (whatever it
means), one is interested in being able to compute. In [LN90] (Fig. 2), signals are found so
as to provide states and tape to simulate Turing machines.

In the quest for minimal Turing-universal and intrinsically universal cellular automata [Oll02,
Coo04, Ric06], finding signals have often been the key to success.

3.2. Generating particular CA

The other way round, signals have also been used to design special purpose CA.

3.2.1. Prime number generation. One application is to generate the prime numbers as the
iteration numbers with no signal on cell 0 (i.e. on the leftmost vertical line) as done on
Fig. 3(a) [Fis65]. Other sets of natural numbers can be enumerated this way [MT99].

(a) [Fis65, Fig. 2] (b) Goto’s solution to FSS [Got66, Fig. 3+6]

(Time is increasing downward.)

Figure 3: Geometric algorithms.
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3.2.2. Firing squad synchronization (FSS). This is a typical synchronisation problem from
distributed computing. The aim is to have all processors do something special for the first
time simultaneously. They have no way to broadcast, nor a common clock to refer to. This
is thought of as a line of soldiers that must shoot synchronously but are not aware of their
number and have very poor means of communication: each one can only communicate with
the closest soldier on each side. Two soldiers are particularised: the first is a general that
will start the process and the last who knows that he is the last. In CA modeling, the cells
represent the soldiers.

Most solutions work on a divide and conquer scheme. For example, Goto’s algorithm
(Fig. 3(b)) cuts the line of soldiers in half and restarts the process synchronously on each
side. When the granularity of space is reached they shoot. A careful management of
odd/even pieces ensures that granularity is reached everywhere synchronously.

4. The world of discrete signals

4.1. Towards a definition

In the previous Section, we show that empirical notions of signals are used according
to the context. It makes it natural to look at signals not as a tool but as a subject in itself.
This is an important change of point of view. States and transitions are not considered
to be the central place for the dynamics but rather some underlying layer, some byte code
for a higher level language. Things are defined at the signals level, and then compiled into
states and transitions. The compilation is more or less automatic depending what a signal
is and what is expected from it.

For example, in the FSS construction of [VMP70] (Fig. 4), infinitely many signals and
speeds are considered. One would expect it hard if not impossible to bring this forth with
finitely many states. This turns out to be possible, not only because speeds are bounded
but also because, basically, the movement is managed by the interactions between signals.
This family can be decomposed with a few bricks: a signal for moving, one for not moving
together with signals ordering to move or to stop. Each signal forward the order to move
only half of the time so that the second one is half slower, the next one is half of half. . .

Considering this, one may think of some kind of jigsaw/tiling puzzle where thin pieces
can be clipped on a board. Starting from the bottom, the board is filled upwards according
to the way the pieces should be assembled together. This is the right level of abstraction.
This can be implemented into CA and is abstract enough to design complex behaviours.

Let us propose a simple approach to compile signals of max speed 1 and width 1
(encoded on exactly one cell and with radius 1) to show its feasibility. Interaction only
happens when signals are on the same cell. Signals are defined before their interactions.

A discrete signal is defined as a finite word over {←,−,→} that corresponds to its
periodic movements. For example, a word → would mean to move endlessly on the right,
one cell at each iteration, whereas −→ would mean right every other iteration. A signal
does not need to be anything like a discrete line segment on a period (e.g. ←←← →→→
is valid) although at a different scale it looks like a line.

Compilation is quite simple: in each cell there is a bit corresponding to each step of
each signal. This means that every signal, at every step can be present in every cell! This
generates a huge number of states. But signals can be handled very easily: if a signal is
present with next move −, then it just goes to next step otherwise it is forgotten. If a signal
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(Time is increasing downward.)

Figure 4: Geometrical Algorithm to solve the FSS [VMP70, Fig 1 and 3].

is present on the left (resp. right) with next move → (resp. ←), it goes on the next step on
the current cell. Since signals are split into steps, this is well defined. Signals are endlessly
moving.

Interactions/collisions can now be defined by rules like “if these signals are present at
these steps, then they are replaced by those at those steps”. Considering the vast amount
of possibilities, one can imagine intended (and not extended) formulation and undefined
cases could be handled by some superposition schemes and/or a default like: they cross
unaffected or they disappear.

4.2. Achievements

This approach at the signal level together with an implementation (generally ad hoc
and involving) has been quite fruitful: to give a improved solution to the FSS [Maz87], to
design parabolas and circles [DMT99] and especially to develop a new kind of programing
system with specific primitives.

For example, it is quite easy to have bits encoded by signals and have the dynamics
carry out an addition or a multiplication [Maz96]. In these cases, the generated space-time
diagrams look like the operation displayed as shown on Fig. 5.

There are ways to automatically have one computation twisted/bent so as to fit a
portion of the diagram and to restart the computation in the room left. This produces
recursion [DM02, Maz96, MT99] as displayed on Fig. 6.

5. Signal machines

In an euclidean space-time (R×R+), signals follow straight lines as illustrated on Fig. 7.
They are dimension-less points (i.e. their width is zero). The dynamics of a single signal is
not defined any more by a sequence of elementary displacements but by a constant speed.
Thus its trace is a line segment in any space-time diagram.
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Figure 1: A human multiplication.6
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AAA
AAA

AAAA
AAAA
AAAA
AAA
AAAAAAA

AAAA
AAAA
AAA
AAA

CellÊÊ2ÊiÊÊ
at time 4ÊjÊ-Ê2

i   th digit of the 
multiplier

j   th digit of the 
multiplicand

i  th digit of the 
multiplier

i--1 th  carry 
over of the jÊth 
partial sum 

i  th  carry over 
of the jÊth 
partial sum 

i  th  digit of 
the j-1 th 
partial sum 

i-1  th  digit of 
the j th partial 
sum 

C
D

A B

α β

α
β

ÊÊÊOne cell out of two computes one time 
out of two :
CÊ=ÊÊ(ÊαÊ∧ ÊβÊ)Ê⊕ Ê(ÊAÊ⊕ ÊBÊ)
DÊ=ÊÊ(ÊαÊ∧ ÊβÊ∧ ÊA)Ê∨ Ê(ÊαÊ∧ ÊβÊÊ∧ ÊBÊ)Ê∨ Ê(ÊAÊ∧ ÊB).Figure 3: Computations done on one cell out of two, one unit of time out oftwo. 9 cells

Time

0

1

*
*

1

0

1

1

0

0
1

1

1

0

Bit 1 of the
multiplier

Bit 0 of the
multiplier

Bit 1 of the
multiplicand

Bit 0 of the
multiplicand

0, 1 Bits of the
multiplier

0, 1 Bits of the
multiplicand

* End of words*

0

1

0

0

0

1

0

1

0

0

1

*

0

0,1,* Bits of the 
result

Bits 1 in transit throught 
the network

Bits 0 in transit throught 
the network

Figure 4: Multiplying 110011 by 10110.10
Figure 5: Computation of a multiplication ([Maz96, Fig. 1, 3 andx 4]).
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Figure 6: Geometric computing ([Maz96, Fig. 8 and 19], and [MT99, Fig. 18]).

The speed only depends on the nature of the signal since for discrete signals, it only
depends on the pattern. Pragmatically, it simplifies everything; but nevertheless, the model
is already very rich.

The whole dynamics is driven by signal collisions. When two or more signals meet,
they are replaced by other signals according to some rules.
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Figure 7: Space-time diagram of a cellular automaton and its signal machine counterpart.

5.1. Definition

Definition 5.1. A signal machine is defined by (M,S,R) where M is a finite set of meta-
signals, S is a function (M → R) that assigns speeds, and R defines the collision rules (a
function from 2M to itself). A signal is an instance of a meta-signal.

There are finitely many signals which is not the case in some of above discrete examples.
The reason is that otherwise the machine would not be finitely defined.

Let µ ∈M , if a µ-signal is at position x, then it will be at position x + t.S(µ) at time
t if no other signal is met before.

A collision rule is denoted σ− → σ+, if the meeting signals correspond to σ−, they are
removed and replaced by signals corresponding to σ+. For example, in Fig. 7, whenever a
dotted signal meets a dashed one they are replaced by a line one and a dashed one. Since
R is a function, the dynamics is deterministic.

Definition 5.2. The extended value set, V , is the set of meta-signals plus two special
values: ⊘ for the background (i.e. the absence of any signal) and ❊ for an accumulation.
A configuration maps the underlying space to the extended set (R → V ) such that there
are finitely many non ⊘ positions.

The finitely many non ⊘ signals condition amounts for the finiteness of a configuration
ensuring that the collisions are clearly defined.

