

The authors

Luca Manzoni

Laboratoire i3s Université Nice Sophia Antipolis

luca.manzoni@i3s.unice.fr

Diogo Poças

Centro de Matemática e Aplicações Fundamentais University of Lisbon

diogopocas1991@gmail.com

Antonio E. Porreca

DISCo Università degli studi di Milano-Bicocca

porreca@disco.unimib.it

Introduction to RS

Classification: simulation

Classification: functions

Reaction Systems: definition

"Simulation" between RS

Classification: functions

Reaction Systems: definition

Classification: simulation

Functions defined by RS

Reaction Systems Definition

Reactions

Definition

$a = (R_a, I_a, P_a)$

- ► R_a: a set of reactants
- ► I_a: a set of inhibitors
- ► P_a: a set of products

Reactions

Definition

$a = (R_a, I_a, P_a)$

- ► R_a: a set of reactants
- ► I_a: a set of inhibitors
- ► P_a: a set of products

If there are all reactants and no inhibitors then all products are generated

Definition

$$\mathcal{A} = (S, A)$$

- ► S: a finite set of entities
- A: a finite set of reactions

6 • • •

Next state function

Let T be a subset of S

Next state function

- ► Let T be a subset of S
- ► For every reaction $a = (R_a, I_a, P_a) \in A$
 - $res_a(T) = P_a$ if a is enabled in T
 - $res_{\alpha}(T) = \emptyset$ otherwise

Next state function

- ► Let T be a subset of S
- ► For every reaction $a = (R_a, I_a, P_a) \in A$
 - $res_a(T) = P_a$ if a is enabled in T
 - $res_{\alpha}(T) = \emptyset$ otherwise

•
$$\operatorname{res}_A(T) = \bigcup_{a \in A} \operatorname{res}_a(T)$$

Next state function

- Let T be a subset of S
- ► For every reaction $a = (R_a, I_a, P_a) \in A$
 - $res_a(T) = P_a$ if a is enabled in T
 - $res_{\alpha}(T) = \emptyset$ otherwise
- ► $\operatorname{res}_A(T) = \bigcup_{a \in A} \operatorname{res}_a(T)$ Next state function

An example

Entities

{*a*, *b*, *c*}

Reactions

An example

{a}

Entities

 $\{a, b, c\}$

Reactions

$$\begin{array}{rl} r_1 &=& (\{a\}, \{b, c\}, \{a\}) \\ r_2 &=& (\{a\}, \{b\}, \{c\}) \end{array}$$

Reactions

Bounding reactants and inhibitors

$$\mathcal{RS}(r,i)$$

All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

Bounding reactants and inhibitors

- ▶ $\mathcal{RS}(\infty,0)$ is all Reaction Systems without inhibitors
- ▶ $\mathcal{RS}(0,\infty)$ is all Reaction Systems without reactants
- $\mathcal{RS}(\infty,\infty)$ is all Reaction Systems

Classification: Simulation

ldea

 $\mathcal{A}: \{a\} \longrightarrow \{a, c\} \longrightarrow \{c\} \longrightarrow \emptyset$

ldea

 $\mathcal{B}: \{a\}$

The same initial state

 $\mathcal{A}: \{a\} \longrightarrow \{a, c\} \longrightarrow \{c\} \longrightarrow \emptyset$

$\mathcal{B}: \{a\} \to \{a, e\} \to \{a, c\} \to \{c, d\} \to \{c\} \longrightarrow \{d\} \longrightarrow \{e\}$

The same initial state

ldea

The same initial state Every *k* steps...

ldea

The same initial state

Every k steps we obtain the "same" state

Definition

 $\mathcal{A} \preceq_k \mathcal{B}$

For any subset of the substances of $\ensuremath{\mathcal{A}}$

 $\mathcal{A} \preceq_k \mathcal{B}$

For any subset of the substances of \mathcal{A}

the state of \mathcal{B} after kn steps restricted to the substances of \mathcal{A}

