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Reaction Systems
Definition



Reactions
Definition

 = (R, , P)

É R: a set of reactants
É : a set of inhibitors
É P: a set of products

If there are all reactants and no inhibitors
then all products are generated
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Reaction Systems
Definition

A = (S,A)

É S: a finite set of entities
É A: a finite set of reactions
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Reaction Systems
Next state function

É Let T be a subset of S

É For every reaction  = (R, , P) ∈ A
É res(T) = P if  is enabled in T
É res(T) = ∅ otherwise

É resA(T) =
⋃

∈A res(T) Next state function
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Reaction Systems
An example

Entities
{, b, c}

Reactions
r1 = ({},{b, c},{})
r2 = ({},{b},{c})

{}

r1 and r2 are enabled

{, c}

Only r2 is enabled

{c}

no reaction is enabled

∅
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Reaction Systems
Bounding reactants and inhibitors

RS(r,)
All Reaction Systems whose reactions
É have at most r reactants
É and at most  inhibitors

9



Reaction Systems
Bounding reactants and inhibitors

É RS(∞,0) is all Reaction Systems without inhibitors

É RS(0,∞) is all Reaction Systems without reactants

É RS(∞,∞) is all Reaction Systems
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Classification: Simulation



k-simulation
Idea

A : {} {, c} {c} ∅

B : {} {, e} {, c} {c, d} {c} {d} {e}

The same initial state
Every k steps we obtain the “same” state
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k-simulation
Definition

A �k B
For any subset of the substances of A

the state of B after kn steps
restricted to the substances of A

is the same as A after n steps
∀T ⊆ S ∀n ∈ N resnA(T) = resknB (T) ∩ S
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Reaction Systems
k-simulability relation

Q, Q′: classes of reaction systems

Q �k Q′

Every reaction systems of Q
is h-simulated (h ≤ k) by some system in Q′

Q � Q′

Q �k Q′ for some k
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?
Can we trade

time
to obtain

simpler reactions
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An hypothesis
RS(0,4)RS(1,3)RS(2,2)RS(3,1)RS(4,0)

RS(0,3)RS(1,2)RS(2,1)RS(3,0)

RS(0,2)RS(1,1)RS(2,0)

RS(0,1)RS(1,0)

RS(0,0)

Set inclusion implies k-simulability

But the reverse is false

Theorem
RS(r,) �2 RS(1,1)

16



An hypothesis
RS(0,4)RS(1,3)RS(2,2)RS(3,1)RS(4,0)

RS(0,3)RS(1,2)RS(2,1)RS(3,0)

RS(0,2)RS(1,1)RS(2,0)

RS(0,1)RS(1,0)

RS(0,0)

Set inclusion implies k-simulability

But the reverse is false

Theorem
RS(r,) �2 RS(1,1)

16



An hypothesis
RS(0,4)RS(1,3)RS(2,2)RS(3,1)RS(4,0)

RS(0,3)RS(1,2)RS(2,1)RS(3,0)

RS(0,2)RS(1,1)RS(2,0)

RS(0,1)RS(1,0)

RS(0,0)

Set inclusion implies k-simulability

But the reverse is false

Theorem
RS(r,) �2 RS(1,1)

16



How does it works?
An example with one reaction

r = ({, b},{c},{d})

One reaction is replaced by a set of reactions
that produces the same results in 2 steps
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How does it works?
New reactions
(∅,{},{r})
(∅,{b},{r})

If some reactant is missing
generates the object r

({c},∅,{r})
If some inhibitor is present

generates the object r

(∅,{r},{d})
If r is absent

the products of r are generated
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Does it work?

{, b}

{d}

{, b}

{d} {d}∪
{r}
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Another example

{, c}

∅

{, c}

∅∪
{r}

∅∪
{r}
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One is enough
A normal form for Reaction Systems

Theorem
Every Reaction System
can be 2-simulated
by a system in RS(1,1)

RS(1,1) is, in some sense,
a universal class
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Minimality
Do we really need two steps?

Theorem
If r′ + ′ < r +  then
RS(r, ) 6�1 RS(r′, ′)

The 2-simulation is
minimal in time
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What is missing?

É When r ≥ 1 and  ≥ 1 we have:

É RS(1,1) � RS(r, )

É RS(r, ) � RS(1,1)

É But when r = 0 or  = 0 we only know:
É RS(r,0) � RS(1,1)

É RS(0, ) � RS(1,1)
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Reactants
Do we need more than two?

RS(1,1)

RS(0,2)

RS(0,1)

RS(2,0)

RS(1,0)

RS(0,0)

Lemma
For every r > 2

RS(r,0) �dlog re RS(2,0)
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Inhibitors
Do we need more than two one?

RS(1,1)

RS(0,2)

RS(0,1)
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Reactants and Inhibitors
Who is stronger?

RS(1,1)

RS(0,1)

RS(2,0)

RS(1,0)

RS(0,0)

Lemma
RS(2,0) �2 RS(0,1)
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Classification Theorem (k-simulability)

RS(1,1)

RS(0,1)

RS(2,0)

RS(1,0)

RS(0,0)
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Classification Theorem (k-simulability)

RS(1,1)

RS(0,1)

RS(2,0)

RS(1,0)

RS(0,0)

É All classes are distinct

É All the simulations are
minimal in time
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Classification:
functions



Result function

Every Reaction Systems A = (S,A) defines a function.

resA : 2S→ 2S

T 7→ resA(T)

What are the functions defined by
Reaction Systems?
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Functions defined by RS(∞,∞)

Theorem
For every finite S, for every ƒ : 2S → 2S

there exists A ∈ RS(∞,∞) s.t.

resA = ƒ

What happens if we limit resources?
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Functions defined by Reaction Systems

É Antitone
T1 ⊆ T2 =⇒ ƒ (T1) ⊇ ƒ (T2)

RS(0,∞)

É ƒ , ƒ3, ƒ5, . . . are all antitone
É ƒ2, ƒ4, ƒ6, . . . are all isotone
É Hence the simulation in RS(0,∞) �3 RS(0,1) is

minimal in time
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Functions defined by Reaction Systems

É Isotone
T1 ⊆ T2 =⇒ ƒ (T1) ⊆ ƒ (T2)

RS(∞,0)

É ƒ , ƒ2, ƒ3, . . . are all isotone
É This explains why RS(∞,0) cannot simulate RS(0,∞)
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Functions defined by Reaction Systems

É Additive
ƒ (T1 ∪ T2) = ƒ (T1) ∪ ƒ (T2)

RS(1,0)

É ƒ , ƒ2, ƒ3, . . . are all additive
É There exist isotone functions that are not additive
É This explains the difference between RS(1,0) and

RS(∞,0).
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Functions defined by Reaction Systems

É Constant
ƒ (T1) = ƒ (T2)

RS(0,0)
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The big picture

All functions
RS(∞,∞)

Antitone
RS(0,∞)

Isotone RS(∞,0)

Additive
RS(1,0)

Constant
RS(0,0)
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Conclusions

We provided a classification
of the classes of reaction systems
in the form RS(r,)

É based on k-simulability
É based on functions defined by RS

All the simulations are minimal in time
The results need auxiliary entities
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om

binatorics
D
ynam

ics

There are many other

interesting
questions

about

Reaction
Systems
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Present
Complexity of the dynamics of Reaction Systems

What is the difficulty to determine

É the existence of a fixed point?

NP-complete

É If two reactions systems have the same local fixed
point attractors?


p
2-complete

É the existence of a global attractor?

PSPACE-complete

É · · ·
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?
Questions