Definition 5.3. Let Smin and Smax be the minimal and maximal speeds. The causal past,
or (backward) light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .
The space-time diagram issued from an initial configuration c0 and lasting for T , is a

mapping c from [0, T ] to configurations (i.e. a mapping from R × [0, T ] to V ) such that,
∀(x, t) ∈ R× [0, T ] :

(1) ∀t∈[0, T ], {x ∈ R | ct(x) 6= ⊘} is finite,
(2) if ct(x)=µ ∈M then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

• ∀t′ ∈ (ti, tf ), ct′(x + S(µ)(t′ − t)) = µ ,
• ti=0 or ( cti(xi) = ρ−→ρ+ and µ ∈ ρ+ ) where xi=x + S(µ)(ti−t) ,
• tf=T or (ctf (xf ) = ρ−→ρ+ and µ ∈ ρ−) or ctf (xf )=❊ where xf=x+S(µ)(tf−t) ;

(3) if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T ], ∀x′∈[x− ε, x + ε],
• (x′, t′) 6= (x, t) ⇒ ct′(x′) ∈ ρ−∪ρ+ ∪ {⊘},
• ∀µ∈M , ct′(x′)=µ ⇔ or

{
µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)) ,
µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)) .
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(4) if ct(x) = ❊ then ∀ε > 0, there is infinitely many signals in J−(x, t)∩ ([x−ε, x+ε]×
[t−ε, t]).

Rules handle the collision of isolated signals. So that other kind of “continuation”
would have to be defined when infinitely many signals are spatially accumulating to ensure
that the configuration at t + ǫ is defined. Among the monsters of Fig. 8; there is Goto’s
FSS counterpart and a Cantor set generation. For CA, granularity ensures the correct
achievement of the FSS, but there is no such thing here.

There is a tentative definition for the first kind of accumulation (leftmost case of Fig. 8)
in [DL03, Chap. 9], simplified versions are used later on (nothing or a single signal is issued).

Figure 8: A simple accumulation and three unwanted phenomena.

5.2. Turing computing capabilities

Although Abstract geometrical computation relies on exact real values, with a simple
restriction, it falls into the setting of classical computability. A signal machine is rational
if it has only rational speeds and positions in any initial configuration. It is easy to see
that, as long as there is no accumulation, all collisions happen at rational locations. Since
rational numbers can be encoded and manipulated with exact precision on any computer
(and the machine is finitely defined and there are finitely many signals in any configuration),
implementation is possible (and has been done in Java to generate the illustrations). So
that relating to Turing machine or any equivalent model makes sense.

In [DL05], it is proved that (rational) signal machine can simulate any counter au-
tomaton and thus have Turing power. This is still the case when only signal machines
that are conservative and reversible are considered [DL06c]. Conservative means that each
meta-signal has an positive energy and that each collision preserves this energy, so that the
number of signals is bounded from the beginning. Reversible means that the collision rule
is a bijection and that the signal machine can be run backward deterministically.

With computing capability comes undecidability, in the rational context many problems
can be expressed in the classical setting. Some prediction problems (e.g. the apparition
of a signal, the extension of a configuration on the side) are straightforwardly undecidable
[DL05] (this is not surprising since there are many such results as well as a Rice theorem
for CA [Kar94]). Collision forecasting is not even semi-decidable, it is Σ2

0-complete in the
arithmetical hierarchy [DL06b].

Let us illustrate the computing capability as well as available geometrical operations
with the proof of Σ2

0-hardness. This is done by reducing the (Π2
0-complete) Total problem:

whether a computable function (as defined by a 2-counter automaton for example) is defined
for all values. On the left of Fig. 9 there is a simulation of a two-counter automaton (the
vertical lines represent the counters). It is possible to add signals and rules allowing a
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computation to go on while being bent one way then bent back producing a scaling by one-
half. This superstructure can restart itself and iterates infinitely (scaling is done three times
in the middle space-time diagram of Fig. 9). This computation is more and more compressed
and accelerated by a fractal structure it is entangled in. Since each iteration corresponds
to the same uncompressed duration, the embedded computation has an infinite time ahead
of it. If the computation stops (as in the picture), the structure and computation is erased
so that there is no accumulation, otherwise the accumulation takes place (Π1

0-hardness is
already reached by reducing Halt).

Figure 9: 2-counter automaton simulation, straight and contracted, and starting it.

On the right of Fig. 9, it is shown the way the value is provided and the computation
started. On Fig. 10, a lattice is formed in order to try all the values of the counters.

Figure 10: Trying all values.

With a proper use of simple accumulations (they just disappear leaving no trace), the
so-called Black hole model of computation can be embedded inside rational signal machines
and semi-decidable problems become decidable [DL06a]. The construction is as follows.
The contracting computation is bounded by two signals. If the computation stops, a signal
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amounting for the answer is emitted and collected by the signals outside. When these two
signals meet, it they had not received any signal they can assert that the computation never
stopped.

5.3. Relations with the Blum-Shub-Smale model [BSS89].

Since the positions and speeds are any real number, computability issues refer to analog
computation/computing on the continuous. Yet there is no analog Turing thesis and various
incomparable definitions exist. Abstract geometrical computation has already been related
to the BSS model: it is like a register machine where registers hold real numbers with exact
addition, multiplication and sign test. Indirect addressing and infinitely many registers are
available. Signal machines without any accumulation are equivalent to linear BSS, i.e. with
the restriction that multiplication can only be by a constant [DL07]. The encoding of a
linear BSS is done with constants in speeds and any real numbers held by a register as the
distance between two parallel signals.

To achieve the full BSS, i.e. with internal multiplication, accumulations can be used
[DL08]. Here accumulations results in a single signal where the accumulation takes place.
Accumulations are used to compute infinite sums. The multiplication of two real numbers
a and b is done by summing the products of a by the positive and negative powers of 2
according to the infinite binary expansion of b.

The resulting model is strictly more powerful than BSS since it can also performs
square rooting. The formula/program for computing it uses only rational numbers so that
the speeds of the machine are rational numbers. To compute the square root of 2, all signals
are at rational positions. But the accumulation happens at the irrational position

√
2.

6. Conclusion

Abstract geometrical computation naturally arose from CA and is rich and promising.
The discrete constructions perfectly fit into the discrete word of CA as the continuous

constructions perfectly fit the continuous word of SM. It would be interesting to investigate
on how and in which cases the continuous side is a limit of the discrete one and the other
way round, up to what amount can CA represent approximations of AGC. For example,
on what conditions could there be an automatic discretisation of signal machine into CA in
order to preserve some kind of properties?

Abstract geometrical computation still have to be studied on its own as well as related
to computable analysis for its continuous aspects on one side and to transfinite computation
since accumulation of order 2 and higher can be generated on the other side.
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Abstract. We study a way of coupling two configurations of the same cellular automaton
rule for all elementary cellular automata (ECA). We experimentally show that there are
only two possible behaviors: either synchronization for all coupling strength, or a phase
transition. This transition is shown to belong to the directed percolation universality class,
even for a non chaotic rule and for rules with particles.

Introduction

Chaotic systems, with an apparently random behavior, have received a great deal of
attention in the last decades. It might be expected that, when adding noise to the system,
the behavior becomes even more chaotic. However, in various systems, a transition from
chaotic to non-chaotic behavior has been observed when varying a parameter: for some
values of the parameter, all trajectories become identical after a while and the system is
no more chaotic, since trajectories are independent of initial conditions. Synchronization is
made possible by the fact that all instances of the system are subject to the same realization
of the noise. This idea if synchronizing systems by identical random perturbation can be
traced back to [9] or [11].

The synchronization of simple dynamical systems taking cellular automata (CA) as a
model is the subject of a survey in [15], together with other extended dynamical systems. The
same authors in [10] describe a stochastic synchronization technique for CA: one considers
two configurations initialized independently and randomly. Both follow the same CA rule.
To try to synchronize them, one compares both configurations at each time step, cell by cell.
If both cells differ, they are made equal with probability p. The set of cells that are made
equal, or synchronized, is thus random and changing at each time step. The parameter p
controls the strength of the synchronization.

2000 ACM Subject Classification: F: Theory of Computation / F.1: Computation by Abstract Devices
/ F.1.1: Models of Computation / F.1.1.5: Unbounded-Action Devices (e.g., Cellular Automata, circuits,
networks of machines).

Key words and phrases: coalescence, coupling, robustness, discrete dynamical system, stochastic process,
directed percolation, universality class, phase transition.
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The goal of this paper is to explore this emergent phenomenon on all ECA (elementary
CA, that is, CA with one dimension, two states and two nearest neighbors). Preceeding
papers studied only one or two rules, chosen for the ease of simulation or for known chaotic
properties. We show that one does not need a chaotic CA to observe interesting behavior
(in this case, a phase transition) in this setting.