 $\mathcal{A} \preceq_k \mathcal{B}$

For any subset of the substances of \mathcal{A}

the state of \mathcal{B} after kn steps restricted to the substances of \mathcal{A}

is the same as \mathcal{A} after n steps

 $\mathcal{A} \preceq_k \mathcal{B}$

For any subset of the substances of $\ensuremath{\mathcal{A}}$

the state of \mathcal{B} after kn steps restricted to the substances of \mathcal{A}

is the same as \mathcal{A} after *n* steps $\forall T \subseteq S \ \forall n \in \mathbb{N}$ $\operatorname{res}_{\mathcal{A}}^{n}(T) = \operatorname{res}_{\mathcal{B}}^{kn}(T) \cap S$

k-simulability relation

Q, Q': classes of reaction systems

k-simulability relation

Q, Q': classes of reaction systems

$$Q \preceq_k Q'$$

Every reaction systems of Qis *h*-simulated ($h \le k$) by some system in Q'

k-simulability relation

Q, Q': classes of reaction systems

$$Q \preceq_k Q'$$

Every reaction systems of Qis *h*-simulated ($h \le k$) by some system in Q'

$$Q \preceq Q'$$

 $Q \preceq_k Q'$ for some k

Can we trade time to obtain simpler reactions

16

)

 $\mathcal{RS}(r,i) \preceq_2 \mathcal{RS}(1,1)$

An example with one reaction

$$\mathfrak{r} = (\{a, b\}, \{c\}, \{d\})$$

One reaction is replaced by a set of reactions that produces the same results in 2 steps

New reactions

 $(\emptyset, \{a\}, \{r\})$ $(\emptyset, \{b\}, \{r\})$

If some reactant is missing generates the object r

New reactions

 $(\emptyset, \{a\}, \{r\})$ $(\emptyset, \{b\}, \{r\})$

If some reactant is missing generates the object v

 $({C}, \emptyset, {\mathfrak{r}})$

If some inhibitor is present generates the object r

New reactions

 $(\emptyset, \{a\}, \{r\})$ $(\emptyset, \{b\}, \{r\})$

If some reactant is missing generates the object r

 $({c}, \emptyset, {r})$

If some inhibitor is present generates the object r

 $(\emptyset, \{t\}, \{d\})$

If \mathfrak{r} is absent the products of \mathfrak{r} are generated

 $\{a,b\}$

 $\{a,b\}$

{*a*,*b*}

$\{a, b\} \longrightarrow \{d\} \longrightarrow \{d\} \bigcup_{\{\mathfrak{r}\}}$

 $\{a,c\}$

$\{a,c\}$

 $\{a, c\} \longrightarrow \emptyset$

 $\{a, c\}$

$\{a, c\} \xrightarrow{\qquad \qquad } \emptyset \cup \xrightarrow{\qquad \qquad } \emptyset \cup \xrightarrow{\qquad \qquad } \emptyset \cup \xrightarrow{\qquad \qquad } \{\mathfrak{r}\} \xrightarrow{\qquad \qquad } \emptyset \cup$

One is enough

A normal form for Reaction Systems

Theorem

Every Reaction System can be 2-simulated by a system in $\mathcal{RS}(1,1)$

One is enough

A normal form for Reaction Systems

Theorem

Every Reaction System can be 2-simulated by a system in $\mathcal{RS}(1,1)$

RS(1,1) is, in some sense, a **universal** class

Minimality

Do we really need two steps?

Theorem If r' + i' < r + i then $\mathcal{RS}(r, i) \not\preceq_1 \mathcal{RS}(r', i')$

Minimality

Do we really need two steps?

Theorem If r' + i' < r + i then $\mathcal{RS}(r, i) \not\preceq_1 \mathcal{RS}(r', i')$

The 2-simulation is minimal in time

What is missing?

• When $r \ge 1$ and $i \ge 1$ we have:

- $\blacktriangleright \ \mathcal{RS}(1,1) \preceq \mathcal{RS}(r,i)$
- $\blacktriangleright \ \mathcal{RS}(r,i) \preceq \mathcal{RS}(1,1)$

What is missing?

- When $r \ge 1$ and $i \ge 1$ we have:
 - $\blacktriangleright \ \mathcal{RS}(1,1) \preceq \mathcal{RS}(r,i)$
 - $\blacktriangleright \ \mathcal{RS}(r,i) \preceq \mathcal{RS}(1,1)$
- But when r = 0 or i = 0 we only know:
 - $\blacktriangleright \mathcal{RS}(r,0) \preceq \mathcal{RS}(1,1)$
 - $\blacktriangleright \ \mathcal{RS}(0,i) \preceq \mathcal{RS}(1,1)$

Reactants

Do we need more than two?

Reactants

Do we need more than two?

Inhibitors

Do we need more than two one?

Inhibitors

Do we need more than two one?

Reactants and Inhibitors

Who is stronger?

Reactants and Inhibitors

Who is stronger?

- $\mathcal{RS}(1,1)$ • $\mathcal{RS}(0,1)$ • $\mathcal{RS}(2,0)$
- *RS*(1,0)

 $\mathcal{RS}(0,0)$

- All classes are distinct
- All the simulations are minimal in time

Classification: functions

Result function

Every Reaction Systems A = (S, A) defines a function.

$$\begin{array}{rcl} \operatorname{res}_{\mathcal{A}} \colon & 2^{S} \to 2^{S} \\ & T \mapsto \operatorname{res}_{\mathcal{A}}(T) \end{array}$$

Result function

Every Reaction Systems A = (S, A) defines a function.

res_A:
$$2^{S} \rightarrow 2^{S}$$

 $T \mapsto \operatorname{res}_{A}(T)$

What are the functions defined by Reaction Systems?

Functions defined by $\mathcal{RS}(\infty,\infty)$

Theorem

For every finite S, for every $f: 2^{S} \rightarrow 2^{S}$ there exists $\mathcal{A} \in \mathcal{RS}(\infty, \infty)$ s.t.

$$\operatorname{res}_{\mathcal{A}} = f$$

Functions defined by $\mathcal{RS}(\infty,\infty)$

Theorem

For every finite S, for every $f: 2^S \to 2^S$ there exists $\mathcal{A} \in \mathcal{RS}(\infty, \infty)$ s.t.

$$\operatorname{res}_{\mathcal{A}} = f$$

What happens if we limit resources?
Antitone

 $T_1 \subseteq T_2 \implies f(T_1) \supseteq f(T_2)$

RS(0,∞)

Antitone

$$T_1 \subseteq T_2 \implies f(T_1) \supseteq f(T_2)$$

$\mathcal{RS}(0,\infty)$

- f, f^3, f^5, \ldots are all antitone
- f^2, f^4, f^6, \ldots are all isotone
- Hence the simulation in RS(0,∞) ≤3 RS(0,1) is minimal in time

► Isotone

 $T_1 \subseteq T_2 \implies f(T_1) \subseteq f(T_2)$

RS(∞,0)

- ► Isotone
 - $T_1 \subseteq T_2 \implies f(T_1) \subseteq f(T_2)$

RS(∞,0)

- f, f^2, f^3, \ldots are all isotone
- ► This explains why $\mathcal{RS}(\infty, 0)$ cannot simulate $\mathcal{RS}(0, \infty)$

Additive

 $f(T_1 \cup T_2) = f(T_1) \cup f(T_2)$

$\mathcal{RS}(1,0)$

Additive

 $f(T_1 \cup T_2) = f(T_1) \cup f(T_2)$

$\mathcal{RS}(1,0)$

- f, f^2, f^3, \ldots are all additive
- There exist isotone functions that are not additive
- ► This explains the difference between $\mathcal{RS}(1, 0)$ and $\mathcal{RS}(\infty, 0)$.

Constant

 $f(T_1) = f(T_2)$

 $\mathcal{RS}(0,0)$

The big picture

We provided a classification of the classes of reaction systems in the form $\mathcal{RS}(r, i)$

We provided a classification of the classes of reaction systems in the form $\mathcal{RS}(r,i)$

based on k-simulability

We provided a classification of the classes of reaction systems in the form $\mathcal{RS}(r, i)$

- based on k-simulability
- based on functions defined by RS

We provided a classification of the classes of reaction systems in the form $\mathcal{RS}(r, i)$

- based on k-simulability
- based on functions defined by RS

All the simulations are *minimal* in time The results *need* auxiliary entities

There are many other interesting questions about Reaction

Systems

There are many other interesting questions about Reaction

Systems

3 There are many other interesting questions about

> Reaction Systems

> > 38

Dynamics of Reaction Systems

People involved

Enrico Formenti

Luca Manzoni

Antonio E. Porreca

Laboratoire i3S

DISCo Università degli studi di Milano-Bicocca

Present

Complexity of the dynamics of Reaction Systems

What is the difficulty to determine

- the existence of a fixed point?
- If two reactions systems have the same local fixed point attractors?
- the existence of a global attractor?

Present

Complexity of the dynamics of Reaction Systems

What is the difficulty to determine

the existence of a fixed point?

NP-complete

- If two reactions systems have the same local fixed point attractors?
 - Π_2^p -complete
- the existence of a global attractor?
 PSPACE-complete
- ▶ • •

Questions