We study by simulation the behavior of all ECA with regard to this synchronization
scheme and show that over the 88 different ECA, two behaviors are possible: synchro-
nization even with the slightest synchronization strength, or synchronization only above a
certain synchronization strength. For the second class, we study the transition between non
synchronization and synchronization when p varies. There is always a phase transition be-
longing to the universality class of directed percolation. We thus get a new model of directed
percolation, with a few variants. Like a few other directed percolation models [6, 10, 12], the
limit of the sub-critical regime is neither a single absorbing state, nor a set of fixed points,
but a non trivially evolving phase.

Perturbation. The model presented here is a kind of perturbation to the original CA. The
general idea behind perturbation is to study the robustness of the system. Real systems are
not as regular and defect-free as models, so a good predictive model has to be robust to
small perturbation. We here study one kind of perturbation and apply it to all ECA.

Perturbing a system is a first step towards controlling it, indeed, some systems are
controlled with small, carefully chosen perturbations (e.g. satellite trajectories). The per-
turbation studied here is a kind of “self-perturbation”, in the sense that it is a perturbation
induced by a CA following the same rule. Such a perturbation, with an external force that
is related to the system of interest, might be more relevant than random noise.

Directed percolation. Directed percolation is found in other variations of the CA model. The
authors of [2] have studied a continuous model that collapses to deterministic CA dynamics.
They show that the observed synchronization transition, on changing the strength of the
stochastic coupling between replicas, belongs to the directed percolation universality class.
In [12], we presented another way of coupling two configurations of the same CA rule, called
coalescence. For some rules, we observed that there is a phase transition between coalescence
(the coupling makes both configurations equal) and non coalescence. As predicted by a
conjecture from Grassberger [5], the transition belonged to the universality class of directed
percolation. The conditions for this conjecture also apply to almost all rules of the present
study, and this paper shows that the new model also belongs to this universality class.

The paper is organized as follows. Section 1 gives definitions, notations, and a few
remarks. We describe the exhaustive simulation study in Section 2.1, then introduce directed
percolation in Section 2.2, and finally check the directed percolation hypothesis and analyze
the results in Section 2.3.

1. Definitions and notations

In this section we recall the definition of a CA to fix notations, then define the perturbed CA.
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1.1. Usual definition of CA

Definition 1.1. A Cellular Automaton (CA) is a tuple (Q, d, V, δ) where
• Q is the finite set of states;
• d ∈ N∗ is the dimension;
• V = {v1, . . . , v|V |}, the neighborhood, is a finite set of vectors in Zd;
• δ : Q|V | → Q is the transition rule;

The cell space is U := Zd.A configuration sets the state of each cell: it is a function c : U → Q.

Here is the dynamic: given a configuration c, the next configuration c′ is obtained by
updating all sites at once by applying δ: c′(z) := δ

(
c(z + v1), . . . , c(z + v|V |)

)
. We extend

the notation δ by defining δ(c) := c′.

1.2. The Forcing Model

Given a CA, we consider two initial configurations c10 and c20. Those configurations are
random, the state of each cell is drawn independently from the the others, with all states
of Q equiprobable. At each time step, each configuration is updated according to δ, then a
stochastic synchronization step Fq between both configurations occurs. The event studied is
whether both configuration eventually become identical (they are said to have synchronized).

Fq consists in, for each cell z independently, doing nothing with probability q, and
forcing both configurations to have the same state with probability 1 − q. When we force
both configurations to agree on cell z, the state is chosen randomly uniformly between c1(z)
and c2(z):

For each cell z independently, Fq(c1(z), c2(z)) :=


c1(z), c2(z) with probability q
c1(z), c1(z) with probability 1−q

2

c2(z), c2(z) with probability 1−q
2

Combining Fq and δ, we get:

cit+1(z) :=


δ(cit)(z) with probability q (a)
δ(c1t )(z) with probability 1−q

2 (b)
δ(c2t )(z) with probability 1−q

2 (c)

For each cell z independently, the same choice among (a), (b) and (c) is made for both
configurations. An example is given on Figure 1.

The probability q is a parameter of the model. The case q = 1 corresponds to the
unperturbed CA, or two independently evolving configurations, while the case q = 0 imply
total synchronization just after the first step.

Note that if both states are equal, the forcing has no effect. Since the decision of forcing
or not is independent for each cell, we can equivalently say that we try to force only if both
cells are different. This is the presentation chosen in [10].

Proposition 1.2 (the case of strong coupling). On finite configurations of size n, if q 6 1
|V |

then synchronization occurs in O(n) expected time.

Proof. The density of disagreement cells is, on average, multiplied by q each time Fq is
applied. It is multiplied by at most |V | when applying δ, since a disagreement cell can make
only its neighbors become disagreement cells. If |V |q < 1, the expectancy of this density is
thus exponentially decreasing.
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q = 0.8 q = 0.84
Time goes from left to right. Configurations c1 and c2 are superimposed. Agreeing cells (i.e. cells
having the same state in both configuration) are plotted light, disagreeing cells are plotted dark.
One can see typical patterns of the original rule 110 in the light zones.

Figure 1: Forcing model applied on rule 110.

The bound on q of proposition 1.2 is loose:
• not many rules make disagreement spread at the speed of light in all configurations,
• disagreement sites are not isolated, precisely because they spread.

Link to Another Model. In [13], the authors study on finite configurations what they call
self-synchronization, i.e. they have only one configuration that they try to “synchronize”
with itself, which means reaching a stable configuration. They do it by setting c2t := c1t−1,
i.e. synchronizing the configuration with the configuration at the previous time step. This
means that at each time step t, for each cell independently, the cell is reset to its state at
step t− 1 with probability 1−q

2 . This is equivalent to updating the cell with probability q+1
2

and doing nothing otherwise. The latter model, which updates only some cells at each time
step, has been studied extensively both experimentally and analytically in [4].

2. Experimental study

In this section, we systematically study (in the forcing model) the ECA, that is, CA
with Q = {0, 1}, d = 1, V = {−1, 0, 1}. We show that there are only 2 possible behaviors:
synchronization even with the slightest forcing strength, and phase transition when q varies.

2.1. Classification of ECA in the forcing model

Here is the protocol of our experiments. We call run the temporal evolution of a CA
when all parameters (rule, size n, probability q and two initial configurations) are chosen.
We stop the run when both configurations are synchronized, or when a predefined maximum
running time has been reached.

Let us describe the parameters we used.
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(1) Number of cells n. The main points when choosing n is to check that the results
do not depend on a particular choice of n, in particular that n is big enough. Some
authors (like [14]) suggest that small is enough (n = 30), others (like [3]) state the
opposite, and we follow the latter. A similar problem studied in [4] shows a stable
behavior for n > 200. We set n = 2000 and check that the results do not change for
n = 500.

(2) Number of computation steps. To measure the asymptotic density of disagreeing cells
ρ, we let the automaton run for 200 000 steps, then measure the density averaged
over 10 000 steps.

According to directed percolation theory, near a phase transition, the automaton
can take an arbitrarily long time before settling down to the asymptotic density.
So, for a few choices of q, those parameters are not sufficient to measure the true
asymptotic density. However, they are big enough to detect that there is a transition
point, and then study more precisely what happens there.

(3) q. We try to sample the entire range. For each of the 88 rules, we do 999 runs: one
for each value of q ranging from 0.001 to 0.999.

One might want to average over many runs. To show that we do not need to, we
plot ρ versus q. The smoothness of the resulting curve (Figure 2) shows that the
variance between runs is low.

The random seed for deciding which cells to update at each step is distinct for
each value of q.

(4) The initial configurations are random (each cell is in state 0 with probability 0.5,
independently from the other cells) and distinct for each value of q.

When we apply this protocol to all ECA, there are only two different situations occuring.
A typical plot of each case is on Figure 2.

• 68 ECA have a trivial behavior: both configurations always synchronize within the
given time, for all values of q.
• 20 ECA exhibit a phase transition. For some qc (depending on the rule):

– If q < qc, both configurations rapidly synchronize.
– If q > qc, the density of disagreeing cells settles to non zero value for a long

time.
We deal with finite configurations and can thus be subject to finite size effects. One

effect of notable importance is the following. Take a rule with a phase transition, there is
an update rate q for which the rule is synchronizing, i.e. the pair of configurations reaches
total agreement in polynomial time. In the non synchronizing regime, with low probability,
the outcome of the random bits determining which cells to force can make the CA simulate
the synchronizing regime for a fixed number of steps. So, if a CA can synchronize for a
given q, it can synchronize for any 0 < q < 1. The true asymptotic regime is thus always
synchronization.

In other words, when the density settles to non zero value (case q > qc), it still fluctuates
randomly around this value. Fluctuations eventually make the density touch 0, which is
asborbing.

However, these fluctuations become smaller as n increases, and the limit when n→∞
should be that the density does not reach 0 anymore. Moreover, this first experiment is used
to detect rules that have an interesting behaviour, and all rules of the second class will be
checked in detail in Section 2.3.
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Figure 2: Asymptotic density of disagreeing cells ρ versus q.

2.2. Phase transition and directed percolation

This section recalls the minimal background about directed percolation.

2.2.1. Phase transition. A phase transition is an abrupt change in macroscopic properties
of a system with only a small change of a control parameter, say T , around a critical value
Tc. This paper is concerned only with second order phase transitions, or continuous phase
transitions, which can be characterized by critical exponents. If one let the parameter T vary
near the phase transition (occuring at T = Tc), all other variables being fixed, a measurable
quantity C has a power law behavior C ∝ |T − Tc|β at least on one side of Tc. Several
exponents are defined, depending on the quantity measured.

Remarkably, many systems with no a priori relation turn out to have the same critical
exponents. A universality class is defined as all the systems having the same set of critical
exponents.

2.2.2. A conjecture on damage spreading. Chaos theory deals with the sensitivity to initial
condition of deterministic systems. To also study the influence of small perturbations on
stochastic systems, the authors of [8] introduced damage spreading. In this model, two copies
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of a stochastic model are run in parallel with the same source of random bits, starting from
different initial configurations (often they are set to differ in exactly one site).

One measures the temporal evolution of the proportion of differing sites, called the
Hamming distance. If this goes to zero, i.e. if both copies become identical, the initial
“damage” has “healed”, otherwise the damage is said to spread.

There is a conjecture by [5] stating that, if a transition occurs between healing and
spreading in a stochastic spin model, the universality class of this phase transition is always
the same, namely the one of directed percolation, which is presented in the next paragraph.

There are some conditions for this conjecture:
(1) Only short range interactions in time and space,
(2) translational invariance,
(3) non vanishing probability for a site to become healed locally,
(4) the transition does not coincide with another phase transition.

Point 2 is easily fulfilled for CA. Point 3 is a direct consequence of the definition of the
forcing model. About point 4 (no simultaneous transition), we know of no other transition.
We discuss point 1 in Section 2.3.3.

2.2.3. The Model of Directed Percolation. A more detailed introduction to directed perco-
lation can be found in [4] (note that this paper cites a different conjecture of Grassberger
than the one we deal with). A survey of directed percolation is contained in [7], which also
covers damage spreading.

Isotropic percolation was first defined when studying propagation of a fluid through
a porous medium. It has been mathematically modelled as an infinite square grid where
each site has the four nearest sites as neighbors. Each bond between two neighbors can
be open (letting the fluid go through) with probability p or closed with probability 1 − p,
independently of all other bonds.

The question is whether the fluid inserted at one point will pass through the medium,
i.e. whether this point is part of an infinite network of sites connected by open bonds.

Directed percolation appears when one adds gravity to the model, i.e. when the fluid is
only allowed to travel in one direction (Figure 3). Static 2D directed percolation can also
be seen as a 1D dynamical model where some sites are “active” (where active can mean
wet, infected, etc.). An active cell can stay active or die (become inactive), and make its
neighbors active. Depending on the probabilities of these possibilities, active regions spread
or disappear. Cells can only have an influence on the future states of their neighbors, thus
the directed percolation.

The macroscopic quantity measured is the density of active states as a function of p
and time, ρ(p, t). It is zero in one phase and non-zero in the other. There exists a critical
probability pc which is the limit between two phases:

• For p < pc, the asymptotic density ρ(p,∞) is 0;
• for p > pc we have a power law ρ(p,∞) ∝ (p− pc)β ;
• for p = pc the density goes to 0 as ρ(pc, t) ∝ t−δ.

2.3. Directed percolation in the forcing model

In our model, the active sites are the cells where the configurations disagree. Asymp-
totic density of such sites is written ρ(q). The pairs of configurations where all cells agree
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Figure 3: Isotropic (left) and directed (right) percolation. Figure reprinted from [7].
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Figure 4: Measuring β for rule 110.

constitute the absorbing set. Percolation transition (synchronization or not) appears when
varying q, see Figure 1. (Note that there is no direct relation between q and p, because of
the underlying CA dynamic.) The aim is thus to identify β assuming that

ρ(q) ∝ |q − qc|β (2.1)

for some qc. Like many authors [4, 5], we will focus on β and consider it as sufficient to test
directed percolation.

2.3.1. Measure of β. Two methods to measure β were compared in [12], we use the following
one. We plot log ρ(q) versus log(q− qc) for values of q near qc and adjust qc to get a straight
line. Once qc is fixed, we fit a straight line, the slope of which is an estimator of β. See
Figure 4 and Equation 2.1. It is important to do the fit against log ρ (and not ρ), so that
all errors get the same weight when fitting a line on the log-log plot.

The protocol is only semi-automatic. We try increasing values of n between 10 000
and 1 000 000 to get a reasonably smooth line on the density versus time plot. All other
parameters being set, different values of n give fluctuations around the same asymptotic
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Figure 5: ρ versus time for rule 58 and q = 0.9999 (log log scale).

density, and larger n yields smaller fluctuations and thus greater precision. Also, this allows
us to check that the number of steps required for the density versus time plot to become
horizontal is not affected by n.

We then visually check that the density has reached a steady state, then average the
density over at least half a decade. This yields one measure point. We repeat this process
for several values of q near qc.

Note the misleading diagram of rule 58 (Figure 5): running the experiment only for
50 000 time steps would lead one to conclude that the density will reach zero.

2.3.2. Results. The fit gives the ranges of Table 1, taking into account uncertainty about qc
and which points to keep for the fit. Experimental value for β measured on other systems is
0.276. As expected, all models undergoing a phase transition (that is, in our case, all models
not always synchronizing) seem to belong to the universality class of directed percolation.

Rule 110 has been measured with higher precision than the other rules to check the
influence of particles, discussed in Section 2.3.3.

Thresholds for rules 58 and 62 are very close to 1 and too sparse sampling of the values
of q could miss their transition. For those rules, a tiny synchronization strength (roughly
one percent) is already enough for both configurations to synchronize, but there is still a
strength at which they do not synchronize.

A few rules have very close thresholds and this is no coincidence: there is a way to relate
their dynamics.

• 18 and 146. The only difference between those rules is on the local configuration 111:
δ(1, 1, 1) = 0 for 18 and δ(1, 1, 1) = 1 for 146. But the only way to have a pattern 1k

(with k > 3) under the dynamic of 146 is to have the pattern 1k+2 on the previous
configuration. So, provided there is at least one 0 in the initial configuration, such
patterns rapidly disappear and the dynamics of 18 and 146 are then identical.
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rule qc β
9 0.9630(2) 0.306 ±0.031
18 0.8092(2) 0.285 ±0.021
22 0.7727(2) 0.268 ±0.018
25 0.9570(2) 0.288 ±0.016
30 0.7935(1) 0.269 ±0.016
41 0.7954(1) 0.277 ±0.013
45 0.7946(1) 0.275 ±0.011
54 0.8387(2) 0.283 ±0.012
57 0.8546(1) 0.295 ±0.026
58 0.9968(2) 0.26 ±0.03
60 0.8094(1) 0.27 ±0.015
62 0.9854(2) 0.291 ±0.027
90 0.8094(2) 0.263 ±0.022
105 0.6789(2) 0.268 ±0.01
106 0.8498(1) 0.275 ±0.009
110 0.81930(1) 0.272 ±0.005
122 0.7850(1) 0.274 ±0.011
126 0.7892(2) 0.269 ±0.011
146 0.8094(2) 0.259 ±0.021
150 0.6789(2) 0.265 ±0.013

Numbers in parenthesis give the precision:
“0.9630(2)” means q ∈ [0.9628; 0.9632].

Table 1: qc and β for all ECA undergoing a phase transition.

• 60 and 90. 90 means “xor between my left and my right neighbors”. 60 means
“xor between me and my left neighbor”. Let us consider a space-time diagram
{ct(z) | t ∈ N, z ∈ U } obeying rule 90:

∀z ∀t ct+1(z) = δ(ct(z−1), ct(z), ct(z+1)) = ct(z−1)⊕ ct(z+1)
If we extract the space-time diagram {c′t(z) := ct(2z − t) | t ∈ N, z ∈ U }, it obeys
rule 60:

∀z ∀t c′t+1(z) = ct+1(2z − t− 1)
= ct(2z − t− 2)⊕ ct(2z − t)
= c′t(z − 1)⊕ c′t(z)

Thus, 90 simulates two half-size configurations of 60.
• 105 and 150. 150 means “xor of the states of the neighbors” while 105 means “com-
pute the output of 150 and take the opposite state”. Thus, the agreement status
of on cell only depends on the agreement status of its neighbors in the previous
configurations (not on its actual state in both configurations). Which allows us to
conclude that, if we run both rules on the same pair of initial configurations, exactly
the same cells at each time step will disagree.

2.3.3. The case of rule 57. In previous papers, only chaotic rules have been the subject
of interest for studying synchronization and phase transition in the forcing model. But
let us consider rule 57 which, when unperturbed, converges quickly to a period 2 orbit
(in this case a checkerboard). It is thus not chaotic. Nonetheless, if one adds forcing, a
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phase transition occurs. This shows that this phase transition does not require the CA to
be chaotic. However, all ECA in class 3 or 4 of Wolfram classification (i.e. “chaotic” or
“complex” ECA) undergo a phase transition.

This rule is of further interest because it has particles (in the forcing model) and thus
long range correlations, as seen on Figure 6. Rule 110 is also known to have particles (see
Figure 1) and thus exactly the same kind of long range correlations. We have shown that
both rules undergo a phase transition of the directed percolation class. This shows that
point 1 of Grassberger’s conjecture (page 256), while useful for discarding models that do
not belong to this class, might be too restrictive.

Figure 6: A Space-time diagram of rule 57 in the forcing model.

The last insight given by this rule is the following. On Figure 2.c, one sees that for q
between 0.98 and 0.999, more forcing (q closer to 0) means higher asymptotic density. In
other words, increasing the number of cells we force to be equal at each time step makes the
density of disagreeing cells higher. Note that applying the forcing step Fq is equivalent to
applying two forcing steps F√q. In this case, applying the second one would raise ρ.

3. Conclusion and perspectives

We have studied a way to perturb a cellular automaton, with a perturbation related to
the original rule. For 68 ECA rules, the slightest perturbation allows to synchronize two
random initial configurations. For the 20 remaining ones, there is a threshold on the couplin
strength.

When studying the behavior close to the threshold, we confirm the results of the first
experiment and show that there is a phase transition belonging to the universality class of
directed percolation.

Experiments have to be run on finite configurations, but we checked that the number
of cells n does not influence the outcome, increasing n only increases accuracy. There is
evidence that the only finite size effect (the fact that zero density is absorbing) occurs only
after an exponential time, and thus does no harm here.

Therefore, we expect the theoretical model to behave like the experiments, i.e. to un-
dergo a phase transition with an exponent of β ' 0.276 (note that about the 1D directed
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percolation, the literature have precise experimental values for β but no analytical deriva-
tion).

There are certainly some rules that can be analytically studied and be proven of under-
going a phase transition. Simulation between directed percolation models is a strategy for
this kind of result.

Other open questions remain. An obvious generalization is to test in which proportion
this phenomenon occurs in CA with more states, more dimensions or more neighbors.

Alos, in this model, there is a symmetry between both configurations (they are treated
equally). In a context were the aim is to control the system, it would natural to study a
“master/slave” setting: when the random outcome tells to make two cells equal, the state
would always be copied from the first configuration to the second.

Finally, one could imagine relevant ways of coupling more than two instances of the
CA. But it would be even more interesting to mix this coupling scheme with the coupling
studied in [12] and see how their respective effects combine.

Links. Space-time diagrams for all ECA can be found on http://www.rouquier.org/jb/
recherche/eca. Source code used for the simulations is at http://cimula.sf.net.
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OPTIMAL TIME SELF-ASSEMBLY FOR SQUARES AND CUBES
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Abstract. Self-assembly is the process by which small entities combine themselves into
a bigger shape by local interactions in such a way that the resulting aggregates have
interesting global properties. In particular, self-assembling tile systems are a model for
assembling DNA-based nano artefacts which resembles cellular automata. They consist of
Wang tiles with glues on their sides. These glues have different strength, and a minimal
total strength is required to add a tile to a pattern. Thus, the tiling algorithm is embedded
into the Wang tiles themselves.

In the currently known constructions, most of the effort is put on guaranteeing the size
of the output object, whereas the geometrical efficiency of the assembly of the shape itself
is left aside. In this talk, we will present a framework to obtain provably time efficient self-
assembling tile systems. Our approach consists in studying how the flow of information has
to circulate within the desired shape to guarantee an optimal time construction. Instead
of starting with a tileset and studying its time performances, we go the other way around:
we start from the trace of an optimal run for assembling a shape and transform it into a
tileset with that behaviour. This study can yield an adequate ordering of the tiling process
from which one can deduce a provably efficient tile system for that shape.

In particular, in 3 dimensions, proving the correctness, let alone the time optimality of
a construction is a tedious process. With our method, this can almost be reduced to a few
elementary properties of a well chosen order.

We will present this approach on squares and cubes, for which we obtain time optimal
self-assembling tile systems.

c
262



Journées Automates Cellulaires 2008 (Uzès), pp. 263-274

COMPUTATIONAL MODELS AND CODES ON GRAPHS
(EXTENDED ABSTRACT)

H. BEN-AZZA 1 AND W. BAOUSAR 2

1 ENSAM, BP 4024, Bni Mhammed, Meknès, Morocco
E-mail address: hbenazza@yahoo.com
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Abstract. In this paper, we summarize some results concerning two fields: (1) models
of computation including Boolean networks and cellular automata; (2) error correcting
codes, whose purpose is to communicate over a noisy channel. We consider the class of
codes on graphs as exemplified by low-density parity and expander codes. For this class
we also give their linear programming formulation, introduced by Feldman et al. and we
answer a question of Feldman by providing a linear programming formulation for codes
over non binary alphabets.
The two fields are enriching each other, at least for studying the complexity of error
correcting codes.

Introduction

The ’natural’ idea of using error correcting codes in the study of cellular automata has
been pointed out in [22, 14]. This is our first motivation.

The class of low-density parity-check (LDPC) codes, and its belief propagation decoding
[15, 27, 8] has motivated researchers to understand the excellent performance of these codes.
A novel approach [11], by the use of linear programming (LP), gives many insights into
iterative decoding of codes on graphs. A second motivation of this paper, is to formulate
a LP decoder for non binary error correcting codes. Below, in subsection 4.2.4, we give
an answer to this question, which also inherits some properties ( like maximum likelihood
certificate ) from the binary case.

A third motivation is to understand, a new flipping algorithm [26, 2, 31], with the use
of the chromatic number of an expander graph ( see subsection 4.3). But, we only sketch
the decoder.

Section 1 defines Boolean networks (or circuits) which consists of a directed acyclic
graph labeled by inputs and gates (Boolean functions from a complete basis) (see [10, 22, 3]).
The concept of uniformity (answering the question of how to construct a family of circuits)
introduced in [4], and systematically studied in [24], is reformulated in this section for the

Key words and phrases: Cellular Automata, Computational Complexity, Error Correcting Codes, Boolean
Networks.
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needs of simulations between cellular automata and circuits. Section 2 introduces one-
dimensional cellular automata (CA) and main complexity measures attached to them ( see
[9, 20, 22]). Next, in section 3 we summarize some results of simulations between the two
models and the proofs are given in [3]. We say that a circuit is synchronous if all the paths
from inputs to a given gate are of the same length. It is, technically easier to simulate by
CA a synchronous family of circuits. The simulation of CA by circuits gives rise to uniform
families of circuits in a strong sense. The notion of error correcting code [1, 19, 23] is briefly
introduced in Section 4. It is a pleasant result [26] that the complexity of the flipping
algorithm for expander codes is in the class NC. Section 5 is devoted to some questions
implied by this short overview.

For notions on complexity theory and notations, we refer to [16, 29]; we denote, for
example, by DTIME(T (n)) the class of languages recognizable in time O(T (n)) by a
deterministic Turing machine. The notation DTIME,SPACE(T (n), S(n)) stands for the
( simultaneous ) class of languages accepted by deterministic Turing machines working both
in time O((T (n)) and uses O((S(n)) space. The same notion applies to alternating Turing
machines ( by the notation ATIME,SPACE(T (n), S(n))).

1. Boolean networks

Let G = (V,E) be a directed graph for which the set of vertices is V G = V and the
set of edges is EG = E. For a vertex v ∈ V G, we denote Γi(v) = {w : (w, v) ∈ EG}, and
Γo(v) = {w : (v, w) ∈ EG}. Φi(v) = |Γi(v)| (fan-in), Φo(v) = |Γo(v)| (fan-out). The induced
graph on a set X ⊆ V G, is denoted by G[X]. I(G) = {v : Φi(v) = 0} (input of the graph).
A path is a sequence of vertices P = (v0, ..., vk) such that (vi, vi+1) ∈ E, for i = 0, ..., k−1 ;
the origin of P is v0 and its inverse is (vk, ..., v0). Let βn = {f | f : {0, 1}n → {0, 1}} denote
the set of Boolean functions on n arguments Xn = {x1, ..., xn} ∈ {0, 1}n. A subset Ω ⊆ β2

is a complete basis if any function of βn can be expressed by composing elements from Ω.

Definition 1.1. Let Ω ⊆ β2. An Ω−circuit or Ω− Boolean network Bn is a pair (G, op) con-
sisting of a directed acyclic graph G = (V,E) and a labeling map op : V G→ Ω

⋃
Xn
⋃{0, 1}

such that
(i): for each vertex v with Φi(v) = 0, either op(v) ∈ Xn ( input variable), or op(v) is

the constant gate 0 or 1.
(ii): if op(v) ∈ Ω, then Φi(v) is equal to the rank of the operation op(v) and element

of Γi(v) corresponds uniquely to an argument of op(v). The vertex v is called a gate
and there exists a unique gate with fan-out 0 called the output gate.

(iii): furthermore, if the induced graph G[V G − I(G)] is a tree, then the circuit is
called a formula.

The class of Ω−circuits with n inputs is denoted by Bn(Ω). In a natural way, we
associate to each vertex v of a circuit Bn a Boolean function res(v), defined by induction.
We say that Bn, with output gate v, computes a function f ∈ βn if res(v)(Xn) = f(Xn) for
all Xn ∈ {0, 1}n. The family {Bn : Bn ∈ Bn(Ω)} computes the function f : {0, 1}∗ → {0, 1},
if for each n, Bn computes the function f restricted to {0, 1}n.

Definition 1.2. Let T ∈ Bn(Ω).
(i): The complexity of T is CΩ(T ) =| V T | −n.
(ii): The depth of T is CΩ(T ) = max{| P |: P is a path in T}.
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Definition 1.3. Let f ∈ βn.
(i): The complexity of f is CΩ(f) = min{CΩ(T ) : T ∈ Bn(Ω) computes f}.
(ii): The depth of f is DΩ(f) = min{DΩ(T ) : T ∈ Bn(Ω) computes f}.
(iii): The formula size of f is LΩ(f) = min{CΩ(T ) : T ∈ Bn(Ω) is a formula computing f}.

Let Z, T : N→ R+. We define the complexity classes

SIZE(Z) = {A ⊆ {0, 1}∗ | ∃{Bn} computing A and C(Bn) = O(Z(n))},
DEPTH(T ) = {A ⊆ {0, 1}∗ | ∃{Bn} computing A and D(Bn) = O(T (n))}.

The notion of the level of a vertex v in T ∈ Bn is recursively defined by :

N(v) =
{

0 if Φi(v) = 0,
max{N(u) : u ∈ Γi(v)}+ 1} else.

The set of vertices of level i is Ni = {v ∈ T : N(v) = i}, and this induces a partition
V T =

⋃D(T )
i=0 Ni. We denote

L(T ) = max{|Ni| : 0 ≤ i ≤ D(T )} and L1(T ) = max{|Ni| : 0 < i ≤ D(T )}.
Definition 1.4. (i)The width of T ∈ Bn is

W (T ) = max
0≤i≤D(T )

| { v ∈ V T : N(v) ≤ i and ∃w ∈ V T such that N(w) > i and (v, w) ∈ ET} |

(ii)Let Z : N→ R+. We define the complexity class

WIDTH(Z) = {A ⊆ {0, 1}∗ | ∃{Bn} computing A and W (Bn) = O(Z(n))}
Let Bn ∈ Bn. Its standard encoding Bn is the set of tuples < v, g, l, r > with the

following meaning: v is a vertex of Bn, g = op(v) the type of v (variable, ’and’, ’or’ gates ,
etc), and l, r are the ordered set of arguments of v. For a family B = {Bn} of circuits, its
extended language LEC is the set of tuples < n, v, P, y > where

1): the sequence P is the inverse of a path in Bn with | P |≤ logC(Bn);
2): if P is the empty sequence, then y is op(v), else y is the origin of the inverse of P.

The direct language LDC is the same as the extended language with the restriction that
| P |≤ 1. We note that | Bn |= O(C(Bn) logC(Bn)).

It is important to construct families of circuits, and the following notions of uniformity
capture this notion:

Definition 1.5. Let B = {Bn} be a family of circuits of size Z(n) and depth T (n). The
family B is said

(i): UD-uniform if LDC ∈ DTIME(logZ(n));
(ii): UE-uniform if LEC ∈ DTIME(logZ(n));
(iii): UE∗-uniform if LEC ∈ ATIME,SPACE(T (n), logZ(n));
(iv): UBC-uniform if (1n → Bn) ∈ DSPACE(logZ(n));
(v): UB-uniform if (1n → Bn) ∈ DSPACE(T (n));

Let the symbol X ∈ {UD, UE , UE∗ , UBC , UB}, and let A,B symbols designating com-
plexity measures on circuits ( like SIZE,DEPTH). Then by X − A(Z(n)) we mean the
class of languages accepted by X uniform family of circuits using O(Z(n)) of the resource
A. The simultaneous class X − A,B(Z(n), T (n)) denotes the class of languages L such
there exists a family of circuits B = {Bn} accepting L with the conditions that B is X
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uniform, and the resources A,B of Bn are upper bounded simultaneously by O(Z(n)) and
O(T (n)), respectively. Note that this notation may be extended to more than two complex-
ity measures for any model of computation, and is generally distinct from the intersection
of complexity classes.

The condition (iii) in the above definition is relative to alternating Turing machines, and
we note that the UE-uniformity is the strongest condition. The class NC contains problems
computable simultaneously in polynomial size hardware and poylogarithmic parallel time,
and it is insensitive to uniformity conditions ( for k ≥ 2):

Definition 1.6. Let k ≥ 1 be an integer.
(i): NCk = UBC − SIZE,DEPTH(nO(1), logk(n))
(ii): NC =

⋃
k≥1NC

k

(iii): SC = DTIME,SPACE(nO(1), logO(1)(n))

One precise exemplification of the so-called the thesis of parallel computation is [4]:

Theorem 1.7.

UB −DEPTH(T ) ⊆ DSPACE(T ), NSPACE(T ) ⊆ UB −DEPTH(T 2).

By a probabilistic proof, we have the lower bound:

Theorem 1.8. (Shannon, see [10])For all ε > 0, for n sufficiently large, for almost all f ∈
βn,

C(f) > (1− ε)2n

n

By a constructive proof, we have the upper bound:

Theorem 1.9. (Lupanov, see [10])For all ε > 0, for n sufficiently large, for almost all f ∈
βn,

C(f) < (1 + ε)
2n

n

But, it is a difficult task to exhibit a ’natural’ language or a Boolean function with a
non-trivial lower bound on the size.

2. One-dimensional cellular automata

We are interested in resource bounded computations by cellular automata.

Definition 2.1. A one-dimensional cellular automaton (CA for short) A consists of a line
of finite automata indexed by the integers Z, (Ai)i∈Z. Each Ai, called a cell, is a triple
(Q, d, q) where :

(i): Q is a finite set of states;
(ii): d : Q3 → Q is the transition function;
(iii): q is the quiescent state such that d(q, q, q) = q.

A configuration of the CA A is any sequence (si)i∈Z ∈ QZ.

For i ∈ Z, t ∈ N, let St(i) denote the state of the ith cell at time t. For t > 0, we have

St(i) = d(St−1(i− 1), St−1(i), St+1).

The transition function d of the CA A induces a global transition function ∆A : QZ → QZ,
and we define the tth iteration of this operator, ∆t

A, by : for each configuration C,
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∆0(C) = C, and for t > 0,∆t+1(C) = ∆(∆t).
The input to the CA at time t = 0 is a word w = w0...wn−1 ∈ Qn such that

S0(i) =
{
wi for i = 0, ...., n− 1
q for i < 0 or i ≥ n.

The initial configuration is IA(w) = (s0(i))i∈Z. We suppose that Q contains two special
states qa ( accept) and qr (reject). The decision on an input is made by the cell 0 such that
if s0(t) = s ∈ {qa, qr}, then for all t′ > t, s0(t′) = s. We say that a word w is accepted
(resp. rejected) by the CA A if and only if there exists a time t such that ∆t(IA(w))(0) =
qa(resp. qr). The language associated to A is

L(A) = {w ∈ Q∗ : A accepts w}.
The running time on the input w is

CTIMEA(w) = min{t : ∆t(IA(w))(0) ∈ {qa, qr}},
For T : N→ R+, we define the complexity class of languages L on some finite alphabet

by
CTIME(T (n)) = {L : ∃CA accepting L in time O(T (n))}.

The set of cells participating in a computation on an input w is introduced by :

CLARGEA(w) = max(| w |,maxi,j{| i− j |: ∃t, t′,∆t(IA(w))(i) 6= q,∆t′(IA(w))(j) 6= q})
and for a bound function S : N→ R+, we define the class

CLARGE(S(n)) = {L : ∃CA A accepting L,∀w ∈ L, | w |= n,CLARGEA(w) = O(S(n))}.
Finally, we define the simultaneous class :
CTIME,LARGE(T (n), S(n)) = {L : ∃CA A accepting L,∀w ∈ L,
CTIMEA(w) = O(T (n)) and CLARGEA(w) = O(S(n))}.

The firing squad lemma (FSL) [20], which synchronize computations, is:

Theorem 2.2. There exists a CA A = (Q, d, q) with three distinguished states G,F, and $
with the following property. If S0(0) = G,S0(n + 1) = $, and S0(i) = q for i = 1, ..., n,
then for all n ≥ 1, for all i = 0, ..., n + 1, and for all t = 0, ..., 2n + 1, we have :
∆t(G, q(n−1), $)(i) 6= F , and ∆2n+2(G, q(n−1), $)(i) = F.

We make heavy use of FSL to simulate circuits by CA in the following results. We note
also that it is easy to extend the above concepts to dimensions greater than one.

3. Relations between circuits and cellular automata

Proposition 3.1. If the function T (n) ∈ DTIME(log T (n)), then

CTIME(T (n)) ⊆ UE − SIZE,DEPTH(T 2(n), T (n))

Corollary 3.2.

CTIME,LARGE(T (n), L(n)) ⊆ UE − SIZE,DEPTH,WIDTH(T 2(n), T (n), L(n))

For cellular automata of dimension h, we have
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Proposition 3.3. If the function T (n) ∈ DTIME(log T (n)), then

CTIMEh(T (n)) ⊆ UE − SIZE,DEPTH(T h+1(n), T (n))

We say that a circuit T is synchronous if for all v ∈ V T , all the paths originating from
the inputs of T and ending at v have the same length. Given a circuit Bn, we may construct
a synchronous circuit, denoted B′n, computing the same function. This transformation is
denoted Bn → B′n, and given a standard description Bn, we can give the description B′n
with the bounds :

Lemma 3.4. For any family {Bn} of circuits, we have
(i): (Bn → B′n) ∈ DSPACEf (logC(Bn)).
(ii): C(B′n) = O(C(Bn) + L1(Bn)×D2(Bn)).
(iii): D(B′n) = D(Bn) and W (B′n) = W (Bn).
(iv): If S(n) ≥ log n, then (1n → Bn) ∈ DSPACEf (S(n))⇒

(1n → B′n) ∈ DSPACEf (S(n)), where DSPACEf (S(n)) is the class of functions
computable by deterministic Turing machines in O(S(n)) space.

For any complexity measure A on circuits, we denote by A′ the synchronous version.

Proposition 3.5. There exists a CA such that on the input Bn describing the standard
code of a synchronous circuit Bn, outputs the same value in time O(

∣∣Bn∣∣×C(Bn)×D(Bn))

Definition 3.6. A family {Bn} of circuits is UC-uniform if (1n → Bn) ∈ CTIME(C(Bn))

Corollary 3.7. For each synchronous UC-uniform family {Bn} of circuits, there exists a
simulating CA running in time O(C2(Bn)× logC(Bn)×D(Bn)).

Corollary 3.8. If T (n), L(n) ≥ n, then

UC − SIZE′, DEPTH ′, LARGE′(T,D,L) ⊆ CTIME,LARGE(DT 2 log T, L(logD +
logL))

Observe that this corollary relates three simultaneous resources on synchronous circuits
to two simultaneous resources on CA. Let Fn be a formulae, then we may found an encoding
F̃n of size |F̃n| = O(

∑
Φo(Xn) log n).

Proposition 3.9. There exists a CA A such that on input F̃n simulates Fn with
(i): CTIMEA(F̃n) = O(D(Fn)× L(Fn))
(ii): CLARGEA(F̃n) = O(

∣∣∣F̃n∣∣∣)
4. Error correcting codes

Let F = Fq be the field with q elements. A code C over F of length n is a subset of Fn,
whose elements are called codewords. The Hamming distance over Fn is d(x, y) = |{i : xi 6=
yi}|. The minimal distance of C is d = d(C) = min{d(c, y) : x, y ∈ C and x 6= y} and the
relative minimal distance is δ(C) = d/n. The rate is R = R(F) = n−1 logq(|F|). A scalar
product is defined by x · y =

∑n
i=1 xiyi. The dual of the code F is F⊥ = {x ∈ Fn : x · y =

0, ∀y ∈ F}.
Furthermore, if C ⊆ Fn is a F-vetor space of dimension k and minimal distance d, then

we say it is an [n, k, d] linear code. In this case, the code is given by its generating matrix
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G or by its control matrix H : C = { xG : x ∈ Fk} = {x ∈ Fn : Hx = 0}. We note that if
C is an [n, k, d] linear code, then its dual is an [n, n− k, .] linear code and (F⊥)⊥ = F.

For us, a probabilistic noisy channel is seen as a bipartite graph over two copies of the
alphabet F such that edges are labeled by the transition probabilities Pr(a | b), for a, b ∈ F
meaning the probability of receiving a given that b was sent. When a codeword y = y1...yn (
we suppose that the symbols yi have uniform probability of appearance in y and the channel
is memoryless) is sent over the channel, at reception we get the corrupted word ỹ = ỹ1...ỹn.
Let us summarize this situation by the notation y  ỹ.

Decoding by maximum likelihood (ML) reduces to the computation of DML(ỹ) =
argmaxy∈CPr(ỹ | y), for which the corresponding decision problem is known to be NP-
complete [6, 28]. More generally, a decoder for C is any function D : Fn → C

⋃{?}. The
symbol ’?’ means that the decoder D may not decides a decoding for some corrupted
ỹ ∈ Fn. In the situation y  ỹ, the decoding error probability on y is Pr(D(ỹ) 6= y). Let us
denote pD(C) the sum of all decoding error probabilities over y ∈ C. Then the celebrated
Shannon’s noisy coding theorem [25] states that there exists a number C ( the channel
capacity), for large length n, and for any ε > 0, there exists a code C of rate < C and an
accompanying decoder D such that pD(C) < ε. Note that the proof of this theorem is by a
probabilistic method.

4.1. Codes on graphs

The girth g(G) of a simple undirected graph G = (V,E) is the size of its smallest cycle.
A graph is said sparse when the number of edges is linear in the number of vertices (i.e.
|E| = O(|V |). A graph G = (V,E) is said an (α, β)-expander if for every S ⊂ V with
| S |≤ α, we have | N(S) |≥ β | S |.

4.2. Linear programming formulation

4.2.1. From ML decoder to LP decoder. Let C be a binary code, of length n, non necessary
linear. We assume an arbitrary binary-input memoryless channel, and information words
have equal probability.

Under these assumptions, the aim of ML decoder is given ỹ received, find y∗ such that

y∗ = arg max
y∈C

Pr[ỹ received |y transmitted]

Let γi = ln Pr[ỹi|yi=0]
Pr[ỹi|yi=1] denote the log-likelihood ratio of a code bit yi. We can show that

y∗ is an optimum of the problem

(ML)


min

n∑
i=1

γiyi

subject to
y ∈ C

Linear programming decoder is obtained by applying linear programming relaxation
to the problem (ML): to every code bit we associate a variable fi. We would like these
variables to take on values in {0, 1}. But in relaxation fi’s will take on values in [0, 1]. We
will define a polytope P ⊆ [0, 1]n (set of linear constraints on the variables), by using the
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structure of the code, and the objective function will be min
n∑
i=1

γiyi. The polytope P is

said to be proper if we have
P
⋂
{0, 1}n = C.

It is easy to show that
C ⊆ V (P) ⊆ P ⊆ [0, 1]n,

where V (P) is the set of vertices of the polytope P.

Therefore the relaxed problem is the following linear program

(LP )


min

n∑
i=1

γiyi

s.t
x ∈ P

Remark 4.1. The only part of LP relaxation that depends on the received vector is the
objective function.

4.2.2. Decoding algorithm of LP decoder. The decoding algorithm of the LP decoder using
the proper polytope P is:

• Solving (LP).
– If the solution is integral, output the corresponding codeword.
– If the solution is fractional, output ”error”.

Notice that if LP decoder produce a codeword, it’s guaranteed to be the codeword
produced by the ML decoder, and we say that LP decoder has what we call ML certificate
property. This property is one of the advantages of LP decoder.

4.2.3. LP decoder properties. The LP decoder will succeed, if and only if, the transmitted
codeword is the unique optimal solution to the (LP). So we can write the probability of
error, given a transmitted codeword y as:

Pr[error|y] = Pr[∃f ∈ P, f 6= y :
∑
i

γifi ≤
∑
i

γiyi]

In addition we have the following theorem

Theorem 4.2. [11] Let C be a binary code, and P a proper polytope for C. Then the
LP decoder using P is successful, if at most ddfrac/2e − 1 bits are flipped by binary-input-
symmetric channel, where

dfrac = min{
n∑
i=1

|yi − fi| s.t y ∈ C, f ∈ V (P), and f 6= y}.

The real dfrac is called the fractional distance of the polytope P. Note that dfrac is a
lower bound on the distance of C.

Recall that a binary-input channel is symmetric if the output alphabet can be parti-
tioned into pairs (a, a′) such that

Pr[ỹi = a|yi = 0] = Pr[ỹi = a′|yi = 1], and
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Pr[ỹi = a|yi = 1] = Pr[ỹi = a′|yi = 0].
Now we will define a property which allows us to analyze decoding algorithm. This

property is the C-symmetry.

A proper polytope P for a binary code C is C-symmetric if for all f in P and codewords
in C, the point f [y] is also an element from P, where f [y]

i = |fi− yi|. We have the following
theorem

Theorem 4.3. [11] If a polytope P is proper for the binary code C, and P is C-symmetric,
then C must be linear.

We can see that the fractional distance is a tool measuring the capacity of decoding
for the LP decoder. The C-symmetry of a polytope allows to compute efficiently fractional
distance. In fact if a polytope P is proper for a code C, and is C-symmetric, then dfrac =

min
f∈V (P)

n∑
i=1

fi, which is computable in polynomial time.

Also, we can prove that as long as the polytope used in the LP decoder is C−symmetric,
we can make the all-zeros assumption, i.e., we assume that the codeword sent over the
channel is the vector y = 0n, and we have

Pr[error |y sent] = Pr[error |0 sent].

4.2.4. The non binary case. This method of decoding is generalized to 2m−ary codes ( see
[8] for intensive experiments). In fact we know that for every m, F2m is a vector space over
F2, so we can obtain a binary code from a 2m−ary code.

Let {α1, α2, ..., αm} be a basis for F2m over F2. To every element a of F2m we can

associate the string a1 a2 ... am, such that a =
m∑
i=1

αiai. So if y = y1 ... yn a codeword from

C a 2m−ary [n, k, d] code, and yi −→ yi1 yi2 ... yim we can associate to y the mn binary
vector

y −→ (y11 ... y1m) (y21 ... y2m) ... (yn1 ... ynm)
Let Cb be the binary code obtained from C, and we note that if C is an [n, k, d] code , then
Cb is an [nm, km, d′] code with d′ ≥ d ( see [23], chap 8). Then we can prove:

Proposition 4.4. Let γij = ln Pr[ỹij |yij=0]
Pr[ỹij |yij=1] . Decoding C, a 2m−ary code, by the ML de-

coder over a binary input memoryless channel, given ỹ an nm−string the received word, is
equivalent to solving the problem: 

min
n∑
i=1

m∑
j=1

γijyij

s.t
y ∈ Cb

By using Cb we can construct an LP relaxation for the ML decoder of C. If the polytope
generated is proper for Cb, so we can say that the LP decoder have the ML certificate
property. It’s due to the fact that F2m is a F2-vector space. For the same reason we can
generate the other properties (symmetry, ...).
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4.2.5. LP decoder for LDPC codes. An LDPC code is a linear code that we have from a
sparse bipartite graph. Assume a graph G, with n left nodes, called variable nodes, and m
right nodes, called check nodes. This graph (which we call a Tanner [27] or factor graph)
generate a linear code C, of length n and dimension at least n −m. Every bit of a code
word is associated with a variable node, and vector a y = y1 y2 ..., yn is an element of C
if for all check nodes the sum of neighboring positions among the variable nodes, is zero
modulo 2.

In [12] and [11] we find an LP relaxation for a binary LDPC code. The construction
is a function of the factor graph representation of the graph, based on the parity polytope
construction of [17].

Let G be a graph associated to an LDPC code C, C the set check nodes and V the set
of variable nodes. N(j) denote the neighbors set of the node j. For all j ∈ C, we define
Ej = {S ⊆ N(j) : |S| even}. We can notice that for every S ∈ Ej if we set all bits in S
to 1, and all the others in N(j)\S to 0, we obtain a vector that satisfies the check j.

For each variable node i, associate a variable fi, and the cost γi, as it is defined before.
For all j ∈ C and S ∈ Ej , a variable wjS is introduced, it serves to indicate if a word uses
the configuration S to satisfy the check node j. Then the LP decoder for LDPC codes is:

min
∑
i
γifi

s.t∑
S∈Ej

wjS = 1 ∀j ∈ C
fi =

∑
S∈Ej , S3i

wjS ∀ edges (i, j)

fi ∈ [0, 1] ∀i ∈ V
wiS ∈ [0, 1] ∀j ∈ C and S ∈ Ej

Remark 4.5. The construction of the constraints can de done for all linear codes, but for a
LDPC code the size of the polytope obtained is linear regarding the code length [11]. That
is why this construction is associated to LDPC codes.

This polytope is proper and symmetric [11], so the LP decoder has the ML certificate
property. In [11] there is a proof that for a factor graph with check degree at least 2, variable
degree at least 3, and a girth at least 4, the fractional distance is at least Ω(n1−ε) for girth
Ω(log n), where ε > 0. This means that LP decoder can correct Ω(n1−ε) errors.

4.3. Expander arguments

In this section we consider the binary case (F = F2), and adversarial noise channel
model in which case some of the bits are flipped arbitrarily. We say that a decoder corrects
a fraction ε of error from code C, when on input w ∈ Fn2 , will outputs a codeword in the
set {v : d(v, w) ≤ εn}. The class of expander codes is a subclass of LDPC codes based on
(regular) expander graphs. Expander arguments were used in [6] to justify the excellent
performance of decoding LDPC codes [15].

In [26], the authors introduced a class of asymptotically good linear codes. The code
is based on a bipartite (c,d)-regular expander graph G and a subcode C0 of block length d
and minimum relative distance δ0, which we denote by C(G,C0). Then if G has expansion
(α, c/dδ0) and rate r = R(C0) > (c−1)/c, the code C(G,C0) will have rate at least cr−(c−1)
and minimum relative distance at least α. Furthermore, a simple decoding algorithm called
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flipping decoding ( at least in the case of C0 being the parity code as in the preceding
subsection) will correct an O(α) fraction of error from C(G,C0). We note also that the
flipping decoding is in the complexity class NC1 (see definition 1.6) and a LP decoder may
be constructed [13]. These ideas are refined by the work of [31, 2] where the subcode C0 is
associated to the (neighbors) edges incident to each vertex of the bipartite graph, and also
flipping algorithms are derived.

The above concepts suggests the following modification ( extension) by introducing the
chromatic number of an expander graph as follows. Suppose that χ(G) = k. Then we
may decode in rounds, where each round consists of k steps. In the ith step, each vertex
colored by i execute locally a ML decoding ( for example). We note that each graph may
be transformed to a bipartite graph ( see [26, 18]). We also note that expander codes are
nicely generalized to hypergraphs in [7] with bounds performance.

5. Questions

We ask some immediate questions:
1): A clear characterization of the class NC by CA. We note that this is related to the

question : how many times the firing squad lemma is used?
2): Performance of the flipping decoding with the use of chromatic number, described

in the last paragraph of subsection 4.3.
3): The use of the graphs ( or hypergraphs) from [18] in the construction of codes on

graphs with ( a large chromatic number and ) a large girth.
4): Experimental tests to confirm the performance of the LP decoder for non binary

codes. This question is from [11], where also a LP decoder is proposed for dense
Tanner graphs based on the polytope of [30].

5): The use of the new error correcting codes techniques in simulations between CA
[21], and in the constructions of CA [22].
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Abstract. We show that a finite union of rectilinear tiles pairwise disjoint, called Z-set,
is a tile in sense of Beauquier-Nivat. We consider 7q-tiles which are pseudo-hexagons
composed of q and six translated copies of it, where q is a given pseudo-hexagonal Z-set.
The contour word of such a 7nq-tile is defined by iterating a string rewriting system from
the Beauquier-Nivat’s factorization of the contour word of q into six words which codes the
sides of q. This induces an efficient algorithm to construct geometrically the contour word
of 7nq-tile. By definition, a 7nq-tile lets us make regular tilings of the plane by translation
of a given pattern q.

Keywords: Rectilinear Tile, Replicating Fractile, Regular Tiling, Rewriting System
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We present variations of Chaitin’s Ω number of the following form:
Let U be a machine which is “universal by prefix adjunction”. The probability
that its output be in some fixed set A is random (or random in some jump
oracle) in the sense of Martin-Löf.

The notion of machine U ”universal by prefix adjunction” we consider is as follows: U
simulates on input c(e)x the machine with code e on input x.

Our results deal with both finite and infinite computations.
Except for the case of finite computations and Σ0

1 sets A, such complexity results about A
refine uncomputability (or uncomputability in some jump oracle).

The difficulty of such results relies in the fact that Martin-Löf randomness is a fragile
notion: modifications which would not modify undecidabilty may destroy randomness.

In the case of infinite computations, one of the main tools is the notion of effective
Wadge reduction.

Some of our randomness results can be proved to fail with arbitrary universal machines.
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